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Abstract

Brain lesion localization in multiple sclerosis (MS) is thought to be associated with the type and severity of adverse health
effects. However, several factors hinder statistical analyses of such associations using large MRI datasets: 1) spatial
registration algorithms developed for healthy individuals may be less effective on diseased brains and lead to different
spatial distributions of lesions; 2) interpretation of results requires the careful selection of confounders; and 3) most
approaches have focused on voxel-wise regression approaches. In this paper, we evaluated the performance of five
registration algorithms and observed that conclusions regarding lesion localization can vary substantially with the choice of
registration algorithm. Methods for dealing with confounding factors due to differences in disease duration and local lesion
volume are introduced. Voxel-wise regression is then extended by the introduction of a metric that measures the distance
between a patient-specific lesion mask and the population prevalence map.
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Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating

disease that results in the formation of brain lesions that can

cause various debilitating effects. The use of magnetic resonance

imaging (MRI) has allowed researchers to investigate the

occurrence patterns of these lesions. It has been shown that the

nature of the resulting disabilities depends heavily on the location

of lesions in the brain [1]. However, the problem is complicated, as

increased disability may not correspond to noticeable changes in

MRI scans or to a significant increase in the lesion burden in the

patients. Alternatively, new lesions may form without resulting in a

change in disability indices. Hence, there is a need for more

detailed information about the association between brain lesion

location and MS disease severity. In this study, we quantify MS

disease severity using a common disability score: the Extended

Disability Status Scale (EDSS, [2]).

The study of lesion localization has a successful history with

several major quantitative results. In particular, [3] showed that

there is an association between lesion load and disability score

using standard linear regression at every voxel. Areas of significant

association were estimated using thresholds of t-statistic maps. In

later work, [4] investigated the association between average

cortical thickness, lesion load and disability score, showing that

cortical atrophy occurs even in MS patients with low disability

scores. In a related work, [5] and [6] discussed the association of

gray matter volume reduction with white matter lesion localiza-

tion. [7] found a statistically significant association between lesion

location and disease severity scores based on non-parametric

permutation tests.

More recently, [8] described the spatiotemporal distribution of

white matter lesions in patients with relapsing-remitting MS as

compared with patients with secondary progressive MS. In

addition, [9] investigated the effect of white matter lesion

distribution on cognition in MS and found that in cognitively

impaired patients, lesions are not as widespread as in cognitively

preserved patients though the volume is higher in the first case.

Finally, [10] commented on the association between normal

cerebral perfusion patterns and white matter lesion distributions.

All these analyses depend heavily on the ability to compare the

location of white matter lesions across subjects. The interpretations

of inferences rely on a common template space and are, thus,

intrinsically linked to the spatial registration algorithm imple-

mented for preprocessing. The majority of these findings are

obtained using affine registration (e.g. [11]), while the effect of the
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specific choice of registration algorithm has not been addressed.

Additionally, registration algorithms have only been validated on

healthy controls, while their performance on abnormal brains

remains unknown. This may be a serious problem in MS, where

brain images contain severe pathologies including enlarged

cerebrospinal fluid spaces and lesions whose location and shape

are highly heterogeneous in space and time. This problem is

expected to be especially severe for deformable registration

algorithms. In this paper, we analyze the effect of registration

choice on inferences regarding the association between detailed

lesion localization and adverse health effects in MS.

In particular, we focus on five commonly used algorithms

implemented in four software platforms: the Advanced Normal-

ization Tools (ANTS) described by [12], FMRIB Software Library

(FSL) (see [13] for a general overview of FSL), Medical Image

Processing Analysis and Visualization (MIPAV) (http://mipav.cit.

nih.gov) and Statistical Parametric Mapping (SPM) (http://www.

fil.ion.ucl.ac.uk/spm/). Our main conclusion is that the choice of

the algorithm greatly impacts results of statistical parametric

mapping.

We also extend current methods for statistical analysis in two

ways: 1) by proposing an approach to account for disease duration

and local lesion volume; and 2) by extending the voxel-wise

regression approach by introducing a metric that measures the

distance between the patient-specific lesion mask and the

population average prevalence map. By using several voxel-wise

regression models that contain hierarchical adjustment for

confounders, we assess the effects of the choice of registration

method on results.

Materials and Methods

Patients
The study consists of 98 patients in various stages of MS. The

Johns Hopkins Medicine IRB acknowledged that the collection

and analysis of data presented in this manuscript qualifies as

exempt research under Department of Health and Human

Services regulations. MRI and clinical data were previously

collected as part of IRB approved research studies with written

consent provided by participants. The identifiable MRI and

clinical information accessed by the principal investigator were

recorded in such a manner that subjects cannot be identified,

directly or through identifiers linked to the subjects (e.g., no codes

or links were retained to allow re-identification of individuals).

Histograms of EDSS scores, age, sex, and disease duration are

shown in Figure 1, and descriptive statistics of age, disease

duration and EDSS scores are shown in Table 1. The EDSS

scores indicate high heterogeneity of disease burden, with a range

between 0 (normal neurological exam) to 8 (can be out of bed for a

part of the day, but mostly restricted to bed or wheelchair, retains

self-care functions). The distribution of age covers the range of

values between 20 and 70 years of age somewhat uniformly with

more subjects in the 30 to 40 years of age and 50–60 years of age

ranges. Women comprise 72% of the dataset, which roughly

reflects the relative sex distribution in the population. Finally, the

distribution of duration from first symptom onset indicates that

most patients have been experiencing symptoms for at least 25
years prior to the scanning session.

Imaging data
T1-weighted, T2-weighted, fluid-attenuated inversion recovery

(FLAIR) and proton density (PD) volumes were acquired for all

subjects. T1-MPRAGE images (repetition time (TR) = 10 ms;

echo time (TE) = 6 ms; flip angle (FA) = 8; inversion time

(TI) = 835 ms, 1.1 mm isotropic resolution), 2D T2-weighted

pre-contrast FLAIR images (TR = 11000 ms; TE = 68 ms;

TI = 2800 ms; in-plane resolution = 0.83 mm|0.83 mm; slice

thickness = 2.2 mm), T2-weighted images and PD images (TR

= 4200 ms; TE = 12 ms; in-plane resolution

= 0.83 mm|0.83 mm; slice thickness = 2.2 mm) were acquired

at the Kennedy Krieger Institute, affiliated with the Johns Hopkins

University, on a Philips 3 tesla Achieva scanner (Philips Medical

Systems, Best, The Netherlands).

Lesion Segmentation
The T1-weighted images were rigidly aligned as described in

the next section to the Montreal Neurological Institute (MNI)

template and were used for segmentation of the lesions along with

the coregistered FLAIR images. White matter lesions for all

subjects were hand-segmented by a technician with over 10 years

of experience in delineating MS lesions. For each image, the

technician marked the lesion contours using a slice-by-slice

approach. The hand-segmented lesion masks were used in the

following analyses. While obtaining technician-drawn lesions is

extremely time-intensive, these segmentations are considered the

gold standard. In future studies that do not have hand-

segmentations, we may consider automatic cross-sectional [14]

or longitudinal [15] segmentation algorithms using the data from

all modalities.

Registration Algorithms
We applied five different registration algorithms to transform

the data into template space. The first registration algorithm was a

rigid registration of all subjects to MNI space. All image processing

for the rigid registration was performed in the Medical Image

Processing, Analysis and Visualization (MIPAV) application [16]

with Java Image Science Toolkit (JIST) [17]. We first applied the

N3 inhomogeneity correction algorithm [18] and removed

extracerebral voxels using SPECTRE, a skull-stripping procedure

[19]. The T1-weighted images for each subject were then rigidly

aligned (no scaling was performed) to the MNI standard space (1-

mm3 voxel resolution). The resulting rigidly aligned volumes were

used as inputs for the other four registration algorithms and for the

manual lesion segmentation.

The second registration algorithm is labeled ‘‘ANTS affine’’ and

consisted of applying the affine registration implemented in the

ANTS package [12] to the images obtained by rigid registration.

Mutual information was specified as the similarity metric with a 4-

bin square joint histogram and the weight of 1, and a Gaussian

regularization term with sigma of 3.

The third registration algorithm is labeled ‘‘ANTS diffeo’’, and

consisted of applying the SyN[0.25] diffeomorphic model for

transformation via the cross correlation similarity metric including

a Gaussian regularizer with sigma of 1 with an 8-bin square joint

histogram and the weight of 1 in the ANTS software [12] to the

images obtained by rigid registration. In both the affine and

diffeomorphic registration models performed via the ANTS

software, the hand-segmented mask of the lesions was provided

to focus the optimization algorithm on the area of the brain

outside of the lesion mask.

The fourth registration is labeled ‘‘FSL nonlinear’’, and

consisted of applying the nonlinear registration tool in FSL,

FNIRT [13], to the images obtained by rigid registration. Just as

with ANTS, we provided the lesion masks in the registration

algorithm. Default parameter settings were used for FNIRT while

subsampling at levels of 4, 4, 2 and 1. The FNIRT tool in FSL

provides only the nonlinear transformation of the images assuming

that the images have already been linearly aligned. Hence, we first
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applied the FLIRT tool for affine registration of images into MNI

space before proceeding to FNIRT registration.

The fifth registration algorithm labeled ‘‘DARTEL’’ consists of

applying the Diffeomorphic Anatomical Registration Through

Exponential Lie algebra (DARTEL) toolbox in SPM [20]. The

T1-weighted images were segmented into six tissue types. Both

white matter and gray matter images were used to construct an

average group template and subject-specific flow-fields which were

then used to register the lesion masks into the MNI space using a

final affine transformation. Default settings were used for the

variables in DARTEL with two exceptions during normalization

to MNI space: we decreased the kernel size for the Gaussian filter

applied to the data to 1-mm and specified 1-mm isotropic voxel

size for our output images to match the resolution of the output

images of the other registration methods. After directly applying

DARTEL to the rigidly registered images we found that the

registration quality was very poor. To alleviate the problem, we

filled in the lesions with the average normal appearing white

matter (NAWM) intensities before applying DARTEL. In other

words, for each subject, the average NAWM intensity was assigned

as the intensity of all voxels in each lesion [21]. LesionTOADS, an

open source lesion segmentation software ([22], [23]), was used for

segmenting the NAWM for the 98 subjects in the study.

The images with lesions filled with the average NAWM were

used as inputs for ‘‘DARTEL’’, whereas the inputs for ‘‘ANTS

affine’’, ‘‘ANTS differo’’, and ‘‘FSL nonlinear’’ were the images

with lesion voxels masked out as background. For the last three

algorithms masking out the lesions is the recommended for

preprocessing the data. To compare the registration results of all

four methods for the exact same dataset with average NAWM

assigned as the intensity of each voxel in each lesion, we used

‘‘ANTS affine’’, ‘‘ANTS differo’’, and ‘‘FSL nonlinear’’ to register

these data as well as the data with masked lesions.

A visual representation of the five registration procedures is

presented in Figure 2. The registered images for three subjects are

shown in Figure 3 with the corresponding labels. We chose two

subjects with enlarged ventricles and one subject with small

ventricles. Images indicate that gross brain features remain

relatively unchanged, though important differences that can

impact results in subsequent statistical parametric mapping can

easily be noticed. A visual inspection of the differences between the

algorithms is discussed in the next section.

Assessing Registration
Quantifying the quality of spatial registration algorithms is a

daunting task: 1) there is no gold standard for assessing registration

results; 2) current approaches are based largely on qualitative

comparative assessments of the original and registered images; and

3) there is a lack of systematic analyses of implications of

registration in populations of brain images, especially when the

subjects in the population exhibit obvious pathologies. Landmark-

based measures have been used in the literature to compare the

effectiveness of registration algorithms [24]. The general consensus

favors nonlinear registration algorithms such as the SPM

DARTEL method used in this manuscript [25].

Here we propose an approach to assessing the quality of

registration in the context of MS brain imaging. We start by

performing a visual inspection of the results and notice that the

relative effectiveness of the five registration approaches varies as

individual anatomy deviates from the template. When the

ventricles are only slightly larger than normal as for Subject 1 in

Figure 3, ANTS affine, ANTS diffeo, FSL Nonlinear as well as

SPM DARTEL transform the image into the template space

better than a simple rigid transform. However, when ventricles are

very large, as is typical in subjects with MS, the quality of the

registration becomes harder to assess and interpret. This happens

because brains that have fundamentally different pathologies and

shapes are being forced onto the same template. While this is

perhaps not surprising, it should be of great concern to researchers

who apply these registration methods to diseased populations,

especially because it is hard to anticipate when registration will

work well or fail. For example, Subject 2 in Figure 3 has both

enlarged ventricles and a high total lesion volume, and both FSL

Nonlinear and SPM DARTEL seem to perform better than the

other registration methods. For Subject 3 in Figure 3, who has

enlarged ventricles and low lesion volume, DARTEL performs

very poorly.

In order to develop a metric to evaluate registration accuracy,

we note that the visible lesions segmented by the technician are all

in white matter. Thus, it makes sense to expect the lesions to

remain in the white matter of the template after registration is

performed. Hence, we propose the following goodness-of-lesion-

spatial-registration (GLSR) metric at the subject level: the

proportion of lesion voxels in the original unregistered image that

do not appear in the white matter of template space after

registration. By this definition, a low GLSR indicates that white

matter lesions correctly remain in white matter, without measuring

the relative position of the lesions with respect to various

landmarks. While this is a partial solution, the idea can easily be

extended to registration in general: manually identify landmark

areas in the native space of the images, such as gray matter,

regions of interest (ROI) such as a brain tumor or the relative

spatial location of an ROI from a predefined landmark, and

obtain the proportion of voxels in the template, after registration,

that are misplaced. While a more complete solution is desirable, it

is beyond the scope of this manuscript. Instead, we focus on the

GLSR metric henceforth.

Prediction of EDSS Based on Lesion Localization
For each registration algorithm, we evaluate the association

between lesion localization and disease severity as measured by the

EDSS score. At every voxel in the template space, we ran a linear

regression model of the type

EDSSi~b0zb1(v)Lesion (i v)zX t
i b2(v)zEi(v), ð1Þ

where EDSSi is the EDSS score for subject i~1, . . . ,I with

I~98, Lesioni(v) is a binary covariate that indicates whether

subject i has a lesion at voxel v, X t
i is a vector of subject-specific

confounders, and Eiv are treated as independent homoscedastic

errors. We limit our analysis to voxel locations where more than 5
patients have lesions. The vector of confounders, Xi , contains up

to 4 subject-specific confounders including age and sex. A third

interesting confounder is disease duration, as some areas in the

brain may accumulate lesions over time without having a strong

impact on the EDSS. Thus, not accounting for disease duration

would naturally identify strong associations in high lesion density

areas simply because MS subjects’ health tends to deteriorate over

time. A fourth confounder was designed to account for potential

association between EDSS score and lesion locations that are less

common across subjects. More specifically, for each subject, we

calculated a distance from the subject-specific lesion mask to the

sample lesion mask; this was done separately for each registration.

Here the sample lesion mask is defined as the collection of voxel

locations in the template space where more than 5 subjects had a

lesion. We define as ni the number of voxels where subject i has a
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lesion and there are no more than 5 other subjects (4:9% of the

study population) who have a lesion at the same voxel. If the total

lesion volume (TLV) of subject i, denoted by TLVi, is the total

number of voxels in the lesion mask of subject i then we define the

location-discrepancy index (LDI) as

LDIi~
ni

TLVi

:

The LDIi measure takes values between 0 and 1, with a large

value indicating a more atypical lesion pattern for subject i.

Subjects with very large values of LDIi may be viewed as outliers

in the sense of their lesion structure. LDIi allows us to model the

degree of departure from the average lesion distribution. TLV can

also be considered as a confounder in the model. Indeed, a larger

TLV may be associated with a longer time since disease onset.

Figure 1. Histograms of EDSS scores, age (in years), sex, and duration from disease onset (in years) for the 98 patients in the study.
doi:10.1371/journal.pone.0107263.g001

Table 1. Descriptive statistics of the demographic information on the patients.

min median mean max SD NAs

EDSS 0 3.5 3.9 8 2.2 7

age 21.4 43.6 43.5 68.5 12.5 0

duration 0 9 11.4 45 9.2 3

doi:10.1371/journal.pone.0107263.t001
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Results

Histograms of Lesions in the Brain
To visualize the localization of lesions, we first combined

information from lesion masks of 98 patients with MS. As

mentioned above, lesions were manually segmented in the rigidly

registered space. Using the resulting lesion masks we obtained the

3 dimensional histogram of the lesion localization for our study

population. More precisely, for every voxel location we calculated

the proportion of subjects who have a lesion at that particular

voxel. The resulting image based on the rigid transformation of the

data is shown in Figure 4. Here the voxels colored in red

correspond to a higher proportion of patients with lesions at that

voxel whereas light blue color indicates voxels with a smaller

proportion of patients having lesions at that voxel. The histogram

indicates that lesions are fairly widely distributed in the brain, with

a higher concentration around ventricles.

Similar histograms were obtained for ‘‘ANTS affine’’, ‘‘ANTS

diffeo’’, ‘‘FSL nonlinear’’ and ‘‘DARTEL’’; see Figure 5. The

‘‘ANTS affine’’ and ‘‘ANTS diffeo’’ registrations appear to have

shifted many of the lesions away from the ventricles of the

template space; compare the results for ‘‘rigid’’ displayed in

Figure 4 with the first row in Figure 5. The ‘‘FSL nonlinear’’ and

‘‘DARTEL’’ registration methods lead to results that seem to be

qualitatively different from the first two registrations. The 3D

histograms for ‘‘FSL nonlinear’’ and ‘‘DARTEL’’ indicate a

smaller number of lesions and a different spread pattern of lesions,

which suggests that the registration procedures can either reduce

or enlarge the size of the lesions in the same template space. Recall

that the hand-segmented lesion masks are provided for the ‘‘ANTS

affine’’, ‘‘ANTS diffeo’’ and ‘‘FSL nonlinear’’. The 3D histogram

for ‘‘DARTEL’’ indicates that lesions are registered outside of the

ventricles in the template image, however, the localization of

lesions seems to be more spread out as compared with the rigid

registration map especially in anterior regions of the brain.

The differences between spatial registration techniques observed

using a simple visualization tool such as the 3D histogram are

striking. These differences may directly affect the reliability and

interpretation of statistical parametric mapping. The main

question of interest in this paper is whether and to what extent

are the results of studies of association between lesion locations and

disease severity affected by the registration algorithm or biolog-

ically irrelevant factors.

Assessing the Goodness-of-Lesion-Spatial-Registration
While the previous visualization approaches provide insights

into the data and the distortions induced by spatial registration,

the quantification of observed results remains elusive. Thus, we

focus on quantification of the Goodness-of-Lesion-Spatial-Regis-

tration (GLSR). At the subject level, we define GLSR to be the

Figure 2. Review of the steps behind the five algorithms.
doi:10.1371/journal.pone.0107263.g002

Lesion Localization in Multiple Sclerosis

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e107263



proportion of voxels that are in lesions in the images in native

space, but are not in the white matter after registration. FAST in

FSL was used to segment the white matter in the template brain.

Thus, GLSR is a measure that depends both on the subject and on

the registration approach.

Figure 6 displays GLSR for all subjects and each registration

procedure: black for ‘‘rigid’’, red for ‘‘ANTS affine’’, blue for

‘‘ANTS diffeo’’, green for ‘‘FSL nonlinear’’ and purple for

‘‘DARTEL’’. Table 2 shows the mean, standard deviation (SD),

average ranking of each method across subjects and the mean

squared error (MSE) of GLSR across subjects for each of the

registration algorithms. The MSE is defined as

MSE~Var(GLSRr)zBias2(GLSRr)

where GLSRr is the statistic computed for registration algorithm

r (‘‘rigid’’, ‘‘ANTS affine’’, ‘‘ANTS diffeo’’, ‘‘FSL nonlinear’’,

‘‘DARTEL’’). The Bias(GLSRr) of the estimator is the mean bias

of the rth algorithm GLSR with respect to the truth, which, in this

case, is GLSR = 0 (white matter lesions should be registered to

white matter).

First, all methods exhibit some bias and variance, though

DARTEL is by far the most variable. In fact, DARTEL, exhibits

good performance in a large subset of subjects and fails completely

in others. As expected, on average ‘‘rigid’’ performs badly, though

it exhibits low variability around bad values of GLSR across

subjects. We conclude that ‘‘rigid’’ performs consistently, but

poorly. This is probably due to the fact that the shape of the

original brain is preserved while the white-matter overlap is poor.

Surprisingly, we found high variability in the performance of

‘‘DARTEL’’ in registering the lesions to the white matter of the

template space correctly in terms of GLSR with a mean GLSR of

0.37 and standard deviation of 0.349. In fact for 6 subjects out of

98 the total white matter lesion volume after registration was equal

to zero. ‘‘ANTS affine’’, ‘‘ANTS diffeo’’ and ‘‘FSL nonlinear’’

registration procedures shift lesions to overlap better with white

matter, though ‘‘ANTS diffeo’’ seems to perform the best on

average, at least in terms of GLSR. Indeed, its average GLSR is

0.16 with a standard deviation of 0.099. ‘‘ANTS affine’’ performs

similar to ‘‘ANTS diffeo’’ and ‘‘FSL nonlinear’’ with mean GLSR

of 0.18 and standard deviation of 0.173. However, in terms of

median GLSR, ‘‘FSL nonlinear’’ outperforms all other methods

with a median GLSR of 0.12. In addition, ‘‘FSL nonlinear’’ is

ranked as the better algorithm on average in terms of minimizing

GLSR. The complete distribution of GLSR for each registration

algorithm is displayed in Figure 6. We conclude that the

performance of all algorithms is worrying, with especially

unpredictable behavior for ‘‘DARTEL’’, which performs very

badly in a large proportion of subjects (e.g. 10% of the subjects

have GLSR larger than 0.9).

The resulting GLSR values for ‘‘ANTS affine’’ (mean GLSR of

0.17, median GLSR of 0.15, and standard deviation of 0.12),

‘‘ANTS diffeo’’ (mean GLSR of 0.16, median GLSR of 0.14, and

standard deviation of 0.11), and ‘‘FSL nonlinear’’ (mean GLSR of

0.25, median GLSR of 0.21, and standard deviation of 0.14) when

the lesion voxels of the input images were assigned the average

NAWM intensity showed that masking the lesions as background

is indeed better in terms of GLSR, especially for ‘‘FSL nonlinear’’.

Admittedly, when registering individual images, one may select

the parameters to better register the individual brains to the

template space for each of the registration algorithms. However,

the purpose of this paper is to show the performance of the

methods for a population of patients. While we tried different

settings of parameters for three of the registration algorithms,

‘‘ANTS diffeo’’, ‘‘ANTS affine’’ and ‘‘FSL nonlinear’’, we chose

Figure 3. One slice from five different registration methods for three subjects (one subject on each row). The MNI template brain is
shown on the first row (left).
doi:10.1371/journal.pone.0107263.g003
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parameters for the population and did not change them for

individual images. As mentioned above, the parameters for

‘‘DARTEL’’ were used as specified by the software.

Interestingly, we found some differences in total lesion volume

for each subject depending on the registration algorithm. The

average total lesion volumes for ‘‘rigid’’, ‘‘FSL nonlinear’’ and

‘‘DARTEL’’ were similar, however the average total lesion volume

for ‘‘ANTS affine’’ and ‘‘ANTS diffeo’’ was 3 times that of the

average total lesion volume for ‘‘rigid’’. As research often focuses

on much smaller signals, these differences raise questions about the

reliability and reproducibility of findings especially in the context

of voxel-wise analysis of the data where the sheer size of the lesions

may dominate the results.

While lower GLSR numbers can indicate better registration, the

measure is far from perfect. Indeed, a low GLSR indicates that

white matter lesions correctly remain in white matter, without

measuring the relative position of the lesions with respect to

various landmarks. Indeed, while ‘‘ANTS diffeo’’ performs well at

keeping lesions in the white matter it may actually do so at the

price of ‘‘over-smearing’’ the image and providing visual

representations of lesions in areas of the white matter that are

too far from the ventricles. In addition, ‘‘ANTS affine’’ and

‘‘ANTS diffeo’’ methods seem to enlarge lesions, which results in a

larger lesion volume in the template space compared to the size of

those lesions in native space. Currently, we are unaware of any

existent quantitative method for assessing this problem.

Prediction of EDSS Based on Lesion Localization
We run several versions of model (1) starting with the simplest

case and then building the model by incorporating different

choices of potential confounders to investigate their effects on the

statistically significant association between lesion locations and

EDSS. More precisely, the five models are:

M1 : EDSSi~ b0zb1(v)Lesioni(v)zEi(v),

M2 : EDSSi~ b0zb1(v)Lesioni(v)zc1(v)TLVizEi(v),
M3 : EDSSi~ b0zb1(v)Lesioni(v)zc2(v)LDIizEi(v),
M4 : EDSSi~ b0zb1(v)Lesioni(v)zc1(v)

TLVizc3(v)Ageizc4(v)GenderizEi(v),
M5 : EDSSi~ b0zb1(v)Lesioni(v)zc1(v)TLViz

c3(v)Ageizc4(v)Genderiz c5(v)DurationizEi(v),
The p-values of voxel-wise regression of EDSS scores on lesion

incidence vectors corresponding to the test H0,v : b1(v)~0 are

shown in Figure 7. Each row in Figure 7 corresponds to one of the

models above. In the first model -M1 in the top row, the p-values

based on the ‘‘ANTS affine’’ and ‘‘ANTS diffeo’’ registration are

smaller with a clear spatial distribution of p-values smaller than

0.05 near the ventricles. Patterns of p-values that are smaller than

0.05 are far less clear for the ‘‘rigid’’, ‘‘FSL nonlinear’’ and

‘‘DARTEL’’ registration approaches. In all cases, the areas

highlighted in bright red display p-values of less than 0.05,

however none survive Bonferroni correction.

The first model indicates that if a patient has a lesion in a voxel

near the ventricles, their disease severity score may be higher than

if they do not have a lesion. An interesting question is whether the

lower p-values in the last analysis are indicative of structural

association between lesion locations and EDSS or whether that is

merely a factor that indirectly shows how long the patient has been

affected by MS. In other words, the relationship between lesion

location and EDSS may be confounded by the total lesion volume

(TLV) measures in mm3. We first note that if we compute a

registration specific TLV the numbers vary depending on the

registration algorithm. This can be observed in the lesion

histograms in Figure 5. Using a simple linear regression of EDSS

on the registration specific TLV for each of the 4 registration

algorithms, we find that the TLV is a significant predictor of EDSS

based on the first four registration algorithms with the following

coefficients and p-values: ‘‘ANTS affine’’ 1:73 � 10{5 (0.0166),

‘‘ANTS diffeo’’ 1:69 � 10{5 (0.0188), ‘‘FSL nonlinear’’

Figure 4. The histogram of brain lesions for 98 patients based on a rigid registration of the images to a template brain indicating
the number of patients out of 98 having lesions at each voxel.
doi:10.1371/journal.pone.0107263.g004
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3:73 � 10{5 (0.0178) and ‘‘rigid’’ 4:57 � 10{5 (0.0083). The

analysis indicates that as the TLV in the patients increases, the

EDSS score increases, as expected. However, for ‘‘DARTEL’’, the

p-value was found to be 0.074 indicating that TLV is not a

significant predictor of EDSS. These results are based on four

simple linear regression models where EDSS is the dependent

variable and the TLV is the predictor and no multiple

comparisons correction is used.

In the second modelM2, we used TLV as a second variable in

the regression model along with the indicator variable of lesion

prevalence. The second row of Figure 7 shows the resulting p-

values for the H0,v : b1(v)~0. The p-values for testing

H0,v : b1(v)~0 are now larger. This suggests that for subjects

Figure 5. The lesion histograms for 98 patients (showing the number of patients out of 98 having lesions at each voxel) based on
‘‘ANTS affine’’ (top left), ‘‘ANTS diffeo’’ (top right), ‘‘FSL nonlinear’’ (bottom left) and ‘‘DARTEL’’ (bottom right) spatial registration
algorithms. Red: voxels where more patients have lesions; Blue and light blue: voxels where fewer patients have lesions.
doi:10.1371/journal.pone.0107263.g005
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with the same total lesion volume, the statistical association

between the specific location of the lesion and the EDSS is not as

strong as that estimated by M1.

In the model M3, we incorporated the new measure of lesion

discrepancy index (LDI) along with the indicator variable of lesion

incidence. The p-value maps for H0,v : b1(v)~0 displayed in

Figure 7 indicate smaller p-values. A simple linear regression of

the EDSS score on the LDI for each of the registration algorithms

results in p-values as follows: 0.47 - ‘‘rigid’’, 0.09 - ‘‘ANTS affine’’,

0.12 - ‘‘ANTS diffeo’’, 0.06 - ‘‘FSL nonlinear’’ and 0.05 -

‘‘DARTEL’’. These results are consistent with those from model

M1 and indicate insufficient statistical evidence of association

between the degree of discrepancy of the subject-specific lesion

pattern from the average distribution of lesions and EDSS score.

The effects of the demographic variables such as age, duration

of the disease, and gender of the patients are explored in models

M4 andM5. In modelM5, age is a significant predictor of EDSS

after accounting for gender and lesion incidence. Many of the p-

values are significant for testing H0,v : c3(v)~0 (localized age

effect) after Bonferroni correction, while gender and duration of

disease are not significant predictors of EDSS with high p-values

for tests H0,v : c4(v)~0 and H0,v : c5(v)~0. We observe similar

results for modelM4 where age is a significant predictor of EDSS.

As noted above, none of the p-values for testing H0,v : b1(v)~0
(localization effect on EDSS) obtained from models M1–M5

survived a Bonferroni correction for multiple comparisons. A

major difference between our findings and those of [3] is that they

had more than 400 subjects, whereas we only had 98. Thus, we re-

assessed our results by simulating the scenario of having 400
subjects instead of 98 and re-calculating p-values. This can be

approximated simply by dividing our standard errors by 2. The

newly ‘‘calculated" p-values were then corrected for multiple

comparisons via two methods: the Bonferroni correction and False

Discovery Rate (FDR). The thresholded maps of the resulting p-

values at the 0.05 level are shown in Figure 8.

If Bonferroni correction is used, then 5,925 lesion voxels out of

52,821 tests performed simultaneously were found to have a slope

statistically different from zero using ‘‘ANTS affine’’, 6,520 out of

54,614 using ‘‘ANTS diffeo’’, 1722 out of 19,497 using ‘‘FSL

nonlinear’’, 109 out of 10,119 using ‘‘rigid’’, and 40 out of 11,918

Figure 6. GLSR: the proportion of lesion voxels for each registration algorithm that are not in the white matter in the template
space. Each dot (left) is the GLSR for one subject for a particular registration algorithm: ‘‘rigid’’ (black), ‘‘ANTS affine’’ (red), ‘‘ANTS diffeo’’ (blue), ‘‘FSL
nonlinear’’ (green) and ‘‘DARTEL’’ (purple). Higher and more variable across subjects is worse. The size of the dots is proportional to the TLV for each
patient. Larger dots correspond to higher TLV. The beanplots (right) show the distribution of GLSR for each registration algorithm.
doi:10.1371/journal.pone.0107263.g006

Table 2. Properties of the GLSR statistic computed for each of the registration algorithms (higher is worse).

‘‘rigid’’ ‘‘ANTS affine’’ ‘‘ANTS diffeo’’ ‘‘FSL nonlinear’’ ‘‘DARTEL’’

mean 0.32 0.16 (0.17) 0.16 (0.16) 0.18 (0.25) 0.37

median 0.27 0.13 (0.15) 0.14 (0.14) 0.12 (0.21) 0.19

SD 0.206 0.088 (0.12) 0.099 (0.11) 0.173 (0.14) 0.349

MSE 0.148 0.032 0.035 0.063 0.259

mean rank 4.23 2.55 2.62 2.44 3.14

The values in the brackets show the corresponding statistic computed while filling the lesions with average NAWM before registration.
doi:10.1371/journal.pone.0107263.t002
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using ‘‘DARTEL’’ registration and model M1. The results are

drastically different when using FDR for multiplicity correction.

For instance, the number of significant slopes when ‘‘ANTS

affine’’ is used for registration in ModelM1 increases to 38,196 as

compared with the 5,925 in the case of Bonferroni correction. This

would lead to a different conclusion in identifying regions of the

brain where the presence of lesions could be assumed to be

correlated with the EDSS score. Furthermore, when including

TLV in the model, the number of lesion voxels that were found to

be significantly associated with the EDSS score was reduced

dramatically to 416 based on ‘‘ANTS affine’’, 671 based on

‘‘ANTS diffeo’’, 245 based on ‘‘FSL nonlinear’’ and 128 based on

‘‘DARTEL’’ in modelM2. The results from modelsM4 andM5

were similar to the results from model M2.

After correcting for the effect of the proposed LDI measure in

model M3, the number of slopes that are statistically significant

based on ‘‘ANTS affine’’ registration was 6,901, based on ‘‘ANTS

diffeo’’ - 7,253, based on ‘‘FSL nonlinear’’ - 566 and based on

‘‘DARTEL’’ - 23 which suggests that for the patients with similar

LDI measures, the probability of having a lesion in many areas of

the brain has a significant effect on their EDSS score, however,

this conclusion does not hold for most voxels if ‘‘FSL nonlinear’’ or

‘‘DARTEL’’ registration methods were used.

Figure 7. P-values (uncorrected) for testing H0,v : b1(v)~0 using models M1–M5. From left to right: spatial registrations ‘‘rigid’’, ‘‘ANTS
affine’’, ‘‘ANTS diffeo’’, ‘‘FSL nonlinear’’, and ‘‘DARTEL’’. Bright red: p-values close to 0 to black: p-values close to 1. The p-value maps are overlaid on a
grayscale template.
doi:10.1371/journal.pone.0107263.g007
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So far, the EDSS score was treated as a continuous variable to

allow for a direct comparison with published studies. However,

EDSS is intrinsically an ordinal variable with 20 categories

ranging from 0 to 10. To account for the ordinal nature of the

data, we have also conducted analyses using the observed data

where subjects were divided into three categories: EDSS,4,

EDSS between 4 and 5.5, and EDSS. = 6. An ordinal regression

model [26] was then used to study the association between lesion

localization and EDSS score, treated as an ordinal variable with

three levels. The resulting p-value maps are presented in Figure 9.

The results are qualitatively similar to those obtained when EDSS

was treated as a continuous variable.

Figure 8. P-values for testing H0,v : b1(v)~0 using models M1–M3 after applying Bonferroni and FDR corrections. From left to right:
spatial registrations ‘‘rigid’’, ‘‘ANTS affine’’, ‘‘ANTS diffeo’’, ‘‘FSL nonlinear’’, and ‘‘DARTEL’’. Red: small p-values (v0:05).
doi:10.1371/journal.pone.0107263.g008
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It is worth mentioning that family-wise error rate (FWER) and

false discovery rate (FDR) are intrinsically different quantities and

there is no reason to expect similar results. Indeed, the Bonferonni

correction ensures that, irrespective of the number of tests and

correlation between them, the FWER is at most equal to a pre-

defined upper limit, say 0.05. In contrast, the FDR ensures that

the proportion of falsely null hypotheses that are rejected is

controlled below a certain rate, say 0.05. Both FWER and FDR

are defined for independent tests, though the Bonferonni

Figure 9. P-values (uncorrected) for testing H0,u : b1 uð Þ~0 using ordinal regression models with independent variables as in models
M1–M5. From left to right: spatial registrations ‘‘rigid’’, ‘‘ANTS affine’’, ‘‘ANTS diffeo’’, ‘‘FSL nonlinear’’, and ‘‘DARTEL’’. Bright red: p-values close to 0
to black: p-values close to 1. The p-value maps are overlaid on a grayscale template.
doi:10.1371/journal.pone.0107263.g009
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correction provides stricter controls (higher thresholds for declar-

ing a positive result).

Discussion

We began this project as a study of association between lesion

localization in multiple sclerosis and EDSS. However, during the

course of the project our focus shifted, as we encountered several

methodological hurdles. The analyses presented in this paper were

crafted to illustrate the influence of image registration variation

and the effect of other confounding variables on the association

between lesion localization and MS severity as measured by the

EDSS score. One of the most important findings of this paper is

that spatial registration algorithms that have been developed in the

context of registration of healthy brains provide mediocre results

for brains of subjects with multiple sclerosis pathology. In addition,

the effectiveness of different spatial registration algorithms can lead

to fundamentally different conclusions when one is quantifying the

association between lesion localization and health outcomes.

Consequently, much more in-depth analyses are needed to

quantify goodness of registration and comparison across platforms

and diseases. We also demonstrated that after accounting for

multiple testing and controlling for total lesion volume, the

strength of the association between localization and EDSS score is

much weaker. Finally, in our sample, particular patterns of lesions

as measured by LDI do not seem to be significantly associated with

EDSS score.

In an attempt to quantify the registration accuracy we proposed

a new Goodness-of-Lesion-Spatial-Registration measure as the

proportion of lesion voxels in the transformed image that are not

in white matter, which is essentially a measure of a combination of

tissue classification and spatial registration. When comparing the

five different registration algorithms via GLSR, we find that the

ANTS and FSL perform better than SPM or rigid registration.

When comparing the number of lesion voxels in ANTS registered

images with FSL or SPM registered images, we found that the

TLV for ‘‘ANTS affine’’ and ‘‘ANTS diffeo’’ are much higher

than the TLV for ‘‘FSL nonlinear’’, ‘‘rigid’’ and ‘‘DARTEL’’.

There are several other aspects of the registration accuracy that

can be considered, such as whether the lesion volumes are

preserved after the transformation or if the lesions have the correct

placement in the template space in reference to other brain

regions, etc.

The segmentation/registration of images using SPM was most

troubling for some of the subjects in the study. As discussed above,

we used the parameter settings recommended by SPM8 (with 2

exceptions: we decreased the kernel size for the Gaussian filter

applied to the data to 1-mm and specified 1-mm isotropic voxels

for our output images to match the resolution of the output images

of the other registration methods). We first used the rigidly

registered images as inputs for SPM’s segmentation procedure and

the resulting gray and white matter images as inputs for DARTEL,

and found that the performance of the method was much worse

(results not shown). We assumed that since we did not exclude the

white matter lesions from the rigidly registered images as we did

with ANTS and FSL implementations, these areas may have been

mislabeled as gray matter by SPM [6]. To mitigate the issue, we

proceeded by filling in the lesions with average normal appearing

white matter based on the white matter segmentations we

obtained from FSL FAST. When using the new images as inputs

for SPM’s segmentation procedure and the resulting gray and

white matter images as inputs for DARTEL, the results improved

for some of the subjects, though overall the performance of the

algorithm remained dismal for a number of subjects. Interestingly,

most of the subjects who continued to have very high GLSR values

had low lesion loads. After further investigation of the SPM

segmentation results, we have found that the SPM tissue

segmentation of these images was poor; this could be a possible

explanation for some of the high GLSR values.

In addition, DARTEL works by iteratively estimating the

deformations that match subject-specific tissue class images to a

template and then using the latest deformation estimates to update

the template [27], [28]. Because the final template used for

registration depends on all subject-specific tissue segmentations,

inclusion of poorly classified gray and white matter images from

several subjects as inputs to DARTEL could reduce the

effectiveness of DARTEL to register images even from subjects

whose gray and white matter tissue had been adequately classified.

Hence, it may be reasonable to exclude the subjects with high

GLSR values from the study to improve the registration accuracy

for the population.

One decision that might have contributed to the worse-than-

expected performance of all of the algorithms is that we used the

rigidly registered images as inputs for all the algorithms whereas it

may be reasonable to try and minimize the number of image

interpolation steps and use the observed images in the native space

as inputs for each registration algorithm. Nevertheless, some

algorithms, such as FNIRT in FSL, require input images that have

already undergone an affine registration. When we used the rigidly

registered images in our first run of ‘‘FSL nonlinear’’ the resulting

GLSR values were very high and the registration was poor.

Hence, it is important to check the steps of the registration

procedures as well as check the results by a metric such as GLSR

before commencing the statistical analysis.

Another important point is that the healthy MNI template was

used for registration. As a result the highly deformed brains are

registered to the template that was constructed from typical brains.

In some studies it may be reasonable to construct a study specific

template for population-level analysis; however, in that case,

comparisons between analyses may be impossible. An important

open question is what types of features one might expect in a

nonlinearly registered brain in terms of the deformation of lesions

and other structures of the brain. This problem extends to healthy

brains as well, since brain tissue is lost with age. In MS

particularly, a significant amount of tissue may be lost as the

disease progresses. Hence, when nonlinearly aligning an MS

patient’s scan to any template the algorithm is often trying to

register the remaining tissue to the lost structure. There are no

guidelines for the algorithm for performing this, nor can there be,

since we may not know what tissue is lost in the MS patient’s

brain. The results can be different depending on the optimization

routine used by the algorithm. This can adversely affect the

analysis of the resulting images, especially in the case of voxelwise

inference of associations.

Some studies described the relationship of lesion localization in

MS as compared with other neurological disorders such as

neuromyelitis optica spectrum disorder [29]. [30] and [31]

commented on the relevance of lesion location in clinically

isolated syndrome (CIS) patients when predicting the short-term

conversion to MS, whereas [32] investigated the effect for up to 20

years after presentation of CIS in MS patients. [33] discussed the

distribution of lesions in MS patients with fatigue. Even though the

proposed lesion discrepancy index was not found to be signifi-

cantly associated with the EDSS score, it may be useful in

diagnosing MS and distinguishing MS from other causes of white

matter lesions. A study of patients with white matter lesions caused

by different neurological disorder will be of interest in finding

associations of LDI with the type of disease that causes lesions in
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the white matter. In addition, patients with small vessel disease

along with MS may have more randomly spread out white matter

lesions in unexpected locations as well as MS patients with a very

high lesion load which would result in a high LDI value for these

patients. The association of LDI with other metrics of disease

burden can be discussed for a study with more patients in various

stages of the disease.

In summary, our results show that: 1) conclusions of studies of

association between lesion localization and health outcomes can

vary strongly with the spatial registration method; 2) spatial

registration methods to a template perform relatively poorly with a

quality of registration that can vary dramatically in the population;

3) adjusting for known and potential confounders is crucial for the

purpose of building credible statistical results; 4) adjusting for

multiplicity in the absence of strong prior hypothesis is necessary

and strongly influences the interpretation of results; and 5)

irrespective of how carefully the image predictor space is

constructed, the choice of phenotype (e.g. EDSS score) can

strongly influence discovery, especially when it is subject to

substantial heterogeneity (lack of precision).

Our approach in this paper was to point out these problems,

provide a list of pre-processing steps and modeling choices that

have a large effect on the reports of analyses, and propose ways to

identify, quantify, and understand these effects. To address the

dependence of findings on registration algorithm, we propose to

apply all registration algorithms, do a side-by-side comparison of

results, and construct reasonable metrics for goodness of registra-

tion. Comparing these goodness of registration metrics across all

subjects provides a general description of registration performance

and can highlight cases that are particularly problematic for future

analyses. In terms of the metric considered in this paper

(proportion of white matter lesions that remain in the white

matter of the template), all registration methods performed poorly.

Thus, we have identified a strong need for better registration

methods or a change towards analytic methods that do not require

or are robust to registration to a template. Changing the template

to one that is more suited for the study or using multiple templates

may be useful, though it may also affect the interpretability and

generalizability of results. Adjusting for confounders is another

crucial element of the analysis, as we need to quantify the type of

information that imaging provides above and beyond known

predictors. For example, it is well known that MS disease

progression is associated with increased total lesion volume. In

addition, we showed that the association between EDSS and lesion

location may be strongly confounded by several variables. For

example, total lesion volume (TLV) was found to be highly

associated with EDSS and to strongly reduce the strength of the

association between lesion localization and EDSS. We also showed

that there is a higher density of lesions close to the ventricles,

which raises the question whether having a lesion close to the

ventricle versus elsewhere in the brain is more strongly associated

with adverse health effects. Once we corrected for disease duration

we found that there is not enough evidence to support such a

hypothesis. An analysis that ignored disease duration would thus

provide a completely different picture of findings that would be

publishable, but probably misleading.

Author Contributions

Analyzed the data: AE HS EMS MBN. Contributed reagents/materials/

analysis tools: PAC. Wrote the paper: AE CMC DSR MBN. Discussed the

analysis and results: RTS DSR MAL CMC HS EMS MBN. Hand-

segmented lesions: JLC.

References

1. Bodini B, Battaglini M, De Stefano N, Khaleeli Z, Barkhof F, et al. (2011) T2

lesion location really matters: a 10 year follow-up study in primary progressive

multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry 82: 72–77.

2. Kurtzke J (1983) Rating neurologic impairment in multiple sclerosis an

expanded disability status scale (edss). Neurology 33: 1444–1444.

3. Charil A, Zijdenbos A, Taylor J, Boelman C, Worsley K, et al. (2003) Statistical

mapping analysis of lesion location and neurological disability in multiple

sclerosis: application to 452 patient data sets. Neuroimage 19: 532–544.

4. Charil A, Dagher A, Lerch J, Zijdenbos A, Worsley K, et al. (2007) Focal cortical

atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage

34: 509–517.

5. Sepulcre J, Goni J, Masdeu J, Bejarano B, de MN V, et al. (2009) Contribution

of white matter lesions to gray matter atrophy in multiple sclerosis: evidence

from voxel-based analysis of t1 lesions in the visual pathway. Archives of

neurology 66: 173.

6. Bendfeldt K, Blumhagen J, Egger H, Loetscher P, Denier N, et al. (2010)

Spatiotemporal distribution pattern of white matter lesion volumes and their

association with regional grey matter volume reductions in relapsing-remitting

multiple sclerosis. Human brain mapping 31: 1542–1555.

7. Vellinga M, Geurts J, Rostrup E, Uitdehaag B, Polman C, et al. (2009) Clinical

correlations of brain lesion distribution in multiple sclerosis. Journal of Magnetic

Resonance Imaging 29: 768–773.

8. Filli L, Hofstetter L, Kuster P, Traud S, Mueller-Lenke N, et al. (2012)

Spatiotemporal distribution of white matter lesions in relapsing–remitting and

secondary progressive multiple sclerosis. Multiple Sclerosis Journal.

9. Rossi F, Giorgio A, Battaglini M, Stromillo M, Portaccio E, et al. (2012)

Relevance of brain lesion location to cognition in relapsing multiple sclerosis.

PloS one 7: e44826.

10. Holland C, Charil A, Csapo I, Liptak Z, Ichise M, et al. (2012) The relationship

between normal cerebral perfusion patterns and white matter lesion distribution

in 1,249 patients with multiple sclerosis. Journal of Neuroimaging.

11. Ashburner J, Neelin P, Collins D, Evans A, Friston K (1997) Incorporating prior

knowledge into image registration. Neuroimage 6: 344–352.

12. Avants B, Tustison N, Song G (2011). Advanced normalization tools (ants, v.

1.5).

13. Jenkinson M, Beckmann C, Behrens T, Woolrich M, Smith S (2012) Fsl.

NeuroImage 62: 782–790.

14. Sweeney E, Shinohara R, Shiee N, Mateen F, Chudgar A, et al. (2013) Oasis is
automated statistical inference for segmentation, with applications to multiple

sclerosis lesion segmentation in mri. NeuroImage: Clinical.

15. Sweeney E, Shinohara R, Shea C, Reich D, Crainiceanu C (2013) Automatic

lesion incidence estimation and detection in multiple sclerosis using multi-

sequence longitudinal mri. American Journal of Neuroradiology 34: 68–73.

16. McAuliffe M, Lalonde F, McGarry D, Gandler W, Csaky K, et al. (2001)
Medical image processing, analysis and visualization in clinical research. In:

Computer-Based Medical Systems, 2001. CBMS 2001. Proceedings. 14th IEEE

Symposium on. IEEE, pp. 381–386.

17. Lucas B, Bogovic J, Carass A, Bazin P, Prince J, et al. (2010) The java image
science toolkit (jist) for rapid prototyping and publishing of neuroimaging

software. Neuroinformatics 8: 5–17.

18. Sled J, Zijdenbos A, Evans A (1998) A nonparametric method for automatic

correction of intensity nonuniformity in mri data. Medical Imaging, IEEE
Transactions on 17: 87–97.

19. Carass A, Cuzzocreo J, Wheeler M, Bazin P, Resnick S, et al. (2011) Simple
paradigm for extracerebral tissue removal: Algorithm and analysis. NeuroImage

56: 1982–1992.

20. Friston K, Ashburner J, Kiebel S, Nichols T, Penny W (2011) Statistical

Parametric Mapping: The Analysis of Functional Brain Images: The Analysis of
Functional Brain Images. Academic Press.

21. Ceccarelli A, Jackson J, Tauhid S, Arora A, Gorky J, et al. (2012) The impact of
lesion in-painting and registration methods on voxel-based morphometry in

detecting regional cerebral gray matter atrophy in multiple sclerosis. American
Journal of Neuroradiology 33: 1579–1585.

22. Shiee N, Bazin PL, Cuzzocreo J, Reich D, Calabresi P, et al. (2008)
Topologically constrained segmentation of brain images with multiple sclerosis

lesions. Work Med Image Anal Mult Scler: 71–81.

23. Shiee N, Bazin PL, Ozturk A, Reich D, Calabresi P, et al. (2010) A topology-

preserving approach to the segmentation of brain images with multiple sclerosis
lesions. Neuroimage 49: 1524–1535.

24. Ardekani B, Guckemus S, Bachman A, Hoptman M, Wojtaszek M, et al. (2005)
Quantitative comparison of algorithms for inter-subject registration of 3d

volumetric brain mri scans. Journal of neuroscience methods 142: 67–76.

25. Klein A, Andersson J, Ardekani B, Ashburner J, Avants B, et al. (2009)

Evaluation of 14 nonlinear deformation algorithms applied to human brain mri
registration. Neuroimage 46: 786.

26. Agresti A (2014) Categorical data analysis. John Wiley & Sons.

Lesion Localization in Multiple Sclerosis

PLOS ONE | www.plosone.org 14 September 2014 | Volume 9 | Issue 9 | e107263



27. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuro-

image 38: 95–113.
28. Ashburner J, Friston K (2009) Computing average shaped tissue probability

templates. Neuroimage 45: 333–341.

29. Matthews L, Marasco R, Jenkinson M, Küker W, Luppe S, et al. (2013)
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