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Gene expression in higher organisms is thought to be regulated by
a complex network of transcription factor binding and chromatin
modifications, yet the relative importance of these two factors
remains a matter of debate. Here, we show that a computational
approach allows surprisingly accurate prediction of histone mod-
ifications solely from knowledge of transcription factor binding
both at promoters and at potential distal regulatory elements. This
accuracy significantly and substantially exceeds what could be
achieved by using DNA sequence as an input feature. Remark-
ably, we show that transcription factor binding enables strikingly
accurate predictions across different cell lines. Analysis of the
relative importance of specific transcription factors as predictors of
specific histone marks recapitulated known interactions between
transcription factors and histone modifiers. Our results demon-
strate that reported associations between histone marks and gene
expression may be indirect effects caused by interactions between
transcription factors and histone-modifying complexes.

epigenetics | gene regulation

Gene expression is the fundamental process through which
genetic information is dynamically and specifically deployed

within cells. It is, therefore, of vital importance to all organisms
and tightly controlled at both the transcriptional and post-
transcriptional levels. Consequently, the elucidation of gene-
regulatory mechanisms has been a central focus of biological
research, with the area of transcriptional regulation having
attracted intense attention over the last four decades.
The canonical players in transcriptional regulation are

sequence-specific DNA-binding transcription factors (TFs)
that modulate gene expression by facilitating or inhibiting the
recruitment of RNA polymerase to gene promoters (1). This
paradigm has provided a powerful unifying mechanism for
transcription, validated by a large amount of experimental evi-
dence over the last five decades (see, e.g., ref. 2). Further evi-
dence of the power of TFs to act as master regulators of gene
expression and cell identity is illustrated by their ability to repro-
gram differentiated fibroblasts into embryonic stem (ES) cells (3).
Research in the field of epigenetics has, however, suggested an

alternative view that places posttranslational modifications of the
histone subunits of nucleosomes in a central role of transcrip-
tional regulation. The finding that particular combinations of
histone modifications are associated with active and repressed
gene promoters (4) has led to suggestions that a histone code
controls gene expression (5, 6). Support for this hypothesis has
come from the recent application of bioinformatic approaches to
whole-genome measurements of both histone modifications and
gene expression, which have demonstrated that gene expression
can be predicted from histone modifications (7, 8). This model
has generated intense interest and is part of the stimulation
behind the search for epigenetic causes of human disease (9).
However, although histone modifications likely play key roles

in gene expression, significant uncertainty remains as to the
relative importance of chromatin-based and TF-based mecha-
nisms of regulation. Histone modifications are themselves tightly

regulated and exhibit dynamic behavior during cellular processes
(10). Several studies have also delineated direct interactions
between histone-modifying enzymes and TFs (11). Most impor-
tantly, currently known mechanisms of histone modification
deposition are not sequence specific, leading some to caution
against overinterpreting correlative evidence for a regulatory
role of a histone code (12, 13).
In this work, we exploit the richness of the recently released

Encyclopedia of DNA Elements (ENCODE) datasets (14) to
interrogate the relationship between TF binding and histone
modifications in a large-scale computational experiment. We
find that DNA sequence is remarkably predictive of the presence
of histone modifications at promoters in three different cell lines.
By comparative analysis using TF chromatin immunoprecipita-
tion followed by sequencing (ChIP-Seq) data as input, we find
that histone modifications can be predicted significantly more
accurately from TF-binding patterns than from DNA sequence.
We also show that the predictive power of TF-binding data
extends to predict histone modifications genome-wide on a large
dataset of putative functional loci. Furthermore, TF-based pre-
dictors trained on data from one cell line accurately predict
histone modifications in a different cell line. Our use of statistical
modeling affords insights into the relative predictive power of
each TF, recapitulating known interactions between TFs and
histone-modifying enzymes. Our results show that the correlative
evidence for a regulatory role of chromatin is equally well
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explained as an indirect effect of TF binding and suggest that
interactions between TFs and histone-modifying enzymes might
be important in driving the deposition of histone modifications.

Results
To computationally explore the mechanisms responsible for the
deposition of histone marks in mammalian genomes, we made
use of the recently released ENCODE datasets (14). To focus on
a biologically homogenous sample population of genomic ele-
ments, we initially examined which factors might determine
histone modification patterns at gene promoters. Briefly, we
defined 29,828 unique protein-coding transcription start sites
(TSSs) from the ENSEMBL database and assigned histone
modifications to each of these based on ChIP-Seq data for the
three ENCODE tier 1 cell lines (H1 ES cells, K562 eryth-
roleukemia cells, and GM12878 lymphoblastoid cells). Each TSS
was assigned a positive label for a given histone mark if a ChIP-
Seq peak was detected within 100 bp; if not, it was assigned
a negative label. The size of the window was chosen to capture
promoter proximal histone marks, which are most likely to in-
teract with transcription. We tested promoter-associated marks
that could be assigned to ≥5% of TSSs in at least one cell line.
Out of the 10 histone marks assayed in all tier I ENCODE cell
lines, this resulted in the following set of marks: H3K4me3,
H3K4me2, H3K4me1, H3K9ac, H3K27ac, and H3K27me3.
H3K4me1 was present above threshold only in the K562 cell line
(6.1% of TSSs). We then further discarded H3K4me2 as it is
primarily found flanking H3K4me3 at promoters (4) (Table S1).
We used logistic regression (LR) to investigate which factors
might determine histone modification patterns at these pro-
moters by testing their ability to predict the presence of each
histone modification independently.

DNA Sequence Predicts Presence of Histone Marks. Initially, we ex-
amined whether histone modifications might be predictable from
DNA sequence alone. We therefore extracted sequence features
(k-mers) from genomic regions of ±2 kb from the TSS by
counting the frequency of all possible k letter words in the A, C,
G, T alphabet and merging reverse complement pairs to prevent
strand biases; we used k = 6 in our analysis as in ref. 15.
We then trained LR classifiers on these 6-mer counts using

a random subset of 70% of the TSSs for each histone modifi-
cation and cell line. Each classifier was then tested on its ability
to predict the status of the remaining 30% of TSSs and assessed

by examination of receiver operator characteristic (ROC) curves,
which plot the true-positive rate vs. the false-positive rate. To
test the stability of these predictions, we repeated this procedure
10 times for each mark and cell line, computing the mean and SE
in the area under the curve (AUC) for these 10 iterations. The
AUC scores for predictions of all histone marks were very high
in H1 cells, ranging from 0.806 for H3K27me3 to 0.918 for
H3K4me3 (Fig. 1 and Table 1). Sequence-based predictions of
histone marks in the other two cell lines also gave high AUCs
(Fig. S1 and Table S2).
The ability of DNA sequence to predict histone marks was

independent of the window size used to define TSSs as marked
by a particular modification, as high AUCs were observed at
multiple window sizes (Table S3). We obtained similar levels of
accuracy for a selection of marks in H1 cells using a 6-mer
support vector machine in place of LR (Fig. S2), suggesting that
the predictability of histone modification patterns from genomic
sequence is robust and independent of the method used.

TF ChIP-Seq Significantly Improves Prediction of Histone Marks over
DNA Sequence. A plausible explanation for the predictability of
histone modifications from sequence is that this may be a
by-product of histone modifications being predictable from
sequence-specific TFs. To test this, we constructed histone
modification classifiers based upon data from TF ChIP-Seq
experiments. TF ChIP-Seq data were downloaded for the three cell
lines and filtered to remove proteins that lacked sequence-specific
DNA-binding TF activity or that possessed histone-modifying ac-
tivity (SI Materials and Methods). This resulted in data on 30 TFs
assayed in H1 cells, 45 in K562, and 51 in GM12878. Of these, 17
TFs were assayed in all three cell lines. A complete list of all TFs
used is given in Dataset S1. We tested the ability of TF-binding
locations to predict the histone modification status of promoters by
calculating input-normalized read count values for a window ±2 kb
from each TSS. These read counts were then used as input features
to train LR classifiers on 10 samples of 70% of the TSSs and tested
on the remaining 30% of TSSs as above.
These TF-based classifiers predicted the histone modification

status of TSSs with a high degree of accuracy, irrespective of the
window size chosen for defining positive regions (Fig. 2A, Fig.
S3, Table 1, and Tables S3 and S4). A quantitative comparison of
sequence and TF-based predictions demonstrated that TF LR
always significantly outperformed sequence-based LR models
(Fig. 2B, P ≤ 10−5 rank-sum test). All points fall significantly

Fig. 1. Histone modifications can be predicted from DNA sequence. (A) Representative ROC curves of the performance of k-mer LR-based classifiers
for histone modifications at gene promoters in H1 cells. The AUC for each task is indicated in the legend. The ROC curves shown are for a single iteration of
a 70–30 split of the data. (B) H3K4me3 profile at test set promoters in H1 cells. Shown on the Left is the mean H3K4me3 profile at promoters predicted to be
positive (green) and negative (red) for H3K4me3 in a single iteration of the analysis. The cutoff used was P = 0.5. The panel on the Right shows the profile at
all of the promoters in the test set ordered by their predicted probability of being marked by H3K4me3 (white, low; red, high).
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above the diagonal line (equal predictive power), indicating that
TFs are considerably more predictive of histone modifications
than sequence. (Notice that prediction of H3K27me3 was carried
out only in H1 cells, as this mark was not present at a sufficiently
high number of TSSs in the other cell lines to meet our inclusion
criteria.) TF-based models also resulted in a greater separation
between the observed histone modification profiles at predicted
positive and negative TSSs when compared to sequence-based
models (Fig. 2C). Our results, therefore, demonstrate that the
binding patterns of TFs accurately predict the histone modifi-
cation status of mammalian gene promoters.

TF ChIP-Seq Enables Predictions Across Different Cell Lines. Histone
modifications exhibit dynamic and cell-specific patterns that
clearly cannot be explained on the basis of DNA sequence
content. TFs do exhibit cell type specificity and, given the
excellent performance of TF-based classifiers in single-cell lines,
we tested to what extent the TF-based classifiers trained on data
from one cell line (e.g., H1) can predict histone markings on
another cell line (e.g., K562).
We therefore generated LR-based classifiers on the data for

the 17 TFs that were assayed in all three cell lines. These clas-
sifiers were each able to accurately predict the histone modifi-
cation status of gene promoters in the cell type they were trained
upon; however, in each case, this was to a lower degree than
classifiers trained on the full set of TFs available for that cell
line (Fig. 3, diagonal figures). Therefore, the inclusion of more
complete information on TF-binding patterns in predictive
models improves the performance of these models, as would be
expected if TF-binding patterns were important in determining
the histone modification status of promoters.
The classifiers based upon the common TFs were then tested

for the ability to predict the histone modification status across
cell types. Although the cross-cell predictions produced reduced

performance, we observed striking accuracy in the prediction of
histone marks based on classifiers trained in a separate cell type
(Fig. 3 for H3K4me3 and Fig. S4 for other marks). The reduced
performance of cross-cell predictors might suggest that cell type-
specific TFs play a strong role in determining histone modifi-
cation profiles. This fact may be particularly prominent in the
prediction of GM12878 marks from K562-trained classifiers
where the greatest drop in performance was noted. We were
unable to perform this analysis for H3K27me3, a repressive mark
associated with Polycomb complexes, as it occupies large diffuse
chromatin domains in nonstem cells (16); this resulted in too few
peaks being called in either GM12878 or K562 to meet our
inclusion criteria.
Overall, the results of our cross-cell analysis support our hy-

pothesis by demonstrating the ability of data on TF-binding
profiles to predict the histone modification status of mammalian
gene promoters.

TFs Predictive Power Recapitulates Known TF–Histone Interactions.
LR modeling produces a vector of weights determining the
sensitivity of the histone mark prediction to changes in the TF
input. Analysis of these weights revealed several features that
corroborated reported interactions between TFs and histone-
modifying enzymes (Fig. 4 and Fig. S5). In H1 ES cells, SP4 was
the highest weighted predictor of H3K4me3 marking and the
presence of its paralogue specificity protein 1 (SP1) was also
positively predictive of H3K4me3. These TFs were also positively
predictive of the other two active marks analyzed (H3K9ac and
H3K27ac), and SP1 received positive weights in predicting all
three active marks in K562 and GM12878 cells (Fig. S5). SP1
binding on human chromosomes 21 and 22 has previously been
associated with CpG island promoters (17), which are gener-
ally enriched for H3K4me3 (18). The top predictive TF for
H3K27me3 in H1 cells, transcription factor 12 (TCF12), has

Table 1. Predictions of histone modification presence in H1 cells (mean AUC ± SE)

Mark Sequence promoters TF promoters TF DNase loci TF Enhancers

H3K4me1 N.D. N.D. 0.854 (±0.001) 0.842 (±0.003)
H3K4me3 0.918 (±0.001) 0.950 (±0.001) 0.974 (±0.001) 0.962 (±0.001)
H3K9ac 0.867 (±0.001) 0.921 (±0.001) 0.976 (±0.001) 0.961 (±0.001)
H3K27ac 0.828 (±0.002) 0.909 (±0.001) 0.968 (±0.001) 0.950 (±0.001)
H3K27me3 0.808 (±0.002) 0.877 (±0.002) 0.916 (±0.001) 0.918 (±0.002)

Fig. 2. Histone modifications can be predicted from TF-binding data. (A) Representative ROC curves of the performance of TF ChIP-Seq LR-based classifiers
for histone modifications at gene promoters in H1 cells. The AUC for each task is indicated in the legend. The ROC curves shown are for a single iteration of
a 70–30 split of the data. (B) TF-binding prediction outperforms DNA sequence. Shown is a scatter plot comparing the AUCs achieved from TF-binding LR
classifiers (y axis) and DNA sequence LR classifiers (x axis). Each point represents the mean of 10 computational experiments for one histone mark in one cell
line. (C) H3K9ac profile at test set promoters. Shown on the Left is the mean H3K9ac profile at test set promoters predicted to be positive (green) and
negative (red) for H3K9ac. Both predictions were performed on the same set of promoters. The dashed lines are predictions from sequence, and the solid lines
are predictions from TFs. Notice the higher average of TF predicted positive marks. On the Right are heat maps of H3K9ac levels (white, low; red, high) at the
individual promoters ordered by predicted positive probability (increasing along the y axis) as provided by sequence LR (Center) and by TF LR (Right).
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recently been reported as a repressor of E-cadherin in association
with the H3K27me3 methylase enhancer of zeste homologue 2
(EZH2) (19).
Interestingly, the core pluripotency factor NANOG was

predictive of the activation-associated marks in H1 cells
and POU5F1 (OCT4) was predictive of H3K9ac and H3K27ac,
consistent with their roles in specifying ES cell identity (3). In
K562 cells, the oncogene CMYC was the second strongest pre-
dictor of activation-associated histone marks consistent with this
cancer cell line being derived from an erythroleukemia (20).
Two lymphocyte-specific TFs, nuclear factor of activated T-cells,
calcineurin-dependent 1 (NFATC1) and interferon regulatory
factor 4 (IRF4), were the strongest predictors of activation-
associated marked promoters in GM12878 lymphoblastoid cells.
IRF4 in particular has been shown to be critical for the de-
velopment of B cells from which lymphoblastoid cell lines
are derived (21). Although NFATC1 is generally regarded as a
T-cell–specific factor, its ablation in B cells affects both their
proliferation and differentiation (22). We also note that these
key predictors of histone modifications in GM12878 cells were
not assayed in K562 cells, potentially explaining the drop in
cross-cell predictive performance of classifiers trained in K562
cells and tested on GM12878 cells (Fig. 3). Taken together, these
results suggest that cell type-specific TFs are strong predictors of
histone modifications in the analyzed cell lines, consistent with the
cell type-specific distribution of histone marks observed in epi-
genomic profiling studies.

TF-Binding Patterns Predict Histone Modifications Genome-Wide. To
comprehensively test the capacity of TF-binding patterns to
predict histone modification states, we tested our predictive
approach on a diverse set of 1.2 million functional elements
defined by the ENCODE consortium using DNase hypersensi-
tivity assays (14). This set includes the total promoters and pu-
tative distal regulatory elements defined from 125 different cell
lines. H3K4me1 was also included in this analysis as it is regarded
as a defining mark of enhancers. The strong predictive power of
TFs for histone modifications was confirmed in this large-scale
analysis, with TF LR achieving AUCs ranging from 0.862 to 0.970
in H1 cells (Table 1 and Tables S5 and S6).
To test whether this performance reflected the ability of TFs

to predict histone marks at distal regulatory elements as well
as TSSs, we sought to perform an analysis on a defined set
of enhancers. Determining a suitable dataset of enhancers is
nontrivial as enhancers are frequently defined in terms of the

presence of histone marks (23). We used a dataset of ∼40,000
loci defined by the FANTOM5 consortium based on the pres-
ence of bidirectional capped transcripts in a set of 567 tissue and
cell samples (24). TF-based LR classifiers were able to predict
the histone modification status of these enhancers with an ac-
curacy similar to that for TSSs and DNase sites (Table 1 and
Tables S5 and S6). Surprisingly, we detected the promoter-
associated mark H3K4me3 at a proportion of these elements in
H1 cells, suggesting that some of them may function as novel
promoters rather than enhancers. Our results therefore demon-
strate that the binding locations of TFs accurately predict the
modification status of histones genome-wide.

Discussion
The regulation of transcription is fundamental to the control of
the genetic information encoded in cellular DNA. Recent atten-
tion has focused on a potential direct role for histone mod-
ifications in regulating gene expression based on their correlation
with active or inactive promoters. By demonstrating that histone
modifications can be predicted from the binding patterns of TFs,
our results suggest that such correlations might be equally well
explained as indirect effects of interactions between TFs and
chromatin-modifying enzymes.
Descriptive analyses of ENCODE data have revealed signifi-

cant overlaps between TF-binding loci and histone marks (14).
However, to our knowledge, a quantification of the power of TFs
as predictors of histone modifications was not attempted. The
difference between descriptive and predictive analyses is im-
portant: for example, it would be impossible to assess whether
cross-cell line predictions are possible within the limits of a de-
scriptive analysis. Predictive analyses were performed as part of
ENCODE and other studies but have focused on predicting TF
binding (15) or gene expression levels (7, 8) from histone mod-
ification data. Although these predictive analyses are valuable,
such models do not provide mechanistic explanations for the
specificity of gene expression, in the way that TF-based regula-
tion does (1). Intriguingly, one analysis of the ENCODE data
suggested that the addition of histone modification data resulted
in only minor improvements to the prediction of gene expression
levels based on TF-binding data (25). Furthermore, a recent
study demonstrated that depletion of the canonical activating
mark H3K4me3 has only a modest effect on transcription,

Fig. 3. TF-binding data can predict histone marks across cell lines. Shown
are ROC curves for TF-binding LR classifiers for H3K4me3. Classifiers were
trained on the cell line indicated by the row and tested on each of the three
cell lines (indicated by the column). The AUC is given on the plot in each case.

Fig. 4. TF weights uncover histone modifier–TF interactions. Heat map of
LR weights from the prediction of histone modifications from TF-binding
data in H1 cells. Each cell represents the weight assigned to a particular TF in
predicting the occurrence of a particular histone mark. Both the rows and
columns were subject to hierarchical clustering.
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weakening the case for the causative role of this mark in tran-
scription (26). It is therefore important to establish whether
alternative explanatory variables may underlie the association
between gene expression and histone modifications. Our results
provide such an alternative explanation by demonstrating that
histone modifications can themselves be predicted with high
accuracy from TF binding genome-wide. We also note that DNA
sequence has been shown to be predictive of histone mod-
ifications in previous studies (27, 28), but the comparative pre-
dictive power of TF-binding data were not tested.
An important benefit of our predictive analysis is the ability to

quantify the relative importance of different TFs in predicting
chromatin state. We find that highly predictive TFs are often
cell-specific TFs that had been previously implicated in mecha-
nisms of histone modification. Several examples of previously
reported interactions between TFs and the epigenetic machinery
are automatically inferred by our approach. For example, the
H3K4me3 trimethylating mixed-lineage leukemia (MLL) com-
plex has been shown to be recruited to the β-Globin locus
through interaction with NFE2 (29) and is also reported to in-
teract with E2F6 (30, 31) and the estrogen receptor (32, 33).
Furthermore, examples of adaptor proteins such as SIN3A that
bridge TFs to repressive complexes containing histone deacety-
lases (HDACs) have also been described (34). MLL interaction
with E2F factors has also been suggested to be mediated through
HCF-1 (35), and a computational study (36) has recently asso-
ciated E2F with the SET1 methyltransferase subunit CFP1. A
striking recent example of TF–histone interaction is the finding
that insertion of the RE1-silencing transcription factor (REST)
binding motif was capable of inducing ectopically H3K27me3 in
mouse ES cells (37). In our analysis, we find REST is positively
predictive of H3K27me3 localization, albeit weakly. Instead, we
find that binding of TCF12, a TF that has recently been reported
to interact with the H3K27me3 methyltransferase EZH2 (19),
is the most predictive of H3K27me3 deposition, potentially
reflecting differences between human and mouse ES cells. It
is remarkable that our model was able to recapitulate such
knowledge directly from binding data.
Family- and population-level genetic analyses have described

the association of DNA sequence variants with altered histone
modification patterns (38–40), suggesting a causal role of
sequence-specific factors in determining chromatin state. The
genetic inheritance of DNA sequence variants has also been
suggested to be the primary cause of allele-specific variations in
levels of DNA methylation (41). These analyses implicate the

alteration in sequence-specific TF binding by DNA sequence
variants as the primary cause of allele-specific variation in epi-
genetic state in mammalian genomes. An analysis of a handful
of mouse promoters in ES cells has also demonstrated that
DNA methylation state is primarily determined by the presence
of binding sites for sequence-specific TFs (42). Taken together,
these reports provide further support for the simplest interpretation
of our work, that interactions between TFs and the epigenetic
machinery, whether direct or indirect, play central roles in de-
termining epigenetic state in mammalian genomes.
In summary, our results demonstrate a remarkable level of

prediction of epigenetic marks from TF-binding profiles. Al-
though such analyses do not demonstrate a causative role of TFs
in determining epigenetic state in the genome, they show that
previously reported associations between chromatin state and
expression may be indirect effects. Our results confirm the need
for caution in the mechanistic interpretation of genome-wide
analyses (13), and provide useful pointers toward the complex
biochemical pathways regulating gene expression.

Materials and Methods
Datasets Used. Datasets were downloaded from the Encyclopedia of DNA
Elements UCSC repository at https://genome.ucsc.edu/ENCODE/. A complete
list of all of the identifiers of the datasets used, as well as scripts to recreate
our analysis, are available upon request. TSSs were retrieved from ENSEMBL
using the human reference genome hg19. A detailed description of the
pipeline used is given in SI Materials and Methods.

Statistical Methods. Throughout the paper, we used logistic regression as the
classifier of choice due to its simplicity and interpretability. Logistic regression
assigns the label 1 to an output with probability given by the logistic function
of the input x as follows:

pðt = 1jx,wÞ= 1
1+ exp½−wTx�,

where w is a vector of weights of the same dimensionality of the input data.
The weights were learnt by maximum likelihood on a training set; through-
out the paper, we used random splits of the data into 70% training and
30% testing, and reported only results on test data.
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