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Accuracy of imputation to infer unobserved APOE
epsilon alleles in genome-wide genotyping data
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Apolipoprotein E, encoded by APOE, is the main apoprotein for catabolism of chylomicrons and very low density lipoprotein.

Two common single-nucleotide polymorphisms (SNPs) in APOE, rs429358 and rs7412, determine the three epsilon alleles that

are established genetic risk factors for late-onset Alzheimer’s disease (AD), cerebral amyloid angiopathy, and intracerebral

hemorrhage (ICH). These two SNPs are not present in most commercially available genome-wide genotyping arrays and cannot

be inferred through imputation using HapMap reference panels. Therefore, these SNPs are often separately genotyped.

Introduction of reference panels compiled from the 1000 Genomes project has made imputation of these variants possible.

We compared the directly genotyped and imputed SNPs that define the APOE epsilon alleles to determine the accuracy of

imputation for inference of unobserved epsilon alleles. We utilized genome-wide genotype data obtained from two cohorts of

ICH and AD constituting subjects of European ancestry. Our data suggest that imputation is highly accurate, yields an

acceptable proportion of missing data that is non-differentially distributed across case and control groups, and generates

comparable results to genotyped data for hypothesis testing. Further, we explored the effect of imputation algorithm parameters

and demonstrated that customization of these parameters yields an improved balance between accuracy and missing data for

inferred genotypes.
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INTRODUCTION

Apolipoprotein E (APOE) is an essential mediator for catabolism of
chylomicrons and very low density lipoprotein remnants. There are
three major APOE isoforms, APOE2, APOE3, and APOE4, which
differ in amino acids 112 and 158, determined by single-nucleotide
polymorphisms (SNPs) rs429358 and rs7412, respectively.1 These
variants collectively constitute the epsilon (e) alleles e2, e3, and e4,
corresponding to the three human APOE isoforms. The e4 allele is
robustly associated with increased risk and decreased age of onset of
Alzheimer’s disease (AD), whereas e2 has a protective effect.2–5 These
alleles have also been implicated in other neurological and non-
neurological disorders, including cerebral amyloid angiopathy, lobar
intracerebral hemorrhage (ICH), and hyperlipidemia.6,7 However, the
absence of these SNPs from most genome-wide genotyping platforms,
coupled with the inability to impute them using HapMap-based
reference panels have precluded evaluation of their possible role in
other diseases in the context of genome-wide association studies. The
advent of comprehensive reference panels based on the 1000 Genomes
project has allowed imputation of the two variants in GWA data. In
fact, this approach has already been used in association studies
examining the epsilon alleles.8 However, the accuracy of imputation
and the distribution of missing data obtained using this approach

have not been systematically evaluated. In this study, we assessed the
accuracy of the 1000-Genome-based imputation for inferring
unobserved epsilon allele-defining SNPs, evaluated the distribution
of missing data after imputation across case and control groups, and
compared association testing in directly genotyped and imputed
variants.

MATERIALS AND METHODS
This analysis utilized data drawn from studies of ICH and AD. The ICH

data set comprised individuals of European ancestry recruited in the

Genetics of Cerebral Hemorrhage with Anticoagulation (GOCHA) study,

a multicenter prospective cohort study of primary ICH.9 Control subjects

were randomly selected from the same population using a clinic-based

sampling technique. Subjects with ICH were classified as lobar when the

hematoma originated in the cerebral cortico–subcortical junction, or non-

lobar ICH when the hemorrhage was located in deep supratentorial

structures or in infratentorial locations.9 The AD cohort consisted of

individuals from the Alzheimer’s disease neuroimaging initiative (ADNI),

a longitudinal study of individuals with mild cognitive impairment and

early AD, as well as cognitively normal older individuals.10 Both studies

were approved by the institutional review board and ethics committees of

participating institutions, and written informed consent was obtained from

all participants or their next of kin.
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For direct genotyping of the epsilon allele-defining variants in GOCHA,

DNA was extracted from blood, quantified using the Quant-iT Broad-Range

DNA Assay Kit (Invitrogen, Life Technologies, Carlsbad, CA, USA), and

normalized to the concentration of 30 ng/ml. rs429358 and rs7412 were

genotyped in two separate assays using the TaqMan SNP Genotyping Assay

(Life Technologies), and the epsilon alleles were determined; the T allele at both

SNPs identifies the e2 allele, whereas the C allele at both positions constitute

the e4 allele. The T allele at rs429358 and the C allele at rs7412 identify the e3
allele, which is the most common epsilon allele in general population. In

ADNI, direct genotyping was performed by PCR amplification, digestion of

PCR products using the HhaI restriction enzyme, and resolution of fragments

on 4% MetaPhor agarose gel.

Genome-wide genotyping was performed in both groups using Illumina

HumanHap610 quad array (San Diego, CA, USA) and variants were called by

BeadStudio v3.2. Genome-wide genotyping data of subjects enrolled in

GOCHA have been deposited in the database of genotypes and phenotypes

(http://tinyurl.com/qj5exm2). Quality control of the genome-wide data was

performed and samples with the following criteria were excluded: genotype call

rate o95%, genome-wide heterozygosity 434.5 or o31.5 (±3 SDs from the

mean), discordant clinical and genotypic gender, and pi-hat40.1875.11

Principal component analysis was performed incorporating genotypes from

Phase 3 HapMap populations. The majority of subjects clustered with the CEU

(Northern Europeans from Utah) and TSI (Tuscans from Italy) HapMap

populations. Population outliers were identified and removed by visual

inspection of principal component plots. SNP quality control filters were

genotyping rate o95%, minor allele frequency (MAF) o1%, case-control

differential missingness, and departure from the Hardy–Weinberg equilibrium

calculated in the entire data at P o1E-06.

Subsequently, IMPUTE2 v2.3.0 was used to impute unobserved SNPs based

on the 1000-Genome Phase I (Interim, release date June 2011) reference

panel.12,13 Imputation was initially completed using default parameters

(K parameter¼ 80, iteration number¼ 30) and the standard threshold of 0.9

for hard-calling the dosages for the epsilon allele-defining SNPs. In order to

evaluate the impact of imputation parameters and hard-calling threshold on

the accuracy and missingness rate, imputation was performed using a wide

range of hard-calling threshold, as well as two parameters of the imputation

algorithm, namely K parameter and number of iterations. These parameters are

key options that control the Markov chain Monte Carlo (MCMC) algorithm

used by IMPUTE2 program; the K parameter determines the number of

haplotypes used as templates for phasing the observed genotypes. The total

number of the MCMC algorithm iterations is controlled by the iteration

number option. Increasing these values is expected to improve imputation

accuracy but at the cost of longer analysis times. We also assessed the accuracy

of imputation in pre-phased genotypes generated using SHAPEIT v1.14

Agreement between imputed and genotyped SNPs was assessed by Cohen’s

kappa coefficient, and differential missingness across cases and controls was

evaluated using the w2-test. Logistic regression was utilized for association

testing, assuming additive genetic effects separately for the e2 and e4 alleles

(1degree-of-freedom trend test), and adjusting for age, sex and principal

components. Hypothesis testing involved the Wald test performed on the

regression parameters of each epsilon allele. Quality control, principal

component analysis, and association testing were performed using PLINK

v1.07 and R version 2.15.2.15

RESULTS

After quality control procedures and principal component analysis,
327 case and 250 control subjects in the GOCHA cohort, and 407 case
and 202 control subjects in the ADNI cohort were available for
analysis (Supplementary Table 1). As expected, the e3 allele was the
most common allele in case and control subjects combined, with
frequency of 76% and 65% in GOCHA and ADNI, respectively. Using
the default imputation parameters and hard-calling threshold of 0.9,
we were able to infer rs429358 in 88% and rs7412 in 90% of subjects
in GOCHA. In the ADNI cohort, these variants were ascertained in
81% and 86% of individuals, respectively. Similar to direct genotyping,

the imputation of rs429358 seems to be less efficient compared
with rs7412. In fact, the missingness of rs429358 was higher compared
with rs7412 in both GOCHA and ADNI, whereas it was statistically
significant only in ADNI (P¼ 0.056 vs P¼ 0.008). The rate of missing
genotype for none of the SNPs was significantly different between case
and control groups in both cohorts (P40.1). A high degree of
correlation between imputed and genotyped SNPs was observed in
GOCHA with kappa values of 0.94 for rs429358 and 0.93 for rs7412.
In ADNI, kappa coefficients were 0.92 and 0.9 for the two variants,
respectively (Table 1).

The results of imputation using customized parameters suggest that
the parameter K is inversely associated with the rate of missing
genotypes, but its effect on kappa is less consistent (Figure 1 and
Supplementary Figure 1). The iteration number of 100 yielded the
best results for both variants consistent across both cohorts. Applying
the default imputation parameters with the hard-calling threshold of
0.8 reduced the missing rate from about 13–14% to 7–9% in
GOCHA, whereas its effect on correlation was relatively small (0.93
vs 0.91). The rate of missing genotypes and kappa coefficient changed
to a similar degree when testing in ADNI. Evaluating the imputation
in the pre-phased data with the default hard-calling threshold, we
observed reduction in the missing rate to 5–9% in the two cohorts,
but kappa impaired (ranging between 0.81 and 0.89).

Association testing yielded similar effect estimates and P-values for
the genotyped and imputed alleles across both cohorts (Table 2).
Though underpowered to detect the known effects of the e2 and e4
alleles in ICH (40% and 62% power, respectively), the results for the
e4 allele are compatible with previous reports.6 The association testing
in the AD cohort demonstrated increased risk of AD in individuals
carrying the e4 allele. The odds ratio for the genotyped e4 was 4 and
3.51 for the imputed allele, with the P-value of 7.62E-16 and 7.12E-10,
respectively.

DISCUSSION

The APOE epsilon alleles have a potent role in the risk of several
complex diseases and have been implicated in an extraordinary range
of additional disorders.16 Despite the accumulation of genome-wide
array data for many of these phenotypes, it has been difficult to

Table 1 Correlation of imputed and directly genotyped APOE epsilon

allele-defining SNPs

Genotyped Genotyped

rs429358 rs7412

Frequency CC CT TT Total Frequency CC CT TT Total

Imputed

GOCHAa

CC 6 1 0 7 CC 442 5 0 447

CT 2 100 2 104 CT 3 62 0 65

TT 1 5 391 397 TT 0 1 6 7

Total 9 106 393 508 Total 445 68 6 519

ADNIb

CC 40 0 0 40 CC 487 1 0 488

CT 5 160 2 167 CT 6 32 0 38

TT 0 17 268 285 TT 0 0 1 1

Total 45 177 270 492 Total 493 33 1 527

aGenetics of cerebral hemorrhage on anticoagulation study.
bAlzheimer’s disease neuroimaging initiative.
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Figure 1 Efficiency and accuracy of imputation of APOE epsilon allele-defining SNPs in the intracerebral hemorrhage cohort. (a, b) Correlation coefficient

between genotyped and imputed rs429358 and rs7412 across a range of K parameter, iteration number, and hard-call threshold values. The corresponding

missing rates are plotted in the bottom panels. K, K parameter.

Table 2 Association of APOE epsilon alleles with case status

GOCHAa ADNIb

All ICHc Lobar ICH Alzheimer’s disease

Alleles OR (95% CI) P OR (95% CI) P OR (95% CI) P

e2 genotyped 1.00 (0.67–1.51) 0.99 1.24 (0.79–1.95) 0.33 0.62 (0.35–1.14) 0.12

e2 imputed 1.15 (0.73–1.83) 0.55 1.46 (0.88–2.44) 0.14 0.67 (0.34–1.33) 0.25

e4 genotyped 1.25 (0.90–1.75) 0.18 1.43 (0.99–2.07) 0.056 4.00 (2.88–5.66) 7.62E-16

e4 imputed 1.37 (0.91–2.09) 0.13 1.57 (0.99–2.50) 0.056 3.51 (2.39–5.32) 7.12E-10

Abbreviations: CI, confidence interval; ICH, intracerebral hemorrhage; OR, odds ratio.
aGenetics of cerebral hemorrhage on anticoagulation study.
bAlzheimer’s disease neuroimaging initiative.
cIntracerebral hemorrhage.
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confirm the effect of epsilon alleles because of limitations in the
coverage of array designs. Most of the genome-wide genotyping arrays
that have been widely used in GWA studies so far do not include
rs429358 and rs7412, owing to relatively higher failure of genotyping,
especially for rs429358, and limited contribution of these SNPs to
the imputation of the entire locus, which has a complex linkage
disequilibrium structure. In addition, direct genotyping of these SNPs
may not be feasible owing to logistical issues such as inadequate DNA
samples, or because of increase in time and costs. Our analysis
demonstrates that the epsilon allele-defining variants can be imputed
successfully by taking advantage of the reference panel based on the
1000 Genomes project. Imputation can be performed with high
accuracy, an acceptable proportion of missing data, and absence of
differential missingness in inferred genotypes across case and control
groups. This provides the opportunity for complementary analysis on
currently available GWA data without the need to perform direct
genotyping. Studies have already begun to implement imputation to
infer epsilon alleles and it is expected that further studies will be
performed using this approach.

Customization of imputation parameters and hard-call threshold
can yield a lower proportion of missing data without significant
decrease in accuracy. Although a proportion of genotypes are missed
with imputation, causing variable decreases in power, this is not
expected to yield false-positive results owing to information bias as
the missing genotypes are evenly distributed across case and control
groups. Nevertheless, it remains crucial to ensure that the missing
genotypes are symmetrically distributed across the study groups
before proceeding to association testing, especially when analyzing
data obtained from subjects with relatively higher frequency of the
risk alleles.

We used the 1000-Genome Phase I Interim reference panel.
It is demonstrated that imputation performance improves with the
latest release, Phase I integrated haplotypes. However, the gain in
imputation performance is mainly observed for SNPs with
MAFo5%, and particularly those with MAFo2%, providing only
a marginal impact in this particular imputation scenario.17 Although
this study was performed in two relatively small data sets, similar
results were obtained. Further analyses employing larger samples
could provide broader insight into this topic.
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