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Abstract: Brain morphometry based classification from magnetic resonance (MR) acquisitions has been
widely investigated in the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild
cognitive impairment (MCI). In the literature, a morphometric representation of brain structures is
obtained by spatial normalization of each image into a common space (i.e., a pre-defined atlas) via
non-linear registration, thus the corresponding regions in different brains can be compared. However,
representations generated from one single atlas may not be sufficient to reveal the underlying anatomi-
cal differences between the groups of disease-affected patients and normal controls (NC). In this arti-
cle, we propose a different methodology, namely the multi-atlas based morphometry, which measures
morphometric representations of the same image in different spaces of multiple atlases. Representa-
tions generated from different atlases can thus provide the complementary information to discriminate
different groups, and also reduce the negative impacts from registration errors. Specifically, each stud-
ied subject is registered to multiple atlases, where adaptive regional features are extracted. Then, all
features from different atlases are jointly selected by a correlation and relevance based scheme, fol-
lowed by final classification with the support vector machine (SVM). We have evaluated the proposed
method on 459 subjects (97 AD, 117 progressive-MCI (p-MCI), 117 stable-MCI (s-MCI), and 128 NC)
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and achieved 91.64% for AD/
NC classification and 72.41% for p-MCI/s-MCI classification. Our results clearly demonstrate that the
proposed multi-atlas based method can significantly outperform the previous single-atlas based meth-
ods. Hum Brain Mapp 35:5052–5070, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Morphometric pattern analysis is one of the most popular
approaches for automatic Alzheimer’s disease (AD) diagno-
sis. By directly accessing to the structures provided by mag-
netic resonance imaging (MRI), brain morphometry can be
utilized to identify the anatomical differences between pop-
ulations of AD patients and normal controls (NC), and sub-
sequently determine the AD-related characteristics to assist
diagnosis, prognosis, as well as evaluation of mild cognitive
impairment (MCI) progression and treatment effects.

Toward this goal, researchers have developed various
techniques to measure brain morphometry. Most of the
early works [Dickerson et al., 2001; Fox et al., 1996; Kaye
et al., 1997; Killiany et al., 2000] resorted to direct volumet-
ric measurements in predefined regions of interest (ROIs)
(e.g., hippocampus, neocortex, or entorhinal cortex), and
seek for the anatomical differences caused by AD or MCI in
those specific regions. However, accurate reproduction of
manually labeled ROIs is extremely difficult to perform
across different subjects/data sets, and such prior knowl-
edge of targeted disease is always limited. More recently,
thanks to the substantial development of deformable image
registration techniques in the last decade [Sotiras et al.,
2013; Shen et al., 1999; Tang et al., 2009; Xue et al., 2006; Yap
et al., 2009], automatic spatial normalization has become the
fundamental step in morphometric pattern analysis, which
allows quantitative comparison of different subjects/popula-
tions within a common space. Based upon the spatial nor-
malization framework, voxel-based morphometry (VBM)
[Ashburner and Friston, 2000; Davatzikos et al., 1996, 2001;
Thompson et al., 2001], deformation-based morphometry
(DBM) [Ashburner et al., 1998; Chung et al., 2001], and
tensor-based morphometry (TBM) [Fox et al., 2001; Freebor-
ough and Fox, 1998; Riddle et al., 2004] have been proposed
to characterize the brain shape, and demonstrated promis-
ing results in automatic AD diagnosis when combined with
pattern classification techniques [Bozzali et al., 2006; Davat-
zikos et al., 2008; Fan et al., 2008c; Frisoni et al., 2002; Hua
et al., 2008a,b; Lau et al., 2008; Teipel et al., 2007].

The VBM, DBM, and TBM methods are all performed by
first spatially normalizing all subjects into a common atlas
space. VBM-type methods measure the local tissue density of
the original brain volume directly, whereas DBM-type meth-
ods and TBM-type methods measure the deformation field
and the Jacobian of deformation, respectively. Such measure-
ments can then be regarded as features in conjunction with
multivariate analysis (e.g., linear discriminant analysis or
support vector machine, SVM), in order to perform MRI
based classification. For example, based on the tissue density
maps [Davatzikos, 1998; Davatzikos et al., 2001; Goldszal

et al., 1998] generated from a mass-preserving shape trans-
formation framework [Shen and Davatzikos, 2003], Fan et al.
[2007b] proposed the COMPARE algorithm (Classification
Of Morphological Patterns using Adaptive Regional Ele-
ments) to extract volumetric features from the self-
organized, spatially adaptive local regions, for the purpose
of overcoming the limitations of traditional voxel-wise analy-
sis (e.g., often with very high feature dimensionality and also
significant measurement noise due to inter-subject anatomi-
cal variations and registration errors) and thus enhancing the
feature discriminative power. Because of its intrinsic advan-
tages, COMPARE has been successfully applied to various
MRI based applications, including schizophrenia classifica-
tion [Fan et al., 2007b, 2008a], gender classification [Fan et al.,
2008b], neurocognitive classification [Fan et al., 2007a], and
AD classification [Fan et al., 2008c].

Nevertheless, traditional studies utilize only one atlas as
the benchmark space to compare different groups of subjects.
Recently, using multiple atlases for comparison of group dif-
ference has proven useful in reducing the negative impact of
registration errors in morphometric analysis of brain MRI.
For example, Lepor�e et al. [2008] proposed to register each
image to multiple atlases (which have been spatially normal-
ized to a common atlas by non-linear registration) and then
average the respective Jacobian maps (of the estimated defor-
mation fields) to improve TBM based monozygotic/dizygotic
twin classification. In addition to averaging the Jacobian
maps, Koikkalainen et al. [2011] studied the effects of using
mean deformation fields, mean volumetric features, and
mean predicted responses (of regression-based classifiers)
from multiple atlases to reduce the variability caused by
registration in the TBM based classification, and obtained the
improved results for AD related analysis.

It is worth noting that in both Lepor�e et al. [2008] and
Koikkalainen et al. [2011], the multiple atlases used for regis-
tration were non-linearly aligned to a common space. As a
result, anatomical structures of different atlases are similar to
each other after nonlinear registration, and thus the morpho-
metric patterns generated from those atlases for the same
subject would be less effective at providing the complemen-
tary information. Although averaging outcomes from differ-
ent atlases in different ways (e.g., averaging deformation
fields, Jacobian maps, regional features, or classifier results as
suggested in Koikkalainen et al. [2011]) can efficiently reduce
errors caused by registration, it neglects the potentially
important information related to anatomical differences
between different atlases. Indeed, the anatomical structure of
different atlases in their original (linearly-aligned) spaces
could be distinctive. Consequently, the morphometric pat-
terns (e.g., VBM, DBM, or TBM) generated from different
atlases in their original (linearly-aligned) spaces can also be
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very different. To this end, we believe that aggregating pat-
terns from multiple atlases can lead to a rich feature repre-
sentation of each image and subsequently boost the
discriminative power in classification. Figure 1 illustrates (1)
how different morphometric patterns can be generated from
different atlases via non-linear transformation, where we
show an example of the tissue density map of white matter

(WM) calculated from the registration by HAMMER [Shen
and Davatzikos, 2002], and (2) the amplified differences in
comparison of two subjects when multiple atlases are jointly
considered. Actually, the similar philosophy is widely
applied in other domains. For example, a side-view camera
can capture the profile of an object, which is able to provide
supplemental information for object recognition in addition

Figure 1.

Illustration of different morphometric patterns generated from

different atlases. (1) Registration of an image to different atlases

leads to different representations. It can be seen that the geo-

metrical structures of white matter (WM) represented in differ-

ent atlases are different. In addition, tissue density distributions

within each tissue are also different from the two different

atlases. (2) Registration of different images (e.g., an AD subject

and a NC subject) to different atlases: the differences between

their representations from individual atlases are different (imply-

ing the amplified discriminative power when jointly considered

in classification). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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to a frontal shot of the same object. In brain morphometry,
multiple atlases can be similarly regarded as different
“cameras” in such measurements for the same “object,” i.e.,
the brain MRI of an individual subject.

In this article, we propose to measure brain morphome-
try via multiple atlases, in order to generate a rich repre-
sentation of anatomical structures that will be more
discriminative to separate different groups of subjects.
Unlike previous multi-atlas based works [Koikkalainen
et al., 2011; Lepor�e et al., 2008] which register their atlases
to a common space via deformable registration, we retain
the selected atlases in their original (linearly-aligned)
spaces without non-linearly registering them to the com-
mon space, in order to consider different information pro-
vided by different atlases. In the proposed method,
affinity propagation [Frey and Dueck, 2007] is first applied
to select the most distinctive and representative atlases.
Then, subjects from different groups are registered to dif-
ferent atlases by using HAMMER [Shen and Davatzikos,
2002]. By adopting a feature extraction method used in
COMPARE [Fan et al., 2007b], the most discriminative
regional features are subsequently extracted with respect
to each atlas. Finally, we gather the most discriminative
and robust features jointly from all different atlases by
maximizing both feature relevance (w.r.t. the label infor-
mation) and feature correlations from different atlases, and
input them into the SVM for classification. The main con-
tributions of this article can be summarized as follows:

� Multi-atlas based morphometry is proposed to pro-
vide the complementary information for classification,
in addition to its well-known merit of reducing
impacts of registration errors.
� A multi-atlas based classification method is proposed

for AD diagnosis.
� New atlas selection and feature selection methods are

also proposed for this multi-atlas based classification
framework.

By performing 10-fold cross validation with the ADNI
database [Jack et al., 2008], we achieved significant per-
formance improvement for AD/NC classification by using
multiple atlases, and the convincing performance for p-
MCI/s-MCI classification.

The rest of the article is organized as follows. We first
describe the details of the proposed method in Methods
section. Then, we illustrate the experiments and compara-
tive results in Results section. We further discuss the
pros/cons of the multi-atlas based approach in Discussion
section. Finally, we draw conclusions and elaborate on
future research directions in Conclusion section.

METHODS

Preprocessing

A standard pre-processing procedure is applied to the
T1-weighted MR brain images. First, non-parametric non-

uniform bias correction (N3) [Sled et al., 1998] is applied
to correct intensity inhomogeneity. Then, skull stripping
[Wang et al., 2011, 2013] is performed, followed by manual
review or correction to ensure the skull and dura have
been cleanly removed. Next, cerebellum removal is con-
ducted by warping a labeled atlas to each skull-stripping
image. Afterwards, each brain image is segmented into
three tissues (gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF)) by using FAST [Zhang et al.,
2001], and finally all brain images are affine aligned by
FLIRT [Jenkinson et al., 2002; Jenkinson and Smith, 2001].

Atlas Selection

Because our method utilizes multiple atlases for human
brain representation in classification, the first question to
address is how to select those multiple atlases. In [Koikka-
lainen et al., 2011], 30 atlases were randomly selected from
different categories (10 for AD, 10 for MCI, and 10 for
NC). However, the use of randomly selected atlases cannot
guarantee to appropriately reflect the distribution of the
whole population. Also, redundant information could be
introduced with this random selection. Moreover, the
selection of unrepresentative images as atlases could fur-
ther cause large registration errors. To overcome these lim-
itations, we propose a data-driven atlas selection scheme
to obtain the most distinctive and representative atlases.

In order to select atlases that can yield discriminative mor-
phometric representations, differences among the selected
atlases should be maximized. On the other hand, to reduce
registration errors, the set of selected atlases should be repre-
sentative enough to cover the entire population. To this end,
we apply affinity propagation [Frey and Dueck, 2007] to par-
tition the entire population (of AD and NC images) into T
(e.g., T510 in this article) nonoverlapping clusters. By per-
forming affinity propagation, an exemplar image will be
automatically selected for each cluster, which can then be
used as a representative image or atlas for this cluster. By
combining all exemplar images from all different clusters,
we can obtain a set of atlases to form the atlas pool. During
clustering, a bisection method [Frey and Dueck, 2007] is
applied to find the appropriate preference value, and the
image similarity is computed as normalized mutual informa-
tion [Studholme et al., 1999]. The clustering results and the
respective selected atlases from our experiments are shown
in Figure 2. It should be noted that, although it is possible to
add more atlases to the set of our selected atlases, those addi-
tional atlases could introduce the redundant information
and thus affect the optimal representation of each subject.

It should be noted that we only select atlases from the
AD and NC subjects, but not from the MCI subjects. This
is because MCI can be considered as an intermediate stage
between AD and NC and thus associated with both AD
and NC characteristics. In this article, we identify the mor-
phormetrical patterns associated with the abnormality of
AD (w.r.t. NC) and apply them to the p-MCI/s-MCI
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classification, which leads to more reliable classification
results.

Registration and Quantification

The core steps in morphometric pattern analysis (e.g.,
VBM, DBM, or TBM) include (1) a registration step for
spatial normalization of different images into a common
space, and (2) a quantification step for morphometric mea-
surement. Similar to [Fan et al., 2007b], a mass-preserving
shape transformation framework [Shen and Davatzikos,
2003] is adopted in our approach to capture the morpho-
metric patterns of any given subject on the spaces of dif-
ferent atlases.

Figure 3 shows our registration and quantification steps.
For a given subject with three segmented tissues (i.e., GM,
WM, and CSF), the subject image is first registered to all T
selected atlases by using a high-dimensional elastic warp-
ing tool (i.e., HAMMER [Shen and Davatzikos, 2002]).
Then, based on those T estimated deformation fields, for
each tissue, we can quantify its voxel-wise tissue density
map in any of the T different atlas spaces. All these quan-
tified tissue density maps [Davatzikos, 1998; Davatzikos
et al., 2001; Goldszal et al., 1998] can thus reflect the
unique deformation behaviors of the given subject with

respect to each different atlas. In Figure 3, it is clear that
the T generated tissue density maps are different in terms
of both their density values and tissue structures, which
lead to different feature representations, as introduced
below.

Since the gray matter (GM) is most affected by AD and
thus widely investigated in the literature [Liu et al., 2012;
Zhang and Shen, 2012; Zhang et al., 2011], in this article,
the GM density map is used for feature extraction and
classification.

Feature Extraction

We extract features from each atlas and then integrate
them together for completely representing the subject
brain by all atlases. To do this, in Watershed segmentation
section, we first adaptively determine a set of ROIs in each
atlas space by performing watershed segmentation [Grau
et al., 2004; Vincent and Soille, 1991] on the correlation
map obtained between the voxel-wise tissue density values
and class labels from all training subjects. Then, to
improve both discrimination and robustness of the volu-
metric feature computed from each ROI, in Regional fea-
ture aggregation section, we further refine each ROI by
picking only the voxels with reasonable representation

Figure 2.

The clustering result of AD/NC subjects, using affinity propagation with normalized mutual infor-

mation. Each selected atlas corresponds to an exemplar image of the respective cluster. Points

are visualized by multidimensional scaling (MDS) [Kruskal, 1964]. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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power. Finally, to show the consistency and difference of
ROIs obtained in all atlases, in Anatomical analysis sec-
tion, we provide anatomical analysis for demonstrating
the capability of our method in extracting the complemen-
tary features from multiple atlases for representing each
subject brain.

Watershed segmentation

For robust feature extraction, it is important to group
voxel-wise morphometric features into regional features.
Voxel-wise morphometric features (such as the Jacobian
determinants, voxel-wise displacement fields, and tissue den-
sity maps) usually have very high feature dimensionality,
which include a large amount of redundant/irrelevant infor-
mation as well as noise due to registration errors. On the
other hand, using regional features can alleviate the above
issues and thus provide more robust features in classification.

A traditional way to obtain regional features is to use
the prior knowledge, i.e., pre-defined ROIs, to summarize
all voxel-wise features in each pre-defined ROI. However,
such method is inappropriate in our case of using multiple
atlases for complementary representation of brain image,
since in this way ROI features from multiple atlases will
be very similar (we use the volume-preserving measure-
ment to calculate the atlas-specific morphometric pattern
of tissue density change within the same ROI w.r.t. each
different atlases). In our method, we want to capture dif-
ferent sets of distinctive brain features from different
atlases. Accordingly, we apply the clustering method in
[Fan et al., 2007b] for adaptive feature grouping. Since
clustering will be performed on each atlas space sepa-

rately, the complementary information from different
atlases can be preserved and obtained for the same subject
image. In addition, as indicated in [Fan et al., 2007b], the
clustering algorithm can also improve the discriminative
power of the obtained regional features, and reduce the
negative impacts from registration errors.

Let It
i ðuÞ denote a voxel-wise tissue density value at

voxel u in the t-th atlas for the i-th training subject,
i 2 ½1;N�. ROI partition for the t-th atlas is based on the
combined discrimination and robustness measure,
DRMtðuÞ, computed from all N training subjects, which
takes into account both feature relevance and spatial con-
sistency as defined below:

DRMtðuÞ5PtðuÞCtðuÞ (1)

where PtðuÞ is the voxel-wise Pearson correlation
between tissue density set fIt

i ðuÞ; i 2 ½1;N�g and label set
fyi 2 ½21; 1�; i 2 ½1;N�g (1 for AD and 21 for NC) from all
N training subjects, and CtðuÞ denotes the spatial consis-
tency among all features in the spatial neighborhood
[Fan et al., 2007b].

Watershed segmentation is then performed on each cal-
culated map DRMt for obtaining the ROI partitions for the
t-th atlas. Note that, before applying watershed segmenta-
tion, we use a Gaussian kernel to smooth each map DRMt ,
to avoid any possible over-segmentation, as suggested in
[Fan et al., 2007b]. As a result, for example, we can parti-
tion the t-th atlas into a total of Rt non-overlapping
regions, frt

l ; l 2 ½1;Rt�g, with each region rt
l owning Ut

l vox-
els. It is worth noting that each atlas will yield its unique
ROI partition, since different tissue density maps (of the
same subject) are generated in different atlas spaces.

Figure 3.

Registration and quantification of a subject registered to multiple atlases using HAMMER. Regis-

tration to different atlases leads to different quantification results. In the figure, the generated

tissue density maps (GM, WM, and CSF) are different from registration via different atlases.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4 shows the partition results obtained from the
same group of images registered to the two different
atlases. It is clear that the obtained ROIs are very different,
in terms of both their structures and discriminative powers
(as indicated by different colors). Those differences will
naturally guide the subsequent steps of feature extraction
and selection, and thus provide the complementary infor-
mation to represent each subject and also improve its
classification.

Regional feature aggregation

Instead of using all Ut
l voxels in each region rt

l for total
regional volumetric measurement, we aggregate only a
sub-region ~rt

l in each region rt
l to further optimize the dis-

criminative power of the obtained regional feature, by
employing an iterative voxel selection algorithm. Specifi-
cally, we first select a most relevant voxel, according to
the Pearson correlation calculated between this voxel’s tis-
sue density values and class labels from all N training sub-
jects. Then, we iteratively include the neighboring voxels
to increase the discriminative power of all selected voxels,

until no increase is found when adding new voxels. Note
that this iterative voxel selection process will finally lead
to a voxel set (called as the optimal sub-region) ~rt

l with ~U
t

l

voxels, which are selected from the region rt
l . In this way,

for a given subject i, its l-th regional feature Vt
i;l in the

region ~rt
l of the t-th atlas can be computed as:

Vt
i;l5
X

8u2r~
l
t

It
i ðuÞ
~U

t

l

(2)

Each regional feature is then normalized to have zero
mean and unit variance, across all N training subjects.
Finally, from each atlas, M (out of Rt) most discriminative
features are selected using their Pearson correlation. Thus,
for each subject, its feature representation from all T
atlases consists of M3T features, which will be further
selected for classification as described in Section 2.5.

Figure 5 shows the top 100 regions selected using the
regional feature aggregation scheme, for the same image
registered to two different atlases (as shown in Fig. 4). It
clearly shows the structural and discriminative differences
of regional features from different atlases.

Figure 4.

Watershed segmentation of the same group of subjects on two different atlases. Color indicates

the discriminative power learned from the group of subjects (with the hotter color denoting

more discriminative regions). Upper row: two different atlases. Lower row: the corresponding

partition results. [Color figure can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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Anatomical analysis

It is important to understand how the identified regions
(ROIs) from different atlases are correlated with the target
brain abnormality (i.e., AD), in order to better reveal the
advantages of using multiple atlases for morphometric pat-
tern analysis in comparison to using only a single atlas.
Accordingly, we categorize the identified regions (ROIs)
into two classes: (1) the class with homogeneous measure-
ments (homo-M), and (2) the class with heterogeneous
measurements (hetero-M) (see Fig. 5). The homo-M refers to
the regions that are simultaneously identified from different
atlases, whereas the hetero-M refers to the regions identified
in a certain atlas but not in other atlases. In Figure 5, it can
be observed that a region within the left corpus callosum is
identified in both atlas-1 and atlas-2 (see the coronal view).
On the other hand, a region within the frontal lobe is only
identified in atlas-1, and a region within the temporal lobe is
only identified in atlas-2 (see the sagittal view). When jointly
considering all identified regions from different atlases in
the classification, the integration of homo-M features is help-
ful to improve both robustness and generalization of feature
extraction for the unseen subjects, while the combination of
hetero-M features can provide complementary information
for distinguishing subjects during the classification.

Feature Selection

Although the most representative regional features are
selected from each atlas, many regional features, after

combined with other features from other atlases, could be
redundant or even deteriorate the classification of unseen
subjects. Therefore, selecting a subset of robust regional
features (from all atlases) is an essential step to achieve
good classification performance.

We have demonstrated via Figure 5 that the regional
features identified from different atlases could be hetero-
geneous. Therefore, selecting features jointly from multiple
atlases can potentially aggregate complementary informa-
tion that is helpful for the classification. Specifically, for
the N training images that have been registered to T
atlases, all features extracted from T atlases can be
denoted as V5fvt

n;m;m 2 1;M½ �; t 2 1;T½ �; n 2 1;N½ �g,
where M top selected features are extracted independently
from each atlas by using the method described in Section
2.4.2. For each subject, i.e., the n-th subject, its feature vec-
tor Vn5fvt

n;m; m 2 1;M½ �; t 2 1;T½ �g has totally n5M3T fea-
tures. Our goal here is to select the top K features, out of n
features, to gather the most discriminative and robust
information jointly from all atlases. The detail of selecting
the top K features is provided in the following paragraph.

Because the regional features extracted from different
atlases are finally used for the same classification task, a
“good” feature should be agreed not only by one atlas, but
also by the other atlases. In other words, a “good” feature
selected from one atlas should strongly correlate to the
“good” features selected from the other atlases. Mean-
while, features that are helpful for classification should
also strongly correlate with the training labels. To this
end, in our feature selection, we propose to maximize both

Figure 5.

Illustration of the top 100 regions identified using the regional fea-

ture aggregation scheme, where the same subject is registered to

two different atlases. The axial, sagittal and coronal views of the

original MR image of the subject after warping to each of the two

different atlases are displayed. Color indicates the discriminative

power of the identified region (with the hotter color denoting

more discriminative region). Upper row: image registered to atlas

1. Lower row: image registered to atlas 2. (For the definitions of

both hetero-M and homo-M, please refer to Anatomical analysis

section). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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the feature relevance w.r.t. labels (i.e., according to the
Pearson correlation), and the correlation with features
from other atlases. This can be done by introducing the
“inter-atlas” correlation w, and combining it with the Pear-
son correlation x by imposing a balancing factor k as
follows:

Dt
m5xt

m1kwt
m (3)

where Dt
m indicates the importance of the m-th feature

computed from the t-th atlas. The feature selection can
then be achieved by ranking this feature importance for all
n5M3T features, fDt

m;m 2 ½1;M�; t 2 ½1;T�g. In Eq. (3), xt
m

denotes the Pearson correlation between the m-th feature
from t-th atlas and the class label from all training sub-
jects. Similarly, the “inter-atlas” correlation wt

m can be
obtained by first computing the correlation between this
m-th feature in the t-th atlas and each feature in other
atlases, and then integrating all these correlation coeffi-
cients (via summation and normalization) as the final mea-
sure. By using the above scheme, we can select totally K
top features with the highest feature importance values.

Classification

Linear support vector machine (SVM) [Cortes and Vap-
nik, 1995] is adopted to perform classification in our study.
The choice of linear model is based on its good generaliza-
tion capability across different training data (e.g., pro-
duced in each 10-fold cross-validation case in our
experiments) [Burges, 1998].

RESULTS

Data

We use the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database1 to evaluate the performance of the pro-
posed classification algorithm. The primary goal of ADNI
has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and
cost of clinical trials.

Since we focus on the morphometric study of AD, T1-
weighted MRI data from ADNI [Jack et al., 2008] is used
in our experiments. In total, 459 subjects, scanned with
1.5T scanner, are randomly selected, which are comprised
of 97 AD, 128 NC, and 234 MCI (117 p-MCI and 117 s-

MCI) subjects. The demographic information of the used
dataset is shown in Table I.

It is worth noting that we did not use all subjects from
ADNI, considering the long processing time for registering
all subjects to the multiple (10) atlases, since the purpose
of this study is to develop a new disease diagnosis
method. On the other hand, the size of dataset used in our
experiments is similar to that used in many previous stud-
ies [Cuingnet et al., 2011; Koikkalainen et al., 2011; Zhang
et al., 2011]; thus it is sufficient for us to compare across
different methods in this article, especially for the classifi-
cation results obtained with single atlas and multiple
atlases in the literature.

Evaluation Protocol

The evaluation of our method is conducted on two dif-
ferent problems: (1) AD diagnosis such as AD/NC classifi-
cation, and (2) progressive MCI diagnosis such as p-MCI/
s-MCI classification. The second problem is considered
more difficult than the first problem, but has received rela-
tively less attention in the previous studies. However, it is
important to identify progressive MCI patients from the
stable MCI patients, in order to possibly prevent the pro-
gression of MCI to AD via timely therapeutic
interventions.

In our experiments, we use 10-fold cross validation to
both extract ROIs in each atlas space and evaluate the clas-
sification performance in the two above-mentioned prob-
lems. Specifically, we make a random partition of all AD,
NC, and MCI data (including p-MCI and s-MCI data) into
10 folds (each fold with roughly equal size). In each
round, one fold of the data is used for testing, and the
other nine folds are used for training. The final result is
computed as the average score across all 10 cross-
validations. It should be noted that we conduct p-MCI/s-
MCI classification in a transfer-learning manner. That is,
we use the abnormal patterns identified between AD and
NC for guiding the p-MCI/s-MCI classification. Specifi-
cally, the way of identifying regional features and also the
training of the SVM classifier are both conducted on the
AD/NC data, and then the final protocol is directly
applied to classify p-MCI and s-MCI subjects, by associat-
ing p-MCI with the AD label and s-MCI with the NC
label. Note that, within the 10-fold cross validation

TABLE I. Demographic information of the studied sub-

jects (from ADNI database)

Diagnosis Number Age Gender (M/F) MMSE

AD 97 75.9066.84 48/49 23.3761.84
p-MCI 117 75.1866.97 67/50 26.4561.66
s-MCI 117 75.0967.65 79/38 27.4261.78
NC 128 76.1165.10 63/65 29.1360.96

The values are denoted as mean 6 standard deviation.

1http://adni.loni.ucla.edu/
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framework, nine folds of the AD/NC data are used for
training, and the trained classifier is applied to one corre-
sponding fold of the p-MCI/s-MCI data for testing.

We also use the same parameter values for all experi-
ments in this article. Specifically, 10 representative atlases
are selected from all AD/NC data by using the method
described in Atlas Selection section. The top M51500
regional features are extracted from each atlas, before con-
ducting the joint selection of features from all different
atlases. The balancing factor k is set to 0.38. Note that the
selection of parameters M and k is based on cross-
validation results. The SVM classifier used in our method
is implemented by the LIBSVM library [Chang and Lin,
2011], using a linear kernel and C51 (the default cost).
Finally, K51 : 1500 features are tested, and the best results
are reported for quantitative comparison.

AD Classification

Classification using single atlas

We first show the results using single atlas for AD/NC
classification, to demonstrate the variability of classifica-
tion results when using different atlases even for the same
classification task. Because the proposed feature selection
method integrates not only the Pearson correlation but
also the “inter-atlas” correlation from the multiple atlases,
in this section, we thus examine two other conventional
feature selection methods based on single atlas. The first
feature selection method is simply based on the ranking of
Pearson correlation (PC), and the second method combines
PC with SVM-RFE based feature selection [Guyon et al.,
2002] (as proposed in Fan et al. [2007b] for jointly consid-
ering multiple features in the selection. It should be noted
that, in the single atlas case, the feature extraction per-
formed in our method is same as COMPARE [Fan et al.,
2007b]. Therefore, in this article, we denote the PC1SVM-
RFE based method using single atlas as COMPARE. Figure
6 shows the classification performance by PC (Fig. 6(1))
and COMPARE (Fig. 6(2)) using 10 different atlases
obtained from our selected atlas pool. Each curve shows
the classification performance with respect to the use of
different number of top selected features.

As can be seen in the figure, results obtained from 10
different atlases (T1-T10) are very different. For the PC
based method, T1 gives the best overall classification per-
formance, whereas, for COMPARE, T7 is the best atlas in
comparison to the other atlases. The good performance
from a specific atlas (for example T7) could be due to mul-
tiple reasons. First, its anatomical structures may be more
representative for the entire population than the other
atlases, so that the overall registration errors to T7 are
smaller and thus the data representations generated by T7
are less noisy. Second, the deformation fields estimated
from different (training) images to T7 could be more dis-
criminative for identifying the AD-related patterns than
those to the other atlases. Finally, the AD-related patterns

identified by T7 may have better generalization capability
to the testing subjects than the other atlases. By consider-
ing all the above possible reasons, respectively related to
registration error, discriminative power, and generalization
capability, one atlas could yield better classification accu-
racy than other atlases for a specific classification task or a
specific data set. On the other hand, it should be noted
that the accuracy typically decreases rapidly when includ-
ing more features, even using the best atlas. This phenom-
enon indicates that many of the selected features from a
single atlas could be redundant and noisy for
classification.

In Table II, we give the best classification accuracies
(ACC) for each of the 10 atlases using PC and COMPARE,
along with their respective sensitivities (SEN) and specific-
ities (SPEC). The sensitivity and the specificity refer to the
portions of correctly identified AD patients and correctly
classified NC subjects, respectively. From the table, it is
clear that COMPARE outperforms PC when using their
own best atlases (i.e., T5 for PC, and T7 for COMPARE).
These results are consistent with those reported in [Fan
et al., 2007b]. However, for some atlases (i.e., T1, T2, T5,
T9, and T10), the use of additional SVM-RFE based feature
selection (in COMPARE) cannot further improve the sim-
ple PC based classification (in terms of the best classifica-
tion accuracy). That is, the result improvement brought by
SVM-RFE is limited, but at a cost of increased computa-
tional burden.

Classification using multiple atlases

In this section, we show the results of AD/NC classifica-
tion using multiple atlases. The proposed (multi-atlas
based) feature selection method (namely MA_Proposed)
that considers both Pearson correlation and “inter-atlas”
correlation is compared with both PC and COMPARE
based feature selection methods using either single atlas
(namely SA_PC and SA_COMPARE) or multiple atlases
(namely MA_PC and MA_COMPARE). For fair compari-
son, we average the classification results of single atlas
based methods (SA_PC and SA_COMPARE) across all 10
atlases. We then directly extend these two methods to our
multiatlas based framework as described below, and
denote them as MA_PC and MA_COMPARE. Specifically,
in MA_PC, all regional features extracted from 10 different
atlases are used, thus resulting in a feature representation
with M3T515000 dimensions for each subject; afterwards,
the top 1,500 features are selected out of 15,000 features
based on the Pearson correlation, and K51 : 1500 features
are subsequently selected and used for classification. In
MA_COMPARE, the top 1,500 features are first selected in
the same way as MA_PC, but additionally using SVM-RFE
to further refine the selected features, before inputting
them to the SVM for classification. Figure 7 illustrates the
results of SA_PC, SA_COMPARE, MA_PC, MA_COM-
PARE, and MA_Proposed (our proposed method) for AD/
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Figure 6.

Results of AD/NC classification based on single atlas (T1-T10). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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NC classification w.r.t. different numbers of top selected
features.

In the figure, it is clear that the results of multiatlas
based methods (MA_PC, MA_COMPARE, and MA_Pro-
posed) outperform the results of single-atlas based meth-
ods (SA_PC and SA_COMPARE) by a significant margin.
Specifically, SA_PC and SA_COMPARE reach their best
classification accuracy with a small portion of top selected
features and then decline in performance rapidly when
more features are included. This indicates that many of
their selected features are noisy and redundant, if using
only single atlas. In contrast, multi-atlas based methods
consistently improve or maintain their performance with
the increase of the number of features used, which demon-
strates that the complementary information from different

atlases are aggregated together to improve the classifica-
tion. In addition, with the assistance of SVM-RFE, the
COMPARE based methods (SA_COMPARE and
MA_COMPARE) achieve better performance than the PC
based methods (SA_PC and MA_PC) in both cases of
using single atlas and multiple atlases. Figure 7 also
clearly demonstrates that the proposed method signifi-
cantly outperforms all other comparison methods.
Although only a small portion of features can give good
classification accuracy for the single atlas based methods,
the performance of the proposed method is consistently
improved when using more features (i.e., 91:64% when
using K51268 features). This phenomenon shows that the
redundant features from a single atlas can be integrated
with the features from other atlases (in an effective way)
to yield more robust and discriminative representations.

The best classification accuracies (ACC) as well as the
corresponding sensitivities (SEN) and specificities (SPEC)
of all methods are illustrated in Table III. In addition, we
also report the area under curve (AUC) rate. The results
clearly show that the proposed method is better than any
other methods in terms of all metrics. It should be noted
that the sensitivities of SA_PC, SA_COMPARE, MA_PC,
and MA_COMPARE are much lower in comparison to
their corresponding specificities. Low sensitivity value

TABLE II. Results of AD/NC classification and p-MCI/s-MCI classification using different atlases (T1-T10)

Atlas

AD/NC classification p-MCI/s-MCI classification

PC COMPARE PC COMPARE

ACC (%) SEN (%) SPEC (%) ACC (%) SEN (%) SPEC (%) ACC (%) SEN (%) SPEC (%) ACC (%) SEN (%) SPEC (%)

T1 84.09 78.33 88.40 83.16 75.33 89.17 68.93 64.62 73.18 71.03 68.79 73.18
T2 84.94 80.56 88.33 81.95 73.67 88.40 68.87 68.56 69.09 71.46 71.97 70.76
T3 83.12 77.33 87.56 84.50 78.44 89.17 69.34 65.15 73.41 69.81 69.47 70.08
T4 84.87 80.44 88.33 85.72 82.22 88.40 72.71 73.56 71.82 71.82 72.58 71.06
T5 85.85 82.56 88.46 84.05 76.22 90.00 70.66 69.39 71.82 71.93 71.21 72.80
T6 84.38 78.33 89.04 85.35 83.56 86.73 71.04 65.98 75.98 72.86 69.62 76.14
T7 82.23 77.22 86.09 87.07 81.33 91.54 71.08 73.94 68.18 74.56 70.38 78.64

T8 83.59 79.44 86.86 84.48 79.44 88.46 70.27 68.71 71.67 71.88 68.56 75.00
T9 83.65 77.33 88.40 82.27 78.44 85.38 68.55 66.36 70.68 71.10 66.97 75.15
T10 83.28 83.78 83.01 83.20 76.56 88.46 69.00 72.05 65.83 71.74 70.15 73.41

ACC5accuracy, SEN5sensitivity, SPEC5specificity, AUC5 area under curve.

Figure 7.

Results of SA_PC, SA_COMPARE, MA_PC, MA_COMPARE, and

MA_Proposed for AD/NC classification. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]

TABLE III. Results of AD/NC classification using single

atlas (SA_PC, SA_COMPARE) and multiple atlases

(MA_PC, MA_COMPARE, MA_Proposed)

Method ACC (%) SEN (%) SPEC (%) AUC (%)

SA_PC 82.01 75.88 86.76 76.92
SA_COMPARE 81.52 77.11 84.92 78.70
MA_PC 85.91 81.56 89.23 81.91
MA_COMPARE 87.19 80.56 92.31 84.95
MA_Proposed 91.64 88.56 93.85 86.75

ACC 5 accuracy, SEN 5 sensitivity, SPEC 5 specificity.
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indicates low confidence on AD diagnosis, which will
greatly limit their practical usage. On the other hand, the
proposed method gives a significantly improved sensitiv-
ity value, i.e., 8% higher than the second best method.
Together with its high specificity (93:85%), the proposed
method produces more confident AD diagnosis results.

MCI Classification

Classification using single atlas

The single-atlas based methods are also evaluated for p-
MCI/s-MCI classification. Figure 8 shows the classification
accuracy of both PC and COMPARE methods, w.r.t. differ-
ent number of the top selected features. It can be seen that
the classification results are much lower than those for
AD/NC classification, since p-MCI/s-MCI classification is
a difficult task in automatic morphometric analysis and
clinical diagnosis. This is because the disease is still in the
early stage, and the related atrophy is small and thus not
effective for distinguishing between p-MCI and s-MCI sub-
jects [Suk H-IaL et al., 2013; Wee et al., 2011; Wee et al.,
2012]. Similar to the results of AD/NC classification, there
exists a large variation of accuracy for the use of different
atlases. For the PC based method, T4 maintains a good
performance in comparison to the other atlases, whereas
T7 is the best atlas for the COMPARE based method in p-
MCI/s-MCI classification (which is similarly observed in
AD/NC classification, as described in Classification using
single atlas section). The classification accuracy of the
COMPARE based method using T7 reaches its maximum
quickly when using only K5120 features, and then drops
down drastically to 61.28% when incorporating more other
features.

Table II also reports the best results (i.e., the best ACC,
along with the corresponding SEN and SPEC) of both PC
and COMPARE based methods for p-MCI/s-MCI classifi-
cation. The results clearly show that the COMPARE based
method outperforms the PC based method. In particular,
the atlas T7 yields much higher performance than all other
atlases, potentially due to its low registration error, superb
discriminative power, and good generalization capability
as mentioned above. However, in practice, finding such a
ideal atlas is always a difficult task.

Classification using multiple atlases

We compare the performances of five methods, i.e.,
SA_PC, SA_COMPARE, MA_PC, MA_COMPARE and
MA_Proposed, for the case of p-MCI/s-MCI classification,
as shown in Figure 9. From Figure 9, we can observe again
that all three multi-atlas based methods (MA_PC,
MA_COMPARE, and MA_Proposed) perform significantly
better than the two single-atlas based methods (SA_PC,
SA_COMPARE), indicating the power of using multiple
atlases in aggregating more useful information for classifi-
cation. Among all three multi-atlas based methods, the

proposed method (MA_Proposed) demonstrates compara-
ble performance to both MA_PC and MA_COMPARE.
When using the K5500 : 1000 top selected features, the
proposed method (MA_Proposed) gives the best overall
classification results. On the other hand, MA_COMPARE
gets its best results when using K51 : 500 features, and
MA_PC achieves its best results when using K51000 : 1500
features, respectively.

We also show the best classification performance of each
method in Table IV. As we can see from Table IV, all three
multi-atlas based methods demonstrate better performance
than the single atlas based methods. Specifically,
MA_COMPARE obtains both the best classification accu-
racy and the highest sensitivity value, while the proposed
method (MA_Proposed) yields the best specificity value.
Note that the high specificity value of the proposed
method can potentially reduce the misdiagnosis rate of
stable MCI patients.

Comparison With Existing Classification

Methods

In this section, we compare our results with the four
recently reported methods on AD diagnosis, based on
either single atlas [Cuingnet et al., 2011; Liu et al., 2012;
Zhang et al., 2011] or multiple atlases [Koikkalainen et al.,
2011], demonstrating the superiority of the proposed
method. For fair comparison, only the results based on
MRI data are reported from the multimodality based
approach in [Zhang et al., 2011]. Tables V and VI present
the comparative results for AD/NC classification and p-
MCI/s-MCI classification, respectively. Details of each
method are given in the tables, which include the type of
features, classifier, and subjects used.

For AD/NC classification, the proposed method outper-
forms all other comparison methods, in terms of both clas-
sification accuracy and sensitivity. Only the method
proposed by [Liu et al., 2012] obtained the comparable
classification result (90.80%) to our method (91.64%),
which has higher specificity value than ours. Although
[Cuingnet et al., 2011] reported the highest specificity
value, their sensitivity value is very low. On the other
hand, our multi-atlas based method significantly outper-
forms the multi-atlas based method proposed by [Koikka-
lainen et al., 2011], which achieved its best accuracy by
averaging the feature vectors from different atlases.
Among all the comparison methods, only [Cuingnet et al.,
2011] and [Koikkalainen et al., 2011] reported their per-
formances for the more difficult task, i.e., p-MCI/s-MCI
classification. Therefore, we listed their performances
along with ours in Table VI. Note that in [Cuingnet et al.,
2011], the best results for AD/NC classification and p-
MCI/s-MCI classification were obtained using different
features, i.e., directly using the tissue density map of GM
for AD/NC classification, while using a subset of features
selected by the method in [Vemuri et al., 2008] for p-MCI/
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Figure 8.

Results of p-MCI/s-MCI classification based on single atlas (T1-T10). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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s-MCI classification. On the other hand, in [Koikkalainen
et al., 2011], the best p-MCI/s-MCI classification accuracy
was obtained using a strategy that is different from that
used in AD/NC classification. Specifically, instead of aver-
aging the feature vectors from different atlases, the best
result for p-MCI/s-MCI classification was achieved by
combining the classifiers trained from different atlases.
Finally, even if both [Cuingnet et al., 2011] and [Koikkalai-
nen et al., 2011] applied different methods for AD/NC
classification and p-MCI/s-MCI classification, respectively,
their AD/NC classification results are still much lower
than ours (Table V). Also, for p-MCI/s-MCI classification
(Table VI), the proposed method gives better classification
accuracy than both [Cuingnet et al., 2011] and [Koikkalai-
nen et al., 2011], although we used the same features and
same classification strategy as in AD/NC classification.

DISCUSSION

In this article, we have developed a novel multi-atlas
based classification method for adaptively extracting the

complementary regional features from multiple atlases for
helping AD diagnosis. The results on 459 ADNI subjects
demonstrated the consistent and substantial improvements
by using our multi-atlas based morphometric patterns.
Specifically, our approach achieves high accuracy for AD/
NC classification (91.64%) along with significantly
improved sensitivity (88.56%), and also obtains the
relatively high accuracy for p-MCI/s-MCI classification
(72.41%) in comparison to a number of state-of-the-art
methods.

Comparison With the Baseline Method

Results by our method have been extensively compared
with its baseline method—the COMPARE algorithm, in
order to demonstrate the advantage of using multi-atlas
idea in AD diagnosis. COMPARE uses a single atlas for
AD diagnosis, and achieved 87.05% accuracy when using
the best atlas. Note that the classification accuracy we
obtained is not as good as the best accuracy (94%)
reported in [Fan et al., 2008c]. Actually, our obtained result
for COMPARE is consistent with some recent results in
[Cuingnet et al., 2011] and [Liu et al., 2012]. In [Cuingnet
et al., 2011], the authors contributed these different results
to the use of different data and different pre-processing
steps. Liu et al. [2012] argued that the adaptive feature
extraction method introduced by COMPARE is difficult to
robustly identify the discriminative regions for large popu-
lation (as the case in our application).

Figure 9.

Results of SA_PC, SA_COMPARE, MA_PC, MA_COMPARE, and

MA_Proposed for p-MCI/s-MCI classification. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

TABLE IV. Results of p-MCI/s-MCI classification using

single atlas (SA_PC, SA_COMPARE) and multiple

atlases (MA_PC, MA_COMPARE, MA_Proposed)

ACC SEN SPEC AUC
Method (%) (%) (%) (%)

SA_PC 68.49 67.80 69.10 62.85
SA_COMPARE 70.06 68.08 72.02 63.56
MA_PC 72.78 74.62 70.91 66.45
MA_COMPARE 73.35 75.76 70.83 67.98

MA_Proposed 72.41 72.12 72.58 67.37

ACC 5 accuracy, SEN 5 sensitivity, SPEC 5 specificity, AUC 5 area
under curve.

TABLE V. Comparison to existing works using MRI data of ADNI for AD/NC classification

Method Feature Classifier Subjects Atlas ACC (%) SEN (%) SPEC (%)

Cuingnet et al. [2011] Voxel-Direct-D GM SVM 137 AD 1 162 NC Single-atlas 88.58 81.00 95.00

Zhang et al. [2011] 93 ROI GM SVM 51 AD 1 52 NC Single-atlas 86.20 86.00 86.30
Liu et al. [2012] Voxel-wise GM SRC

ensemble
198 AD 1 229 NC Single-atlas 90.80 86.32 94.76

Koikkalainen et al. [2011] TBM Linear
regression

88 AD 1 115 NC Multi-atlas 86.00 81.00 91.00

Proposed method Data-driven
ROI GM

SVM 97 AD 1 128 NC Multi-atlas 91.64 88.56 93.85
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It is worth noting that the purpose of this article is not
to improve COMPARE’s performance, but to demonstrate
that the use of multiple atlases can significantly improve
the classification performance. To this end, we have com-
pared different feature selection strategies, i.e., Pearson
correlation (PC), PC 1 SVM-RFE, and the proposed feature
selection that integrates PC and the “inter-atlas” correla-
tion from multiple atlases. Our results have justified that
the multi-atlas based methods performed much better than
the single atlas based methods. In particular, when using
multiple atlases, the proposed feature selection method
achieved the best accuracy (91.64%) for AD/NC classifica-
tion, while the feature selection method used in COM-
PARE achieved the best accuracy (73.35%) for p-MCI/s-
MCI classification. All these results significantly outper-
formed those obtained by the baseline method—COM-
PARE using the single atlas.

Effect of Atlas Selection

Atlas is used as the common space to register different
subjects for morphometric comparison. Selection of such
an atlas has been pursued in different ways in the litera-
ture. The atlas can be an image of a single subject from
the studied population [Cuingnet et al., 2011; Lepor�e et al.,
2008], a general anatomical model, or the mean model
generated from the studied population [Hua et al.,
2008a,b; Lepor�e et al., 2007; Teipel et al., 2007]. The mean
model is popularly used in order to reduce the registration
errors by decreasing the overall distance from all subjects
to the common space. Nevertheless, Lepor�e et al. [2008]
argued that the anatomical boundaries and image gra-
dients are often much blurrier in the mean model, which
may reduce the accuracy of the registration. Therefore,
they used multiple atlases for registration and then aver-
aged the generated Jacobian maps to improve the classifi-
cation. In our experiments, different atlases led to
significantly different classification performances. Instead
of choosing an optimal atlas from a set of atlases, we used
all atlases for the complementary feature representation of
each subject and thus obtained better performance than
the use of even the best atlas in AD/NC classification.

On the other hand, Koikkalainen et al. [2011] also used
multiple atlases that were randomly selected for registra-

tion. However, this random selection scheme might lead
to more registration errors if outlier atlases are selected,
and will also introduce extra redundancy in multi-atlas
based representation if some atlases are very similar. Our
data-driven method based on affinity propagation as
detailed in Atlas Selection section can effectively overcome
these limitations.

Effect of Feature Selection

It is well known that feature selection plays a key role
in achieving robust classification accuracy. In [Fan et al.,
2007b], SVM-RFE based feature selection was integrated
with Pearson correlation (PC) based feature selection to
obtain the improved classification results. However, in the
case of multi-atlas based analysis, the feature representa-
tions obtained from different atlases bring not only com-
plementary information, but also potentially redundant
features. Therefore, feature selection must be carefully
designed, in order to retrieve the most important/relevant
information jointly from all different atlases. In our experi-
ments, the PC based method can achieve 85.91% for AD/
NC classification and 72.78% for p-MCI/s-MCI classifica-
tion, but its improvements w.r.t. the use of single atlas are
limited. The PC 1 SVM-RFE based method can improve
more accuracy in both classification cases, i.e., achieved
the best performance of 73.35% for p-MCI/s-MCI classifi-
cation. By selecting the “consensus” features jointly from
all different atlases in addition to their relevance with the
label information, the proposed feature selection method is
able to increase the classification accuracy by a significant
margin, i.e., 4.45% from PC 1 SVM-RFE for the case of
using multiple atlases and 10.12% from PC1SVM-RFE for
the case of using single atlas for AD/NC classification.

Limitations

It is worth indicating that our method exhibits higher
computational cost because of using multiple atlases for
image registration, e.g., with HAMMER [Shen and Davat-
zikos, 2002]. One solution is to parallelize the registration
procedure by using multiple CPUs. Another possibility is
to build a graph/tree based structure [Jia et al., 2010] for
the atlas pool to guide the registration. In addition, the

TABLE VI. Comparison to existing works using MRI data of ADNI for p-MCI/s-MCI classification

Method Feature Classifier Subjects Atlas ACC (%) SEN (%) SPEC (%)

Cuingnet et al. [2011] Voxel-STAND-DGM SVM 76 p-MCI 1 134 s-MCI Single-atlas 70.40 57.00 78.00
Koikkalainen

et al. [2011]
TBM Linear

regression
54 p-MCI 1 115 s-MCI Multi-atlas 72.10 77.00 71.00

Proposed method Data-driven ROI GM SVM 117 p-MCI 1 117 s-MCI Multi-atlas 72.41 72.12 72.58

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or pro-
vided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf.
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registration method (HAMMER) adopted in our article
could be replaced by some less expensive techniques, e.g.,
diffeomorphic demons [Vercauteren et al., 2009], which
may accelerate the registration process.

CONCLUSION

To conclude, we have developed a multi-atlas based fea-
ture representation, selection, and classification method for
AD diagnosis. Instead of registering subjects to a single
atlas space, we registered each subject to multiple atlases
selected by affinity propagation, and then extracted the
morphometric patterns separately from each atlas for the
complementary feature representation of each subject. By
jointly considering the regional information from all
atlases, the most discriminative and robust features can be
finally identified by maximizing both feature correlation
and feature relevance obtained from multiple atlases. The
10-fold cross validation results on ADNI database have
revealed the superiority of the proposed multi-atlas based
method over the single-atlas based method in AD
diagnosis.

In the current article, we evaluated our method based
on the regional features computed from COMPARE algo-
rithm. Other morphometric features, such as Jacobian
determinants, can also be incorporated into our frame-
work, which will be our future work. In addition, diverse
classification strategies, such as linear regression, random
forest, and sparse classification, can be applied, instead of
using only SVM as in our current work, which could
potentially yield better results. Finally, the current method
can also be extended to other brain disease diagnosis
applications, such as schizophrenia and autism diagnosis.
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