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Abstract

The human connectome will provide a detailed mapping of the brain’s connectivity, with

fundamental insights for health and disease. However, further understanding of brain function and

dysfunction will require an integrated framework that links brain connectivity with brain

dynamics, as well as the biological details that relates this connectivity more directly to function.

In this Perspective, we describe such a framework for studying the brain’s “dynome” and its

relationship to cognition.

It may seem ill-timed to be discussing post-connectome science just when connectomics has

become a major initiative within neuroscience. Understanding the connectome presents

many technical and theoretical challenges, which will deliver novel insights into brain

function and dysfunction. However, it is already clear what some of the limitations of

connectomics will be. Furthermore, the connectome can be - and indeed needs to be -

studied at a very wide range of spatial scales, making any endpoint seem very far in the

future. We will argue here that the neuroscience community needs to be thinking now about

how to extend the insights that will emerge from the kinds of work highlighted in this

special issue to incorporate additional features of brain dynamics and physiology; this is

needed to address function and dysfunction of cognition. A shape for such a research

program is already emerging in the study of fast time scale (~millisecond) brain processes,

which is especially important when considering rapid changes in brain activity (e.g., during

cognition) and to supplement the static observations and slower times scales available by

other measurements (e.g., fMRI).

In general, connectomics refers to a comprehensive structural description of the human

brain, rendered as a network (Sporns, 2013). These networks consist of two fundamental

components: nodes and edges. A node is usually identified with a region of the brain, often

taken in principled ways from knowledge of brain anatomy and function, and can vary in

size and specificity, from the scale of a microscopic single neuron to a macroscopic brain
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region; in general, how to best define a node remains an active research topic (Stanley et al.,

2013). An edge represents a connection between two nodes. In a structural network, an edge

represents an anatomical connection between two brain elements. In a functional network,

an edge represents the statistical association between activities recorded from separate brain

elements (Park & Friston, 2013). The description of the anatomical connections (in some

versions) is often called the “connectome”, while the dynamic networks associated with

brain activity during a particular brain state (such as attention or rest; Greicius et al., 2003;

Fox et al., 2005; Bullmore & Sporns, 2009; Bressler & Menon, 2010) represents a

“functional connectome”.

In this essay, we emphasize that connections, even functional connections, do not provide

information critical to understanding how the brain produces cognition. What is needed is

not only what is connected, but how and in what directions regions of the brain are

connected: what signals they convey and how those signals are acted upon as part of a

neural computational process. As we describe below, the “how” is important for

understanding the ways in which various parts of the brain combine their particular

computations to support cognitive function. Indeed, we argue that how the brain generates

temporal structure is critical to the ways in which signals are routed, combined and

coordinated. We note that this viewpoint overlaps with the philosophy of (Bargmann &

Marder, 2013), although we focus here more directly on observations from the vertebrate

brain and rhythms.

Brain dynamics are hugely complicated, in ways that we are just beginning to chart.

Measurements from EEG, MEG, ECoG, local field potentials, and single-unit recordings

(both intra- and extra-cellular) are documenting complex temporal structures that are far

from random and are both reproducible and specific to classes of cognitive activities (Engel

et al., 1997; Wang, 2010). Some of this structure is usually called “brain rhythms”, which

typically are broadly distributed across a frequency band. In the analysis of brain electric

and magnetic field activity, standard peak frequencies range from somewhat below 1 Hz to

well over 100 Hz (Buzsaki & Draguhn, 2004). Many sophisticated tools exist to characterize

rhythms; however care must be taken to distinguish true brain rhythms from analysis

artifacts (Kass et al., 2005; R.E. Kass et al., 2014). Individual neurons can fire (somewhat)

coherently with the temporal structure of neuronal population activity (Fries et al., 2007;

Womelsdorf et al., 2007), or not (Senior et al., 2008; Manning et al., 2009), in ways that can

depend on the behavioral condition and the neuron type.

The existence of this specific and reproducible temporal structure motivates the search for a

kind of functional connectome that relates directly to it. Statistical associations between the

spatially averaged “activity” in separate brain areas typically do not provide insight into the

mechanisms that support these associations. That is, functional connectomics can provide

very insightful summary statistics describing how large-scale brain networks correspond to

cognitive states and how they change with learning or disease processes, but this framework

is typically not suited to describing or explaining the intricate cellular processes that take

part in producing what we call cognition, or even suggesting mechanisms by which regions

are coordinated.
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More specifically, the description of the brain as nodes and edges de-emphasizes the

questions of what signals get sent over the edges and how those signals are processed. Also,

distinctions that are clear in such a network framework (nodes versus edges) can be unclear

in brain tissue. For example, the local field potential (LFP), measured at a point in space,

depends both on “node” activity that is local to the measurement and also nonlocal synaptic

input along “edges” targeting that point in space; the LFP measurements do not distinguish

these components, though clues can be obtained by current source density measurements or

other techniques. We contend that, to understand the nature of a functional connection

requires a more detailed look at the local dynamics of the nodes (that is, not considering

them as points with “activity”, but acknowledging more detailed physiological and

dynamical structure), to understand how local processing is done, how it is regulated by

neuromodulators, and how the language of signals coordinates multiple parts of the brain in

cognitive tasks.

This expanded description of brain activity is what we call the “dynome”. The dynome is the

collection of experimental and modeling observations having to do with dynamical structure

(and its physiological and pathophysiological implementation) in the brain and its

relationship to cognition. It includes what is usually known as the functional connectome,

but expands the notion to go beyond statistical associations to the mechanisms involved in

producing and processing signals within the brain. In the dynome context, “understanding”

brain activity means uncovering the functions and dysfunctions provided by the brain’s

temporal dynamics. Like the connectome, the dynome proposes a framework for a broad

research program. Yet, the dynome does not have to be constructed de novo: there is already

a body of work on which further efforts can be based, and in the next part of this essay we

describe some of it. However, we note that, though much cognitively important dynamical

structure has been uncovered, the field is still in its infancy.

What constitutes the dynome?

In this section we discuss a framework for constructing the dynome, along with examples of

such work. Dynomics involves charting the dynamical structure of local and global

networks, studied mainly in vitro and in vivo respectively, and connecting those dynamics to

biophysical mechanisms and cognitively important computations via modeling of detailed

neuron and network biophysics. This complements other approaches, including dynamical

causal modeling, which tends to focus on more abstract, neural mass models (e.g., Kiebel et

al., 2009; Moran et al., 2013), which may not reflect the biophysical properties critical to

some neural computations. We focus, as invited, on brain rhythms, which reflect and

influence spiking activity; however, dynamic processes can also happen in the absence of

rhythmic brain activity (Ecker et al., 2010; Renart et al., 2010; Ainsworth et al., 2012;

Histed & Maunsell, 2014) and the dynome includes other temporal structures as well

(Larson-Prior et al., 2013).

Local temporal structure

By “local”, we mean a network whose components are physically close and which

participate in similar computations, as described by functional anatomy. This could be a

single cortical column or a larger but related group of columns (e.g., hypercolumns in visual

Kopell et al. Page 3

Neuron. Author manuscript; available in PMC 2015 September 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cortex). This is similar to the idea of a “node”, but encompasses all the anatomical and

physiological structure within the local network, including cortical layers, distinct neuronal

populations, intrinsic currents, local synaptic connectivity, and responses to

neuromodulation.

The dynamics within such a local network can be extremely complex. In vitro and in vivo

preparations reveal the intrinsic properties of these local networks. The amount of

reproducible temporal structure is astonishing, and the task of charting such structure is by

no means finished. Structure found in vitro includes: Multiple mechanistically different

versions of a rhythm in the same frequency band (Roopun et al., 2010); Multiple

mechanistically different rhythms in the same cortical region (Ainsworth et al., 2011);

Different rhythms appearing simultaneously in different cortical layers (Oke et al., 2010;

Ainsworth et al., 2012); Different effects of neuromodulators on rhythms in different brain

areas (Middleton et al., 2008; Roopun et al., 2008a); Switches in temporal structure with

changes in activation (Roopun et al., 2008b); Fast rhythms nested inside slower rhythms

(Gloveli et al., 2005; Carracedo et al., 2013); Faster intrinsic rhythms suppressed by slower

ones (Pietersen et al., 2014). Some of this structure observed in vitro has also been found in

vivo. For example, the properties of gamma rhythms as interactions of excitation and

inhibition (Atallah & Scanziani, 2009; Cardin et al., 2009), and laminar differences in

rhythms (Buffalo et al., 2011). Understanding the substrates and mechanisms that support

these rhythms, their interactions, and their function, is one goal of dynomics.

In vivo, brain rhythms are rarely seen in isolation. Indeed, a widespread motif is that faster

rhythms are nested in slower rhythms (Chrobak & Buzsaki, 1998; Lakatos et al., 2005;

Palva & Palva, 2007; Colgin et al., 2009). Experiments and modeling have begun to

illuminate the possible mechanisms of cross-frequency coupling, including an important role

for inhibition (Wulff et al., 2009). However, major challenges remain in detecting and

understanding cross-frequency coupling. Quantitative characterization of cross-frequency

coupling from in vivo recordings is fraught with difficulties (e.g., due to complicated, non-

sinusoidal nature of brain activity (Kramer et al., 2008b). Moreover, a meaningful

understanding of cross-frequency coupling – beyond a biomarker of brain dynamics –

requires knowledge of the biological mechanisms that support the observed activity in the

different frequency bands expressed.

It remains to establish which aspects of in vitro dynamics manifest meaningfully in vivo,

especially in the context of cognitive tasks. This is difficult, partly because in vivo

recordings with behavior require the entire brain, which necessarily introduces uncertainty

regarding important features that shape the observed dynamics (e.g., the neuromodulatory

state of the area of interest, the nature of the inputs to the area, etc). In vitro experiments, on

the other hand, sacrifice a direct link with behavior to allow controlled observations of the

dynamics produced by a physically isolated area of interest. Though all spectral bands that

are seen in vitro appear with remarkable consistency in vivo, we generally still do not know

the underlying mechanisms of the in vivo rhythms. Moreover, the variety of mechanisms

that support the same rhythm in vitro means that we cannot assume from the frequency of an

observed rhythm the underlying physiology without, for example, local pharmacological
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manipulation or carefully designed, neuron subtype-specific optogenetic/pharmacogenetic

interference.

In order to address the issues of how dynamic structure affects cognitive computations, it is

necessary to understand how the physiology of local regions gives rise to local rhythms and

their interactions. The most thoroughly studied rhythms are the class of gamma (30–90 Hz)

rhythms (Whittington et al., 2000; Buzsaki & Wang, 2012). Though there are many

subtleties to the underlying mechanisms and their consequences for spatiotemporal

interactions of this set of rhythms, the basic phenomenon involves feedback inhibition from

fast-spiking cells, notably parvalbumin-positive (PV+) cells, to pyramidal cells (in

Pyramidal Interneuron Network Gamma or “PING”) or to the inhibitory cells themselves

(Interneuron Network Gamma or “ING”): The decaying feedback inhibition provides a

window of opportunity for cells to fire, and the decay time of the inhibition is central in

determining the period of the rhythms. Other slower brain rhythms appear to depend more

on voltage-dependent intrinsic currents, especially M-currents (outward currents suppressed

by activation of muscarinic receptors) (Roopun et al., 2006) and h-currents (inward currents

activated by hyperpolarization) (Luthi & McCormick, 1998). Both of these currents are

sensitive to inhibition on fast time scales, so feedback inhibition from fast-spiking PV+ cells

(with fast decay times) and somatostatin-positive (SOM+) cells (with synaptic decay

kinetics several times slower than that of PV+ cells), can affect multiple intrinsic currents,

leading to complex local dynamics in which the intrinsic time scales of the activation and

deactivation of the currents - combined with synaptic input - shape the period. At still lower

frequencies (< 4 Hz), even slower inhibition (GABAB receptor-mediated) and metabolic/

metabotropic effects can support the slower timescales. Modeling has been done for many of

the above frequencies to illuminate the roles of the various currents and the effects of

neuromodulators in supporting and disrupting neuronal rhythms (Whittington et al., 2000;

Destexhe & Sejnowski, 2003; Rotstein et al., 2005; Tort et al., 2007; Kramer et al., 2008a;

Vierling-Claassen et al., 2010; Skinner, 2012; Lee et al., 2013; Cannon et al., 2014).

These observations only partially illustrate the tremendous complexity in local brain

dynamics. However, this complexity is not arbitrary. There is structure to the complexity

induced by neurobiology, as there is in the connectome, with much of that structure left to

be uncovered.

Temporal structure and cognition

There is now a large and growing literature documenting the different electrophysiological

rhythms associated with distinct cognitive operations, occurring across different

spatiotemporal scales, and within broadly and narrowly defined anatomical regions (for

reviews see Engel et al., 2001; Womelsdorf & Fries, 2006; Siegel et al., 2012). Studies over

the last two decades have revealed that rhythms can support a variety of cognitively-relevant

functions from enhancing thalamocortical inputs locally (Le Masson et al., 2002; Lakatos et

al., 2008) to enabling two or more different regions to be bound together through coherence,

thus enhancing feature discrimination or memory encoding (Fries, 2005; Sejnowski &

Paulsen, 2006; Buffalo et al., 2011; Igarashi et al., 2014). Cognitive tasks often encompass a

multitude of discrete processes that co-occur simultaneously in different brain regions.
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Dynomics focuses on understanding these processes, how they are coordinated, and the

consequences of their disruption. Despite the complexity of these questions, some progress

has been made, revealing insight into the dynamics of cognition, as we describe in the

examples below.

Cognitive processes often begin with the presentation of multimodal task-relevant stimuli,

and rhythms seem to play a key role in the integration of these signals (Senkowski et al.,

2008; Hipp et al., 2011). This process is dependent on specialized regions being actively

engaged during task performance, and studies from humans have revealed that large-scale

networks are recruited and synchronized at a particular frequency band(s) in a region

specific manner (Senkowski et al., 2008). The brain rhythm proposed to be most

instrumental to task-based functional connections between neuronal populations in different

brain areas is the set of beta (12–30 Hz) rhythms (Donner & Siegel, 2011). This set is also

the most mysterious: there appear to be a large number of mechanistically different versions

of these rhythms, produced in different parts of the nervous system (Cannon et al., 2014).

These rhythms may involve different classes of cells, and use synaptic excitation and/or

inhibition, as well as intrinsic currents (Roopun et al., 2006; Kopell et al., 2011). Other

slower frequency ranges have also been found to be important for macroscale interactions.

Most notably, low frequency delta rhythms (1–4 Hz) are known to coordinate large portions

of the brain (Fujisawa & Buzsaki, 2011; Nacher et al., 2013). Some of this coordination is

done through subcortical structures, notably the thalamus and the basal ganglia (Amzica &

Steriade, 1998; Lopez-Azcarate et al., 2013; Antzoulatos & Miller, 2014).

Faster rhythms are generally thought to play a prominent role in localized processing,

usually within a particular region or even within a cortical column; again, the most well

studied oscillations are gamma rhythms associated with attention. Gamma oscillations play a

prominent role in stimulus detection locally by modulating spike timing relative to a specific

phase of the local field potential (Fries et al., 2001; Bichot et al., 2005). This process is

thought to improve signal discriminability by elevating firing rates to near saturation levels

and by decreasing spike-count variability (Masuda & Doiron, 2007; Mitchell et al., 2007). In

addition to local processing, gamma rhythms support cross-regional coupling, particularly as

it relates to attentional and working memory networks. For example, as demands on

attention increase, different association areas also show strongest coupling between one

another at gamma frequencies (Gregoriou et al., 2009) and demands on attention can also

recruit other frequency bands that interact with gamma oscillations through cross-frequency

coupling (Lakatos et al., 2008).

Other frequency bands are often coordinated or coupled between regions during cognitive

tasks and the strength of coupling at a given frequency band between two regions can be

modulated by task conditions (Buschman & Miller, 2007). In this sense, multiple networks,

all associated with different frequency bands, may contribute to the same task at task-

relevant time points through different rhythms (Palva et al., 2010). Brain rhythms also

appear in cortical and subcortical structures whose coordination is essential for certain types

of sensory perception and learning. Multiple frequency bands can contribute to this process,

and the level of synchronization across large scale networks can be predictive of both

sensory perception and task performance (Hipp et al., 2011). Functional connectivity
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between the striatum and prefrontal cortex, for example, has been shown to strengthen as

rules associated with categories are acquired in a category-specific manner (Antzoulatos &

Miller, 2011; 2014). This coupling, particularly in the beta frequency range, seems to be

important for selecting task rules and dissociating ensembles associated with rule relevant

behavior from overlapping neuronal populations (Buschman et al., 2012). These examples

suggest that rhythms are dynamically modulated by task demands and they can change over

the course of learning. Furthermore, cross-frequency coupling across structures important

for different aspects of task performance may set the stage for cooperation among neuronal

ensembles that are recruited depending on task conditions (Tort et al., 2008).

While some rhythms may be better suited to enable change during learning, other rhythms

may be important for stability once learning has occurred. Studies from hippocampal slices

reveal that calcium entry through NMDA receptors or voltage-gated calcium channels

provide the basis for both LTP and LTD depending on the frequency with which the input

arrives (Bear & Malenka, 1994), and recent studies have revealed that the nesting of gamma

rhythms in hippocampal theta rhythms support memory encoding and retrieval depending on

the phase of the theta cycle (Colgin et al., 2009; Tort et al., 2009; Igarashi et al., 2014).

Modeling work has suggested that the interaction of gamma and theta rhythms are important

for promoting spike-timing dependent plasticity through NMDA receptors (Lee et al., 2009).

Just as importantly, other rhythms have been suggested to promote stabilization and the

continuation of on-going processes, the most prominent being beta oscillations in theories

where beta is important for maintaining the status quo (Engel & Fries, 2010).

The ubiquity of brain rhythms, their specificity, and their dynamic nature strongly suggest

their importance in cognition and behavioral outcome. The question then remains: through

what mechanism can rhythms be regulated with the specificity to support and coordinate

discrete aspects of cognitive operations both temporally and spatially? We suggest that part

of the answer to this question must involve the primary neuromodulator systems.

Neuromodulators can act locally or globally in ways that have profound influences on

overall network function. Widespread regulation by neuromodulators is most evident in

conditions of sleep onset or sleep transitions, where specific rhythms come to characterize

these states (McGinty & Harper, 1976; Kayama et al., 1992; Carter et al., 2012).

Neuromodulators, however, can also function to convey information in a very discrete and

targeted way by communicating information about task relevant stimuli to some regions of

neocortex and not others (Parikh et al., 2007; Howe et al., 2013) and by promoting

oscillations at specific frequency bands in a region specific manner (Roopun et al., 2010).

As described above, by changing physiology, neuromodulators change dynamics which, in

turn, changes the processing of inputs. Hence, an important function of neuromodulators

may be to change what regions are “on-line”; emerging evidence suggests that

neuromodulators effectively regulate what inputs a region can “hear “ (Disney et al., 2007;

Lee et al., 2013). Slice physiology experiments combined with modeling have elucidated a

mechanism by which cholinergic mediated changes in signaling can support different

cognitive functions through rhythm modulation; for example, pharmacology experiments in

visual cortex first noted that cholinergic signaling has the potential to regulate the direction

of information flow within cortical columns based on differences in muscarinic and nicotinic
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receptor expression across two classes of inhibitory (LTS and FS) interneurons (Xiang et al.,

1998). Modeling built upon this finding provides a functional mechanism through which the

emergence of deep layer beta-oscillations, associated with periods of top-down attention,

could be explained by the enhanced excitability of slow-inhibitory interneurons in the

presence of acetylcholine (Lee et al., 2013). Other modeling studies have also offered

insight into the details of stimulus competition where neuromodulators are essential to

recruiting interneuron networks to promote gamma rhythmicity (Borgers et al., 2008) or to

promote synaptic weakening (Lee et al., 2009). Future insight into cognitive function will

depend on understanding the mechanisms by which neuromodulators change physiological

processes in a way that recruits or alters rhythms during cognition.

Bridging the scales: physiology and modeling

Most of the work that has been done so far on fast temporal structure (such as brain

rhythms) has focused on two categories: either finding the biophysical bases of brain

rhythms or charting the association of cognitive activity with rhythms. By contrast, there has

been much less work attempting to understand how, or even if, the physiological properties

underlying fast dynamics are used in cognitive computations. This section describes some of

that work and the kinds of questions that need to be addressed.

A central question concerns how the signals that are transmitted along the anatomy of the

connectome are heard (or not), and how these transmitted signals interact with local

dynamics to transform and coordinate local activity. The investigation of that question is

often done via modeling. For example, we know that unpatterned input can give rise to

gamma rhythms (Borgers & Kopell, 2005) and that gamma rhythms are ideal for the

creation of cell assemblies (Harris et al., 2003) and their protection against distractors

(Olufsen et al., 2003; Borgers et al., 2005; 2008). The ability of gamma rhythms to facilitate

such a computation through competition comes directly from the physiological properties of

the gamma rhythm: it is the feedback inhibition underlying its formation that allows the

most activated cells to fire in unison and suppress activity of other cells via the feedback

inhibition. Another rhythm whose physiology is important to transmission and coordination

is a form of the beta 1 rhythm: In rodent association cortex in vitro, the superficial layers

produce a gamma rhythm in the presence of the glutamate receptor agonist kainate, and the

deep layers produce a beta 2 (25 Hz) rhythm; when the kainate is partially removed by an

antagonist after a period in which plasticity takes place, the gamma and beta 2 rhythms are

replaced in all layers by a beta 1 oscillation (15 Hz) (Roopun et al., 2008b). In this rhythm,

the activation is passed back and forth between the superficial and deep layers via inhibitory

rebound. Modeling has shown that such a temporal pattern of activity has the ability to

maintain a representation of an input beyond the duration of a stimulus, and coordinate cells

assemblies from earlier and later inputs (Kramer et al., 2008a; Kopell et al., 2011); this

maintenance is not possible in computational models when gamma-mediated cell assemblies

are coordinated only by common inhibition in the superficial layers (Borgers et al., 2005;

2008). Furthermore, relationships exist between the gamma and beta frequency bands; for

example, signals that are transmitted at beta frequency can be transformed to produce higher

power in the gamma frequency, leading to gain control of input. (Lee et al., 2013). In

general, the physiology of brain rhythms, especially connected with feedback inhibition, is
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believed to be important for creating the right phase relationship for coordination (Fries,

2005; Cannon et al., 2014) and therefore supportive of cognitive computations (Roopun et

al., 2010).

The above question is centrally involved in the relationship between a network’s structural

connectivity and the dynamic functional connectivity associated with a cognitive process

(Honey et al., 2010; Woolrich & Stephan, 2013). In addressing that relationship, a natural

approach is to simplify, for example, by examining simple oscillator models embedded in a

network. However, an oscillator model typically consists of only one degree of freedom for

the oscillator, its phase, which is manipulated by temporal input. For oscillations produced

by the brain’s networks, there are myriad internal degrees of freedom, including

participation of any given cell on a given cycle and the state of all the conductances of each

cell at any given time. Thus, the literature on responses of simple oscillators to temporal

input can give some direction, but not a complete picture. Therefore, to understand the

relationship between the brain’s functional and structural networks, more biophysically

realistic models are required. In that direction, one approach is to simulate neural population

activity on a static anatomical network. This modeling approach has been used, for example,

to suggest important contributions of general features (such as signal transmission delays

and noise) to the organization of dynamic resting state functional networks (Deco et al.,

2011). An even more complex modeling approach is to utilize detailed biophysical models

of neural activity, embedded in an anatomical network. This approach requires much greater

computational effort but may be essential to examine the effects on functional connectivity

that arise from the actual biological dynamics of cognitive function.

The available modeling and physiology is just the beginning of investigations under the

framework of the dynome. For example, it is not known why there are so many different

forms of beta rhythm, but reasonable conjectures include that a) regions that produce - or

resonate to - a given frequency can respond in a stronger way to input from a similar

frequency (Lee et al., 2013); b) the kinds of computations done in the various regions are

facilitated best by different biological implementations of the same rhythm; c) the various

rhythms can be independently modulated, leading to flexibility in computation (Somogyi et

al., 2003) and d) different mechanisms impart different phase sensitivities to input, so a set

of beta rhythm generators may all have statistically identical frequencies, but respond very

differently to a shared spectral profile of input. To understand if this is correct requires

knowledge of how each region responds to its temporally patterned input. A critical feature

is that the impact of an input on a brain region is not generic; the signal traveling along

axons to some region can have effects on the target that would not occur if the same input

went to a different region. To understand the impact of a neuronal input, we need to know

features of the targeted region, including: what classes of cells are targeted, the time scales

and nature (excitatory or inhibitory) of the synaptic currents, the intrinsic currents of the

target cells, the state of the extracellular environment at the target, and the neuromodulators

present.
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Interdependence of dynamics and connectomics

We have emphasized the importance of dynamics - and the physiological implementation of

these dynamics - in understanding the cognitive computations performed by the brain. The

signals created and routed throughout the brain are carried by physical pathways that are

studied by connectomics. However, the consideration of the more extensive notion of

“functional connection” provided by dynomics – a notion that includes an understanding of

the physiology that supports dynamic coordination - helps to clarify what sorts of

connectomics information might be most useful. A very detailed anatomical description of a

piece of tissue that does not specify the kind of information needed to understand the effect

of neuronal input (see end of last section) cannot be used to address the kinds of questions

posed in the dynome. We need to be able to add physiological knowledge and functional

significance to the anatomical results. This situation is complicated by the interrelationship

between physical connectivity and network dynamics. For example, as highlighted above,

some dynamics are closely related to neuronal plasticity underlying memory (Tort et al.,

2009; Igarashi et al., 2014), and both the frequency and timing of neuronal events is critical

for expression of this (e.g., Bear & Malenka, 1994; Bi & Poo, 1998). As such, plasticity

induces structural changes in neuronal connectivity (Bailey & Kandel, 1993), so changes in

temporal structure are very likely to change the connectome.

In ‘non-plastic’ model systems the close interrelationship between connectivity and

dynamics can also be readily observed. Even random connectivity graphs have discrete

dynamic signatures associated with activity propagating within them (Traub et al., 2001)

and different dynamic signatures appear to be correlated with different conduction delays

(Kopell et al., 2000; Tort et al., 2007; Deco et al., 2009). This is one reason why the study

of the dynome needs to be engaged in parallel with that of the connectome. Like

connectomics, this program involves a daunting amount of work, but that work is well

specified, and any addition to our knowledge driven by investigator initiated research

consistent with this program is likely to have immediate implications for understanding how

coordination happens within the nervous system.

As new technology has supported construction of the connectome, so will new technology

facilitate continuing study of the dynome. Emerging technologies for the observation of the

brain’s dynamic activity include high-density electrode recordings (Viventi et al., 2011),

optogenetic tools (Chow et al., 2010; Klapoetke et al., 2014), and large-scale three-

dimensional imaging of single neuron activity (Prevedel et al., 2014). These technologies

make now an opportune time to study the dynome. To do so will also require the

development and application of data analysis tools to characterize activity (R.E. Kass et al.,

2014) including interacting rhythms across temporal and spatial scales (Tort et al., 2010), as

well as principled approaches to link neuronal data with computational models (Huys &

Paninski, 2009; Meng et al., 2014).

Dynamics and diseases

Finally, many neurological diseases involve dysregulation of brain rhythms (Whittington et

al., 2011; McCarthy et al., 2012; Uhlhaas & Singer, 2012). For some of these, there are also
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pathological changes in structural and functional connectivity that come under the purview

of connectomics (Kramer & Cash, 2012; McCarthy et al., 2012; Anticevic et al., 2013).

However, the relationship between the anatomical changes and the cognitive changes in

neurological disease remains unclear. By contrast, dynomics provides a path to explanation

that may engender new interventions driven by the neurobiology. The path has the following

form: 1) changes in physical and anatomical properties (via genetically-related

neurodevelopmental changes, post-birth insults, or neurodegenration later in life) produce

changes in local brain dynamics; 2) changes in local dynamics change the profile of

interactions between brain regions; 3) such changes are pathological for producing the kinds

of computations important for cognitive functioning. A working example of this approach

can be found in attempts to link primary pathology with cognitive deficit in schizophrenia:

Many markers for function of fast spiking interneurons are dysregulated in this disorder

(Lewis et al., 2012). As a consequence local network dynamics – particularly gamma

rhythms - are disrupted in specific brain regions (Cunningham et al., 2006; Pafundo et al.,

2013); Gamma rhythms are mediators of mainly local functional interactions (see above)

and their disruption in schizophrenia is associated with selective loss of short-range

functional connections in patients with cognitive deficit (Alexander-Bloch et al., 2013).

The promise of such a view of neurological disease is that it can suggest ways to change the

dynamics even when underlying disease etiology is not currently understood or able to be

changed. In this case, therapy directly affects the dynamical brain pathology. A very

promising technology for such interventions is deep brain stimulation, which has become a

standard treatment option for medication resistant Parkinson’s disease symptoms. Brain

stimulation is also being investigated for a variety of other diseases such as depression

(Holtzheimer & Mayberg, 2011; Holtzheimer et al., 2012), obsessive compulsive disorder

(de Koning et al., 2011), and epilepsy (Leuchter et al., 2012). The understanding of how

such interventions could work will depend on a description of how the dynamics are being

perturbed in these technologies. In particular, if the region of the brain being stimulated is a

hub, the stimulation is apt to effect regions of the brain in ways that depend on hub

dynamics and connectivity.

Can we “understand” the brain without studying the mechanisms of its (fast) dynamics?

It might be argued that the sorts of details we are describing above are important only for the

implementation of principles supported by the brain, and these principles can be described in

terms of networks of nodes and edges. The above examples suggest that this is unlikely.

First of all, in understanding what might support a computation involved in cognition, we

need to know what the “wetware” is capable of. Secondly an immersion in the physiology

supporting temporal dynamics suggests mechanisms that would not be obvious if one were

thinking abstractly about “computation” and rhythms; as discussed above, different

mechanisms may support the same rhythm, and therefore respond to input, or changes in

neuromodulation, in different ways.

Indeed, the functional connectome (as described in a graph) is known to be dynamic (Bassett

et al., 2011; Chu et al., 2012). However, it largely remains to be understood how the rich

diversity of observed functional network dynamics are regulated. Here fast temporal
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dynamics can provide essential cues. As discussed above, the details of the local dynamics

can be essential to how a signal is “heard” and processed, both locally at a node, and non-

locally throughout the network. Thus, all modulations that change fast time scale dynamics

impact not only the statistically related activities captured in functional networks, but also

details of how signals are routed, combined and coordinated over the brain’s “wires”. Since

cognitive outcomes depend on stages of processing that can happen in tens to hundreds of

milliseconds, we need a framework that allows assessment of information at this timescale

to be considered. The dynome is exactly such a framework.

We are not advocating implementation of the dynome framework as a mega-project to be

addressed on a highly condensed time scale. Rather, we propose continued efforts to balance

the research activity of the neuroscience community, in which brain dynamics (including

fast dynamics such as rhythms, as well as other non-oscillatory dynamics) are studied along

with connectivity to reveal how such dynamics facilitate the flexible and dynamic

coordination of brain regions. Further understanding the brain’s “dynome” would benefit

from larger-scale consortium projects, and individual investigator-driven projects to advance

our knowledge and understanding of brain processing. We have given some details about

what research already exists and what areas could benefit from more attention. To

understand the brain’s dynome, knowledge of the biological details that support the brain’s

dynamics remains critical. However, we do not propose solely a bottom-up approach

focused only on these biological details. Instead, we envision a feedback loop between: (i)

observations of large-scale neurological phenomena in vivo, (ii) implementation of the basic

elements of these phenomena in experimental laboratory models in vitro, and (iii) analytical

and predictive computational models that feed back into experimental models to assess their

validity against the large-scale observations. Like connectomics (and unlike the original

aims of genomics), the goals are open-ended and the progress from many specific research

projects will be of use.

There is another aspect of dynomics that makes this framework different from that of

connectomics: the study of brain dynamics has the potential to bridge insights across levels

of function. Studying how genes affect anatomy and physiology leads naturally to the study

of small network dynamics; any information we have about small network activity provides

the basis for further understanding how networks interact to produce meso- and macro-level

behavior. Interactions of large networks are critical to understanding cognition and

pathologies of cognition. We do not think this work needs to (or can) be finished through a

linear progression of stages, from molecules to behavior; rather, work must occur at multiple

levels simultaneously. We have employed the “omics” label here to emphasize the inclusive

nature of this framework to understand brain dynamics. We propose that coordination of

efforts to understand the mechanisms of brain dynamics across spatial and temporal scales

will drive new understanding of brain function and dysfunction in cognition.
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