
Understanding Molecular Recognition of Promiscuity of
Thermophilic Methionine Adenosyltransferase, sMAT from
Sulfolobus solfataricus

Fengbin Wang1, Shanteri Singh2, Jianjun Zhang2, Tyler D. Huber2, Kate E. Helmich3,
Manjula Sunkara4, Katherine A. Hurley3, Randal D. Goff5, Craig A. Bingman3, Andrew J.
Morris4, Jon S. Thorson2, and George N. Phillips Jr.1,3

1Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, United
States.

2Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of
Kentucky, 789 South Limestone Street, Lexington, KY 40536.

3Department of Biochemistry, University of Wisconsin, Madison, WI 53706

4Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY
40536.

5Western Wyoming Community College 2500 College Dr. Rock Springs, WY 82902-0428, United
States.

Abstract

Methionine adenosyltransferase (MAT) is a family of enzymes that utilizes ATP and methionine

to produce S-adenosylmethionine (AdoMet), the most crucial methyl donor in the biological

methylation of biomolecules and bioactive natural products. Here, we report that the MAT from

Sulfolobus solfataricus (sMAT), an enzyme from a poorly explored class of the MAT family, has

the ability to produce a range of differentially alkylated AdoMet analogs in the presence of non-

native methionine analogs and ATP. To investigate the molecular basis for AdoMet analog

production, we have crystallized the sMAT in the AdoMet bound, S-adenosylethionine (AdoMet)

bound, and unbound forms. Notably, among these structures, the AdoEth-bound form offers the

first MAT structure containing a non-native product and cumulatively, these structures add new

structural insight into the MAT family and allow for detailed active site comparison with its

homologs in E. coli and human. As a thermostable MAT structure from archaea, the structures

herein also provide as a basis for future engineering to potentially broaden AdoMet analog

production as reagents for methyltransferase-catalyzed ‘alkylrandomization’ and/or the study of

methylation in the context of biological processes.
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Introduction

AdoMet is the most widely used methyl donor in biological systems, and the only known

family of enzymes that synthesize AdoMet is methionine adenosyltransferase (MAT), which

utilizes methionine and ATP as substrates (Fig. 1A) [1]. The reaction occurs in an unusual

two-step mechanism, in which the adenosyl group is transferred from ATP to the sulfur

atom of methionine cleaving the triphosphate and the triphosphate is subsequently

hydrolyzed to PPi and Pi [2]. MAT is present in all living organisms from bacteria to

mammals. To date, MAT structures from E. coli [3, 4], Campylobacter jejuni [5],

Burkholderia pseudomallei (PDB code 3IML), Entamoeba histolytica (PDB code 3SO4),

Mycobacterium marinum (PDB code 3RV2), Mycobacterium avium (PDB code 3S82),

Mycobacterium tuberculosis (PDB code 3TDE), Thermococcus kodakarensis [6], Rattus

norvegicus [7] and Homo sapiens [8] have been solved. They are more than 50% identical to

one other and share several common features: (i) they usually appear as oligomeric proteins

with a highly conserved three-domain fold [9]; (ii) divalent cations such as Mg2+ are

required for activity and monovalent cations such as K+ are able to enhance the reaction rate

[10]; (iii) a flexible loop suspended above the active site, serves as a “gate” and is involved

in the catalytic activity of the enzyme [11]. In addition, some members of the MAT family

have recently been demonstrated to produce non-native AdoMet analogs from non-native

methionine analogs [12-14]. And in the context of coupled reactions containing permissive

methyltransferases, those MATs enable the generation of natural product

‘alkylrandomizations’ [15]. Thus, there is renewed interest in assessing the substrate

tolerance of additional MATs and extending the molecular level understanding of MAT-

substrate interactions.

In contrast to well-characterized MATs in bacteria and eukaryotes, studies of a sequence

divergent class of MATs in archaea has been limited. The first archaeal MAT was identified

from Sulfolobus solfataricus by Porcelli et. al. [16] in 1988, having only ~20% sequence

identity with E.coli and human MATs (Fig. 2). Later on, another archaeal MAT from

Methanococcus jannaschii (mjMAT) was characterized in detail in terms of kinetics

parameters, substrate specificity, and folding [12, 17]. More recently, an apo crystal

structure of MAT from Thermococcus kodakarensis (tkMAT) has been reported, which

provides new structural insights on archaeal MAT [5]. The improved thermostability but

comparable kinetics parameters with MATs in bacteria and eukaryotes show archaeal MATs

to be of great interest for enzyme engineering applications. However, structural information

of active site contents and broad substrate specificity assessment for archaeal MATs has

been lacking. Here we report Sulfolobus solfataricus MAT (sMAT) to enable the cumulative

synthesis of a broad panel of unnatural AdoMet analogs (31 analogs detected) starting from

synthetic S/Se-alkylated Met analogs (42 analogs) or commercial sources (3 analogs). In

addition, this study highlights the crystal structures of a thermostable MAT (sMAT), in three
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different forms: AdoMet bound, a non-native product S-adenosylethionine (AdoEth) bound,

and the unbound form. Interestingly, in contrast to its low sequence similarity to other

MATs, sMAT displays the typical three-domain fold and partly conserved active site

architecture. Unlike other known MAT structures, the activity of sMAT cannot be

stimulated by ionic potassium [16]. This can be supported structurally by the presence of a

lysine side chain (K63) in sMAT, which likely has a similar function to potassium ion in

other MATs. Further, the capture of the first atypical ligand bound structure of MAT

provides insights on the nature of sMAT broad substrate specificity and a potential template

for future engineering toward expanding the substrate scope. Cumulatively, the results in

this study provide the first atomic view of the poorly explored class of MATs from archaea

and expose sMAT as an efficient catalyst for AdoMet analog production that is amendable

to downstream AdoMet-utilizing processes.

Results and Discussion

Overall Structural Organization

The crystal structures of sMAT have been determined successfully at 2.19 Å or 2.39 Å

resolution for the AdoMet-liganded form, 2.49 Å for the AdoEth-liganded form and 2.21 Å

for the unliganded form (Table 1). Similar to E.coli MAT (eMAT) [18], Rat liver MAT

(rlMAT) [19], human MATs (hMAT1A and hMAT2A) [8], sMAT packs as a tetramer (Fig.

3A). All four sMAT structures contain two subunits, A and B, in the asymmetric unit and

the tetramer is formed by a 2-fold crystallographic symmetry axis. The buried surface

interface between the two subunits A and B, and the two dimers AB and CD are calculated

to be 2570 and 1870 Å2 respectively [20]. These areas are similar to those from other

bacterial MATs [3-5]; but larger than rat liver MAT [7] and slightly smaller than human

MAT [8]. In the tetramer, there are four potential ligand-binding sites: two sites sandwiched

by A and B, and the other two sites between C and D. Compared with other known MAT

structures [9], the sMAT monomer adopts a similar 3-domain architecture with secondary

structure variants (Fig. 3A). Interestingly, unlike other MATs, structural variations were

observed between subunits A and B in sMAT with an average rmsd of 0.51 Å in both the

liganded and unliganded structures. In addition, the maximum rmsd between all the A

subunits and the maximum rmsd between all the B subunits in all sMAT structures are

calculated as 0.29 Å and 0.21 Å, respectively. Similar observation was also reported in a

recently solved archaeal MAT structure [6]. As a result, half of the active sites within sMAT

have a more open conformation than the others. Consistently, in all the ligand-bound sMAT

structures, only half of the active sites within the sMAT tetramer are occupied while the

other half are unoccupied. In addition, only the gating loops outside the occupied active site

become ordered (Fig. 3C, 3D).

The substrate specificity for sMAT based upon RP-HPLC is illustrated in Fig. 1B wherein

observed 5’-methyl-thio(seleno)-5’-deoxyadenosine (MSeA) production (via RP-HPLC,

Fig. 4) was interpreted as product based upon the well-established AdoMet decay pathways

indicating MSeA to directly derive from AdoMet (not ATP). [21-23] The putative substrates

tested were those recently reported to profile the substrate specificity of a range of MATs

and these analogs were specifically designed to interrogate both steric and electronic
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contributions to turnover [15]. Of the 45 putative substrates (Table 2) tested with sMAT, 11

led to appreciable (>50%) AdoMet analog production, an additional 15 led to moderate

(25-50%) conversion, while 5 offered detectable product (<25%) under the conditions

described. In general, smaller alkyl substitutions were better tolerated, suggesting steric

infringement to possibly prohibit larger substitutions. Interestingly, in the case where direct

comparisons could be made, the degree of unsaturation correlated with a reduction in

turnover (e.g., propyl > allyl > propargyl). Importantly, notable turnover was observed with

branched analogs (Fig. 1B, highlighted in green) that previously led to only trace product

with MATs studied to date.

Table 3 highlights a comparison of the kinetic parameters for L-methionine and the non-

native substrate for which a ligand-bound structure is available (L-ethionine). The changes

in kinetic parameters of the sMAT for both the substrates are moderate from 37 °C to 65 °C.

Compared with Thermococcus kodakarensis MAT and Methanococcus jannaschii MAT,

sMAT appears to be a somewhat better enzyme because sMAT has a 100 times smaller Km

for methionine, a slightly smaller Km for ATP, and a similar kcat. More importantly, the data

reflect that L-ethionine is kinetically competent and comparable to the native substrate L-

methionine. At either temperature, the kcat values for the sMAT reaction with L-methionine

or L-ethionine are similar and the reduced proficiency with L-ethionine when compared to

the native substrate L-methionine derive from a combination of higher Km values for both

L-ethionine and ATP.

Active Site Contents

The MAT catalyzed AdoMet formation, as mentioned in the introduction, occurs via a

sequential two-step mechanism. In the first step, AdoMet is formed by a direct SN2 reaction,

in which the sulfur atom of methionine attacks the C5’ position of ATP and thus cleaves the

polyphosphate chain from ATP. In the second step, the triphosphate is further hydrolyzed to

diphosphate (PPi) and phosphate (Pi) [9]. Komoto et al. [3] identified two critical residues,

lysine 165 and histidine 14, in eMAT for this proposed SN2 reaction based on their ligand-

bound structures. Interestingly, even with significant sequential variations to eMAT and

other MATs, several conserved residues were observed in sMAT, mainly located around the

active site, including the two crucial residues, lysine (K201) and histidine (H29) for the

proposed SN2 reaction (Table 4).

The interaction between sMAT and products in the active site are multifaceted as illustrated

in Fig. 3B. The adenine ring of AdoMet is recognized by a hydrogen bond with the side

chain of aspartate 144 and a stacking interaction with the aromatic ring of tyrosine 270.

Several water molecules surrounding by the adenine ring also form a hydrogen bond

network to the enzyme. The 2’-OH and 3’-OH of the adenosine ribose interact with the side

chains of aspartate 199, aspartate 282 and serine 277. Similar interactions involving aspartic

acids have been seen in other MAT structures bound with AdoMet, but not for serine [3, 8].

The methionine/ethionine moiety (of AdoMet and AdoEth, respectively) forms hydrogen

bonds with four residues, in which the amino group interacts with the side chain of aspartate

282, and the carboxylate group interacts with the side chain of histidine 58, asparagine 60

and asparagine 159. The methyl or ethyl group is buried in a slightly hydrophobic pocket
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surrounded by asparagine 159, aspartate 160, isoleucine 349, leucine 145 and the adenine

ring. As similar observations in eMAT [3], the PPi and Pi formed a U-shaped conformation

with two magnesium ions closely stacked on both sides. Further, the two magnesium sites

are formed with the side chains of aspartate 31, glutamate 305 and three water molecules.

The phosphate groups are surrounded and stabilized by the side chains of several basic

amino acids: lysine 25, histidine 29, lysine 201, arginine 288 and lysine 310.

As described, the ligands are solvent inaccessible and thus, the entrance of the active site

requires a dynamic and flexible region. A flexible loop region was previously identified as

the gate for the active site in MATs [24]. This gate loop feature has been confirmed by

crystal structures of eMAT and hMAT2A, in which the loop becomes ordered when ligands

are bound and it becomes disordered when the active site is empty [3, 8]. A similar gating

loop (residues 141-155) region was identified in sMAT (Fig. 3), which has a similar pose to

eMAT and hMAT2A and interacts with the adenine ring and the methionine or ethionine

moiety. When the active site is empty, residues 141-144 form a β-sheet with residues 95-96

while the rest of the loop is poorly seen or unidentifiable in electron density. When ligands

are bound in the active site, the loop region becomes ordered and is anchored above the

active site with residues 141-144 shifting from the origin position, and with residues

145-149 forming a small α-helix.

In various structures of eMAT [3] and hMAT2A [8], the active site ligand occupation is

correlated with an ordered active site gating loop. These studies are consistent with our

observations in sMAT structures. In addition to this, ligand orientations in the eMAT and

human MAT studies are similar to sMAT's. Different ligand orientations with an unordered

gating loop have been reported before in rlMAT structures [7] and an earlier set of eMAT

structures [4], but have some unusual features: (i) In rlMAT the temperature factors of most

of the ligand coordinates are above 70 Å2, and in earlier eMAT structures, the temperature

factors of ADP (or ADP mimic) are above 114 Å2; (ii) The flexible loop above the active

site was undefined even though the active sites were reported to be occupied [25]; (iii) Even

though rlMAT and eMAT have a 59% sequence identity and all critical residues are

conserved, they show completely different ligand orientations in the active site; (iv) X-ray

data for rlMAT and earlier eMAT structures are not available online, and thus ligand real-

space correlation coefficients cannot be calculated. These unusual features suggest that the

active site contents of rlMAT and earlier eMAT are questionable. In contrast to rlMAT and

the earlier eMAT structures, all the hMAT2A, later eMAT and sMAT structures have

reasonable temperature factors and a good ligand real-space correlation to electron density at

the active site.

Unusual Product Formation During Crystallization

As described in the methods section, two sets of ligand bound crystals were obtained in the

presence of 5 mM ADP, 10 mM ethionine (or methionine), 10 mM Mg2+ ion, and 1.4 M

NaHPO4/K2HPO4. Thus based on the simulated annealing Fo-Fc omit map of the active site,

one ADP, one PO4, two Mg2+ and one ethionine (or methionine) molecule were initially

built in (Fig. 5, left). However, this model does not fit the electron density perfectly, because

the Fo-Fc omit map does not agree with the placement of the crucial carbon atom circled in
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Fig. 5. Thus, it is very clear that the product has already formed and a model including PPi

and AdoEth (or AdoMet) is more appropriate. The new model (Fig. 5, right) has a lower

temperature factor and a better real-space correlation to electron density in the active site.

MAT-catalyzed AdoMet/AdoEth formation via ADP and Met/Eth has not been previously

observed. In addition, incubation of sMAT in the presence of ADP and methionine at 65 °C

for 90 min under standard assay conditions led to less than 2% AdoMet formation. Thus,

two explanations for this unusual product formation have been proposed: (i) The ADP stock

solution is contaminated by a sufficient amount of ATP; (ii) The unusual reaction catalyzed

by sMAT can actually occur in vitro, but may take as long as one month to complete, which

corresponds to the time of crystal growth in this experiment.

Structure Homology

A DALI search [26] for structures similar to the sMAT monomer returned several hits, all of

which are previously solved MAT structures with Z-scores between 23 and 29. Those MAT

structures share a very high level of overall sequence identity (> 50%) and a high level of

conservation among residues associated with substrates binding. Interestingly, sMAT only

has a maximum sequence identity of 19% with these known MATs, but shares a similar

three-domain (Fig. 6A).

For the comparison of active site residues, crystal structures of sMAT, eMAT [3] and

hMAT2A [8] were aligned by ligands as described in the methods section (Table 4).

Surprisingly, 16 of 17 active site residues detected in sMAT have an identical or similar

residue in eMAT and hMAT2A. The only extra residue sMAT has is H315, which forms

hydrogen bond with O5 in di-phosphate. DALI-based sequence alignment was able to

identify 11 pairs of residues (Fig. 2). Eight of them are conserved among sMAT and other

MATs, including the crucial residues histidine and lysine for the proposed SN2-like

mechanism [3]. The other three pairs are very similar residues at the same spot: for example,

in sMAT tyrosine 270 forms stacking interactions with the adenine ring of AdoEth/AdoMet,

while in eMAT it is phenylalanine 230. Intriguingly, there are another 5 pairs of residues

that are not detectable via DALI search: the side chain of sMAT lysine 25 (eMAT lysine

245) helps stabilize the tri-phosphate group; the side chains of sMAT histidine 58 and

asparagine 60 (eMAT glutamine 98 and lysine 269) form hydrogen bonds with the carboxyl

group of methionine or ethionine; the side chain of sMAT glutamate 305 (eMAT aspartate

271) form ionic bonds with the magnesium ion; the side chain of sMAT lysine 63 occupies

the same spot as the eMAT potassium ion and helps stabilize the di-phosphate ligand (Fig.

6B).

Unlike other known MATs, it has been previously reported that the activity of sMAT cannot

be enhanced by K+ [16]. In the present study, all the crystals of sMAT were obtained from

the crystallization condition containing more than 150 mM potassium, but electron density

suitable for K+ was not observed in any datasets. In addition, potassium dependency has

been previously reported in a close MAT homolog from Methanococcus jannaschii, which

share the same active site residues with sMAT except for the lysine [17]. Combined with the

active sites alignment evidence above (Fig. 6B), it is very likely that the catalytic activity of
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sMAT is not affected by K+, because the lysine in sMAT serves to present the requisite

cation properties.

Interestingly, eMAT and hMAT2A also have some ability to incorporate ethionine. The

ethionine turns over with sMAT and hMAT2A is near 100% whereas eMAT is just 10%

[15]. A ligand-based alignment (Fig. 6C) shows that sMAT has a larger cavity around the

ethyl/methyl group than either hMAT2A or eMAT. Placement of the ethyl group in eMAT

will cause serious clashes with isoleucine 102 and 302, while in hMAT2A the ethionine

causes moderate clashes with isoleucine 139 and 344. In sMAT a leucine (L145) is

substituted for one of the conserved isoleucine in other MATs (isoleucine 102 in eMAT),

which provides more active site flexibility for ethyl group binding. The ethyl group in

sMAT only has minor clashes with leucine 145 and isoleucine 349. Therefore, it is very

likely that the better proficiency of sMAT is caused by a larger cavity adjacent to the

methyl/ethyl group. Also, branched analogs highlighted in Fig. 1B turnover significantly

better with sMAT, comparing with eMAT, hMAT2A and mjMAT [15]. Interestingly,

mjMAT is a thermophilic archaeal MAT that has all active site residues conserved with

sMAT. However, further comparison between their active site cavities cannot be conducted,

because mjMAT structure remains unknown. The current structural information suggests the

better turnover rate of branched AdoMet analogs with sMAT is possibly mediated by some

general orientation/dynamics of the gating loop and/or secondary shell variations. The

specific residues contribute to this are currently unknown.

Conclusions

The crystal structures herein provide the atomic view of a clearly divergent class of MATs

from archaea and add new active site architecture understanding to the MAT family. The

sMAT has the characteristic fold and the typical tetramer assembly of known MATs, but it

is the first structure in protein data bank for a thermostable MAT. In addition, the slightly

expanded substrate scope of sMAT over other MATs studied to date highlight sMAT as a

useful tool for the production of AdoMet analogs. In conjunction with the recent

demonstration of coupled MAT-methyltransferase systems for differential alkylation [15],

this chemoenzymatic strategy circumvents a major liability in the use of synthetic AdoMet

analogs – namely, the dramatic instability of the AdoMet analogs. Thus, the structural

insights regarding sMAT provided herein offer another blueprint from which to pursue

future engineering to further broaden the catalyst promiscuity toward AdoMet analog

production.

Further, the elucidation of the active site architecture with the atypical product bound, the

characterization of the gating loop region, as well as the sMAT turnover reactions with

different AdoMet analogs provide a blueprint for future AdoMet analog production. Since

the two-step AdoMet synthesis process catalyzed by sMAT does not involve large

conformational changes of ATP and methionine/ethionine, the cavity around the methyl/

ethyl group is most likely the limiting factor for installing more function groups on the

deoxyribose sugar. Since the cavity is formed by the adenine ring, asparagine 159, aspartate

160, isoleucine 349 and leucine 145 in the gating loop, mutations of these amino acids,

especially on isoleucine 349 and leucine 145, or/and mutations on the gating loop residues
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can potentially increase the size of the cavity or change the local electrostatic field to accept

more functional groups, such as the compounds with low or zero turnover rate described in

Table 2.

Experimental Procedures

Expression and Purification of sMAT

The methionine adenosyltransferase (MAT) gene (UniProt accession: Q980S9) was cloned

into NdeI/EcoRI-digested pET28a to enable production of recombinant N-His6- sMAT). For

protein production, the corresponding pET28a-sMAT construct was transformed into the

E.coli methionine auxotroph strain B834 (DE3) and auto-induction media [27] was used for

expression at 37 °C. The cells were harvested by centrifugation at 5000 rpm for 30 min and

resuspended in buffer 20 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole pH 7.8. The cells

were lysed via lysozyme incubation followed by sonication on ice. Subsequently, N-His6-

sMAT was purified via Ni-NTA chelating column (GE Healthcare) following a protocol

with a linear imidazole (10–500 mM) elution gradient (50 mM NaH2PO4, 300 mM NaCl,

pH 8.0) The His6-tag was removed by thrombin (Novagen) cleavage and the affinity tag was

removed via a second round of Ni-NTA affinity chromatography. After the buffer exchange

using PD-10 column (25 mM Tris-HCl, pH 8), the desired truncated SeMet-labeled sMAT

was concentrated to 27 mg/mL, flash frozen in liquid nitrogen and stored at -80 °C. Protein

concentrations were determined by Bradford assay (Bio-Rad, Hercules, CA, USA) using

BSA as a standard.

Crystallization, diffraction, and structure determination

General screens were performed with PEGRx HT, Crystal Screen HT, Index HT, and SaltRx

HT (Hampton Research) utilizing a Mosquito® dispenser (TTP labTech) by the sitting drop

method. Crystal growth was monitored by Bruker Nonius Crystal Farms at 20°C. All sMAT

crystals with or without substrates were obtained by mixing 2 μL of protein solution and 2

μL of reservoir solution, 1.40 M sodium phosphate monobasic monohydrate/potassium

phosphate dibasic pH 5.6, using the sitting drop method. For unbound sMAT crystals, the

protein solution contained 0.15-0.2 mM sMAT and 25 mM Tris pH 8.0. For sMAT:

(AdoMet) condition, the protein solution contains 0.15-0.2 mM sMAT, 1 mM AdoMet and

25 mM Tris pH 8.0. For sMAT:(ADP+Met/Eth), the protein solution contained 0.2-0.3 mM

sMAT, 5 mM ADP, 10 mM Met (or Eth), 10 mM MgCl2, 12.5 mM KCl, 7.5 mM DTT and

25 mM Tris pH 8. All crystals were cryoprotected by 25% DMSO or 25% ethylene glycol

and flash frozen in liquid nitrogen.

X-ray diffraction data were collected at the Life Science Collaborative Access Team

(LSCAT) with an X-ray wavelength of 0.98 Å for all sMAT crystals at the Advanced

Photon Source at Argonne National Laboratory. Datasets were indexed and scaled by

HKL2000 or XDS [28, 29]. For structure solution of apo sMAT, phenix.HySS was used for

determination of selenium atom sub-structure, AutoSol for phasing and phenix.autobuild for

model building [30]. For the other structures of sMAT with ligands, molecular replacement

was utilized using the apo sMAT structure as a starting model. The structures including

several double conformations were manually rebuilt in several rounds by Coot [31] and
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further refined by phenix.refine [30]. MolProbity was used to validate the quality of the

coordinates [32]. All structural figures in this paper were generated using PyMOL [33].

Ligand-based Structural alignment of MAT homologs

In order to best compare the active site contents between structures with low sequence

identity, four structures were aligned based on ligand positions by PyMOL. They are eMAT

with AdoMet and PPNP (PDB code 1RG9) [3], hMAT2A with AdoMet (PDB code 2P02)

[8], sMAT with AdoMet, PPi and PO4 (PDB code 4K0B) and sMAT with AdoEth, PPi and

PO4 (4L2Z). 1RG9, 2P02 and 4K0B were first aligned by AdoMet molecule, and thus 4L2Z

was aligned to 4K0B via several active site residues. Atom clashes were calculated in

presence of hydrogen atoms using PyMOL and displayed as bumps. For clear display,

hydrogen atoms were not illustrated in Fig. 6C.

In-vitro sMAT assay

In vitro sMAT reactions were conducted in a volume of 50 μl with 2 mM S/Se-alkylated

analog, 1 mM ATP and 5 μM purified sMAT in 25 mM Tris buffer pH 8.0, 5 mM MgCl2,

50 mM KCl for 4 h at 65 °C. Reactions were quenched by adding an equal volume of

methanol followed by centrifugation (10,000 xg for 15 min) to remove the precipitated

protein and product formation for each reaction was subsequently analyzed by reverse phase

HPLC (RP-HPLC) using method described below. For each reaction, percent yield was

based upon the integration of species at 254 nm and calculated by dividing the integrated

area of product and/or decomposed product by the sum of integrated area of product and/or

decomposed product and the remaining substrate. The assays were repeated twice under

identical conditions and Table 2 (and Fig. 4) represents an average value of two assays. The

inclusion of adenine and 5’-R-thio-5’-adenosine in these calculations is based upon the

established AdoMet and ATP chemical decomposition pathways which indicate adenine and

5’-R-thio-5’-adenosine to only derive from AdoMet (not ATP). All putative products were

subsequently confirmed by high resolution electrospray ionization (ESI) mass spectra with

positive (+) and/or negative (-) mode (see general methods).

RP-HPLC method

Reactions were quenched by the addition of equal volume of methanol followed by

centrifugation at 10,000 g for 15 min to remove precipitated protein before applying on an

analytical Varian ProStar HPLC [Luna C18 column, 5 μm, 4.6 mm × 250 mm; Phenomenex,

Torrance, California, USA; gradient of 10% B to 40% B over 15 min, 40% B to 75% B over

5 min (A = 10 mM NaH2PO4, 5 mM octane sulfonic acid, pH was adjusted to 3.5 using

phosphoric acid; B = acetonitrile) flow rate = 1 mL min-1; A254]. Reaction products were

confirmed by High-resolution Mass Spectrometry.

Kinetic Measurements of sMAT Reactions

Pseudo first-order kinetics was assessed in triplicate under saturating ATP (2.5 mM) and

variable L-methionine/L-ethionine (0.007, 0.013, 0.033, 0.066, 0.133, 0.333, 0.66, 1.33 mM)

and saturating L-methionine/L-ethionine (2.5 mM) and variable ATP (0.013, 0.033, 0.066,

0.133, 0.333, 0.66, 1.33 mM) concentrations. Reactions were performed in buffer containing
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25 mM Tris pH 8.0, 40 mM KCl and 5 mM MgCl2, and 0.5 μg purified sMAT was added

and incubated at 37 °C or 65 °C for 30 min in a final volume of 20 μL. Reaction products

were analyzed using RP-HPLC method above and product quantification was carried out

using standard curve generated by commercial AdoMet. The kinetic curves were fit to the

Michaelis-Menton equation using Prism software.
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Fig. 1.
(A) The reaction catalyzed by methionine adenosyltransferase. (B) Turnover of S/Se-Met

analogs to the corresponding AdoMet analogs catalyzed by sMAT based upon RP-HPLC

(average percent error ≤4%, see Table 2 and Fig. 4). Bars colored green (referring to

branched L-alkyl-substituted analogs) denote analogs for which only trace turnover was

observed with MATs studied to date [15]. As controls, no product formation was observed

in the absence of sMAT, S/Se-Met analogs or ATP.
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Fig. 2.
The structure-based sequence alignment of MAT from Sulfolobus solfataricus (sMAT),

MAT from E.coli (eMAT) and human MAT (hMAT2A). Secondary structural features of

sMAT are shown at the bottom. The numbering of the amino acids in the figure corresponds

to sMAT. Identical residues between all three sequences are shown in green; identical

residues between two sequences are shown in yellow. The critical residues involved in

substrates binding are highlighted in red letters.
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Fig. 3. The overall molecular structure and active site contents of sMAT
(A) Tetramer assembly of sMAT in the crystal structure as calculated by PISA. The surface

of the protein is displayed: four protein monomers are shown in light blue or yellow and the

gating loops are shown in red. One protein monomer is displayed on the right showing the

three intertwined domains as cartoon and the ligands as sticks.

(B) Stereoview of sMAT-ligands interactions. The stick model of AdoEth, PPi, PO43- and

Mg2+ is depicted in spheres and the interacting sMAT residues are labeled and illustrated in

green.
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(C) Side view of sMAT dimer with AdoEth bound. The gating loop region is highlighted in

red.

(D) Side view of apo sMAT dimer. The gating loop region is highlighted in red.
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Fig. 4.
HPLC traces for representative sMAT reactions illustrating the production of AdoMet

analogs and/or 5’-methyl-thio(seleno)-5’-deoxyadenosine (MSeA) in the presence of a select

set of L-Met analogs. Starting material (ATP) is designated by a dot.
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Fig. 5.
The active site of sMAT with the simulated annealing Fo-Fc omit map (contoured at 3.0σ).

Substrates including ADP, ethionine, PO4
3- and Mg2+ are modeled on the left. Products

including AdoEth, PPi, PO4
3- and Mg2+ are modeled on the right.
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Fig. 6.
Folding and active site comparisons between sMAT, hMAT2A and eMAT (A) Monomers of

sMAT, hMAT2A and eMAT show a similar 3-domain fold. (B) Substrate-based alignment

of sMAT and eMAT shows a space overlap between lysine in sMAT and K+ in eMAT.

(C) Substrate-based alignment of sMAT, hMAT2A and eMAT displays the clashes around

the sMAT ethyl group. The clashes are calculated by “show bumps” in PyMOL and the

serious/medium/minor clashes are shown in red/brown/green.
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Table 1

Data Collection and Refinement Statistics for sMAT in the apo form and ligand-bound forms

sMAT sMAT+AdoMet sMAT+AdoMet sMAT+AdoEth

Added in crystallization --- SAM ADP, Met ADP, Eth

Modeled in structure PPi AdoMet, PPi AdoMet, PPi AdoEth, PPi

Data collection

Resolution range (Å) 50-2.21 50-2.19 50-2.39 50-2.49

Wavelength (Å) 0.98 0.98 0.98 0.98

Space group P6522 P6522 P6522 P6522

a, b, c (Å) 151.3, 151.3, 221.2 151.6, 151.6, 226.1 150.1, 150.1, 222.6 151.6, 151.6, 226.1

No. of molecules per asymmetric unit 2 2 2 2

Measured reflections 1,478,624 1,541,606 1,854,076 1,101,136

Unique reflections 74,368 78,995 59,745 53,034

R merge 0.118 (0.909) 0.142 (0.918) 0.165 (0.606) 0.184 (0.225)

Completeness 99.61 (96.38) 99.75 (97.50) 100.0 (100.0) 98.31 (82.97)

Redundancy 19.9 (9.2) 19.5 (14.3) 26.0 (22.2) 20.7 (21.0)

Mean I/sigma 14.55 (1.41) 14.94 (3.08) 27.01 (5.14) 11.94 (3.85)

Refinement

Rcryst/Rfree
a 0.1990/0.2201 0.1639/0.1888 0.1710/0.1978 0.1595/0.1843

No. of protein atoms 6301 6,356 6,396 6,410

No. of ligand atoms --- 48 43 44

No. of solvent atoms 304 707 596 589

Average B factor (Å2)

    Protein 38.20 31.6 37.5 40.1

    Ligands --- 28.7 30.3 38.2

Ligands RSCC
b --- 0.93 0.98 0.96

RMSD from ideal

    Bond length (Å) 0.002 0.007 0.006 0.007

    Bond angles (deg) 0.69 1.33 0.70 0.97

Ramachandran plot (%)

    Favored regions 99 98 98 99

    Outliers 0.25 0.12 0.12 0

PDB ID 4HPV 4L7I 4K0B 4L2Z

Values in parentheses are for the highest resolution shell.

a
Rfree was calculated as Rcryst using 5.0% of randomly selected unique reflections (in thin resolution shells) that were omitted from the structure

refinement.

b
RSCC is the real-space correlation to electron density calculated by Phenix.
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Table 3

Kinetic parameters of sMAT enzyme.

Temperature (°C) Constant Substrate Varied Substrate kcat (min−1) Km (mM) kcat / Km (mM−1min−1)

37

ATP L-methionine 2.06 ± 0.03 0.0023 ± 0.0003 895 ± 100

ATP L-ethionine 2.34 ± 0.07 0.0056 ± 0.0015 417 ± 47

L-methionine ATP 1.97 ± 0.08 0.0686 ± 0.0110 29 ± 7

L-ethionine ATP 2.48 ± 0.09 0.0969 ± 0.0130 26 ± 7

65

ATP L-methionine 2.92 ± 0.07 0.0028 ± 0.0007 1042 ± 100

ATP L-ethionine 2.99 ± 0.11 0.0070 ± 0.0016 427 ± 69

L-methionine ATP 2.806 ± 0.08 0.0145 ± 0.0025 194 ± 32

L-ethionine ATP 3.10 ± 0.14 0.0592 ± 0.0108 52 ± 13
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Table 4

Ligand-based Alignment of Active Site Residues between sMAT and eMAT

Interaction Partner
a sMAT eMAT DALI Alignment Chain

O1, O2 in PPi, O2 in PO4 K25 K245 not detected B

O3 in PPi H29 H14 detected B

Mg2+ D31 D16 detected B

O7, O8 in AdoEth H58 Q98 not detected A

O7, O8 in AdoEth N60 K269 not detected A

K63 (K+ in eMAT) D62 E42 detected A

O5, O7 in PPi K63 K+ - A

ethyl group in AdoEth L145 I102 detected A

O26 in AdoEth D199 D163 detected B

O3 in PPi K201 K165 detected B

stacked with adenine ring Y270 F230 detected B

O27 in AdoEth D282 D238 detected B

O1, O3 in PO4 R288 R244 detected B

Mg2+ E305 D271 not detected A

O6 in PPi, O1 in PO4 K310 K265 detected A

O5 in PPi H315 - - A

ethyl group in AdoEth I349 I302 detected A

a
The atom numbers used for interaction analysis here are the numbers from the AdoEth-bound structure (PDB code 4L2Z).
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