
Antiinfective therapy with a small molecule inhibitor of
Staphylococcus aureus sortase
Jie Zhanga,1, Hongchuan Liua,1, Kongkai Zhub,1, Shouzhe Gonga, Shaynoor Dramsic,d, Ya-Ting Wangc, Jiafei Lia,
Feifei Chena, Ruihan Zhangb, Lu Zhoue, Lefu Lana, Hualiang Jiangb, Olaf Schneewindc,2, Cheng Luob,2,
and Cai-Guang Yanga,2

aDepartment of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; bState Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; cDepartment of Microbiology,
The University of Chicago, Chicago, IL 60637; dInstitut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Centre National de la Recherche
Scientifique Équipe de Recherche Labellisée 3526, 75724 Paris, France; and eDepartment of Medicinal Chemistry, School of Pharmacy, Fudan University,
Shanghai 201203, China

Edited by Hidde L. Ploegh, Whitehead Institute for Biomedical Research, Cambridge, MA, and accepted by the Editorial Board July 30, 2014 (received for
review May 9, 2014)

Methicillin-resistant Staphylococcus aureus (MRSA) is the most fre-
quent cause of hospital-acquired infection, which manifests as sur-
gical site infections, bacteremia, and sepsis. Due to drug-resistance,
prophylaxis of MRSA infection with antibiotics frequently fails or
incites nosocomial diseases such as Clostridium difficile infection.
Sortase A is a transpeptidase that anchors surface proteins in the
envelope of S. aureus, and sortase mutants are unable to cause
bacteremia or sepsis in mice. Here we used virtual screening and
optimization of inhibitor structure to identify 3-(4-pyridinyl)-6-(2-
sodiumsulfonatephenyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole and
related compounds, which block sortase activity in vitro and in
vivo. Sortase inhibitors do not affect in vitro staphylococcal growth
yet protect mice against lethal S. aureus bacteremia. Thus, sortase
inhibitors may be useful as antiinfective therapy to prevent hospi-
tal-acquired S. aureus infection in high-risk patients without the side
effects of antibiotics.

nosocomial infection | LPXTG motif | antivirulence | computational
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The gram-positive bacterium Staphylococcus aureus colonizes
the human skin and nares yet also causes invasive diseases

such as skin and soft tissue infections, osteomyelitis, pneumonia,
bacteremia, sepsis, and endocarditis (1). Methicillin-resistant
S. aureus (MRSA) acquired resistance against many different
drugs, including β-lactam, cephalosporin, fluoroquinolone, ami-
noglycoside, tetracycline, macrolide, trimethoprim-sulfamethox-
azole, and vancomycin antibiotics (2). In the United States,
MRSA isolates are responsible for >50% of S. aureus infections
in hospitals and long-term care facilities (3). Individuals at high
risk of MRSA infection include very-low-birth-weight neonates,
elderly, and patients with indwelling catheters, endotracheal in-
tubation, medical implantation of foreign bodies (prosthetic
joints, implants and heart valves), trauma, surgical procedures,
diabetes, dialysis, and immunosuppressive or cancer therapy
(4). Antibiotic prophylaxis is designed to mitigate the risk of
S. aureus infection, especially in surgical patients; however, this
frequently fails due to drug resistance (5). Importantly, anti-
biotic therapy suppresses human microbiota and promotes
Clostridium difficile infection, which is also associated with in-
creased morbidity and mortality (6, 7). Several trials for vac-
cines and immune therapeutics were designed to prevent
MRSA infection in hospital settings; these efforts have thus far
failed to meet their study end points (4).
Surface proteins of S. aureus are secreted as precursors with

C-terminal sorting signals that are cleaved by sortase A (SrtA)
between the threonine (T) and the glycine (G) residues of their
LPXTG motif (8, 9). The active site cysteine residue of sortase
forms an acyl enzyme intermediate that is relieved by the nu-
cleophilic attack of the amino group (pentaglycine crossbridge)
in peptidoglycan synthesis precursors (10). Surface proteins

attached to peptidoglycan precursors are subsequently incor-
porated into the cell wall envelope and displayed on the staph-
ylococcal surface (9). Genome sequencing revealed that all S.
aureus isolates encode 17–21 surface proteins with LPXTG
sorting signals, which fulfill diverse functions during the infectious
process (11). SrtA mutants cannot assemble surface proteins into
their envelope and are unable to form abscess lesions in organ
tissues or cause lethal bacteremia when inoculated into the
bloodstream of mice (12, 13). In contrast, mutations that abrogate
the expression of secreted virulence factors may cause attenuation
but do not abrogate the ability of S. aureus to cause infectious
diseases (12).
We reasoned that small molecule inhibitors blocking SrtA may

be useful as antiinfectives to prevent S. aureus infection without
affecting the growth of other bacteria. If so, such compounds
could be used to reduce the incidence of MRSA infections
without the side effects of antibiotics.

Results
Identifying Sortase Inhibitors. We used the structural coordinates
from the SrtA substrate complex [SrtA/LPAT*; Protein Data
Bank (PDB) ID code 2KID] to model the enzyme active site as
a target for computational screening (14). The scaffold of top-
sentin A, a natural product that inhibits sortase A in vitro (15),
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was used as a model ligand. Scaffold hopping and molecular
docking were combined for the virtual screening of the drug-like
Specs database (www.specs.net), which contains about 300,000
compounds, for compounds that bind the active site (Fig. 1).
After virtual screening, 105 compounds were selected for exper-
imental validation using purified recombinant sortase (SrtAΔN24)
(10). The Km of sortase-catalyzed hydrolysis of an internally
quenched fluorescent peptide substrate (abz-LPATG-dnp) was
17.5 μM, and percent inhibition of sortase activity was measured at
100 μM compound concentration (Fig. S1 A and B). Compounds
with ≥50% inhibition were analyzed with an orthogonal HPLC
assay to quantify SrtAΔN24 cleavage of abz-LPATG-dnp substrate,
and IC50 values were calculated. The hit compound 6a exhibited an
IC50 of 37.7 μM for S. aureus sortase (Fig. 1 and Table S1). To
improve the inhibitory activity, we performed synthetic optimi-
zation of the chemical structure of compound 6a (Scheme S1)
(16). This synthesis afforded compound 6e [3-(4-pyridinyl)-6-(2-
sodiumsulfonatephenyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole]
with an IC50 of 9.3 μM (Fig. 2A), which represents a fourfold
improvement over the screening hit, compound 6a (Fig. 1 and
Table S1).

Inhibition of Sortase-Catalyzed Transpeptidation. Sortase-mediated
anchoring of surface proteins involves a transpeptidation re-
action (17) but is not associated with the release of cleaved
surface proteins into the extracellular medium (18). We there-
fore asked whether the inhibitors identified above also block
sortase-catalyzed transpeptidation. SrtAΔN24 cleavage of the abz-
LPATG-dnp peptide and amide bond formation with the NH2-
Gly3 nucleophile generates products abz-LPAT-Gly3 and G-dnp,
which can be quantified by HPLC and MS (Fig. S2) (19).
Compound 6e is active in a dose-dependent manner with 10.8–
93.6% inhibition at 6.25–50 μM, respectively (Fig. 2B). The
calculated IC50 (17.7 μM) is in agreement with the IC50 (9.3 μM)
derived from the fluorescence-based assay (Fig. S1C). Surface
proteins IsdA and SasX are expressed by Chinese MRSA isolates
(20). Incubation of affinity-purified IsdA64–323 (P) or SasX30–178
precursor (P) with purified SrtAΔN24 and NH2-Gly3 nucleophile
resulted in sorting signal cleavage to yield the transpeptidation

product (M), which could be blocked with the noncompetitive
inhibitor N,N,N-trimethyl-2-(methylsulfonylthio)ethanaminium
chloride (MTSET) (Fig. 2C and Fig. S3) (21). Sortase cleavage of
sorting signals was blocked in a dose-dependent manner by com-
pounds 6h and 6e, but not by compound 6b (Fig. 2C and Fig. S3).

Fig. 1. Screening and optimization of sortase inhibitors. Structure-based in
silico screening of small molecule library for compounds that bind the active
site of S. aureus SrtA identifies hit compound 6a (IC50 value in parentheses).
Synthetic optimization of the 3,6-disubstituted triazolothiadiazole scaffold
generated 14 different compounds including 6b, 6h, and 6e.

Fig. 2. Inhibition of sortase function in vitro. (A) Purified recombinant
S. aureus sortase (SrtAΔN24) was incubated with fluorogenic substrate abz-
LPATG-dnp and relative activity, i.e., substrate cleavage, measured in the
presence of variable concentrations of compound 6e. Each reaction condition
was assayed in triplicate, and average values and SEMs were determined. (B)
SrtAΔN24 catalyzed transpeptidation with abz-LPATG-dnp and Gly3 generates
abz-LPAT-Gly3 and G-dnp was perturbed with increasing concentrations of
compound 6e and relative inhibitory rates calculated. Representative HPLC
trace shows the substrate and the dnp-containing product. (C) SDS/PAGE
analysis of transpeptidation reactions; 10 μg SrtAΔN24, 10 μg IsdA64–323, and
3 mM Gly3 were incubated for 2 h at 37 °C with variable concentrations
of compound 6b, 6h, or 6e. Migratory positions of IsdA64–323 substrate
precursor (P) and mature transpeptidation product (M) are indicated. (D)
SrtAΔN24 was incubated with buffer alone or with compound 6e at 10 × IC50

concentration and diluted, and sortase activity was measured as abz-LPATG-
dnp cleavage. Control (mock) sample was assigned 100% activity. Eighty-
nine percent (±4.2) activity were recovered from SrtAΔN24 treated with 6e in-
hibitor. (E) Compound 6e binding to SrtAΔN24 was analyzed with surface
plasmon resonance, and the dissociation constant (Kd = 8.8 μM) was calculated.
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Reversible Inhibition of Sortase with 3,6-Disubstituted Triazolothiadiazole.
Because of its high inhibitory activity and aqueous solubility,
compound 6e was analyzed for its mechanism of sortase inhibition.
Following dilution of SrtAΔN24/inhibitor at 10-fold IC50, 89.9 ±
4.2% of sortase activity was recovered compared with mock-
treated sortase (Fig. 2D). This result suggested that compound
6e functions as a reversible inhibitor that does not covalently
modify the active site cysteine of sortase (22). Inhibitor binding to
sortase was tested with surface plasmon resonance (SPR) experi-
ments, which revealed the direct binding of compound 6e to
SrtAΔN24 with a Kd of 8.8 μM (Fig. 2E). Circular dichroism (CD)
spectroscopy was used to monitor changes in sortase structure on
binding inhibitor. As expected, SrtAΔN24 exhibited a negative band
near 200 nm, indicative of its mixed β-sheet secondary structure
(23, 24) (Fig. S4). Addition of 200 μM compound 6e to purified
SrtAΔN24 (100-fold excess of inhibitor vs. enzyme) caused minor
changes in secondary structure content (Fig. S4), indicating that
the inhibitor does not promote protein aggregation. Together
these data suggest that compound 6e binds reversibly to the active
site of sortase and likely interferes with the enzyme’s ability to
recognize and cleave its substrates.

Inhibition of Sortase Activity in Staphylococci. During bacterial
growth, sortase catalyzes the assembly of surface proteins into
the cell wall at the septal and polar compartments of S. aureus
(25). Sortase-mediated cleavage of surface protein sorting signals
can be measured with pulse-chase experiments, which permit an
analysis of precursor processing using [35S]Met/Cys radiolabeling
of staphylococcal proteins and immunoprecipitation (26). Im-
mediately following ribosomal synthesis, the P1 precursor species
of protein A (SpA) are secreted and their N-terminal signal
peptides are removed to generate P2 intermediates. Sortase
cleaves the P2 precursor at its LPXTG motif and anchors mature
SpA (M) in the cell wall envelope (Fig. 3A) (26). As expected,
treatment of staphylococci with 2 mMMTSET abolishes sortase-
mediated cleavage of P2 precursors (21). Treatment of staphy-
lococci with compound 6e blocked P2 precursor cleavage by
sortase A (Fig. 3B). By varying the concentration of the inhibitor,
we calculated the IC50 68.7 μM of compound 6e for the in vivo
inhibition of SrtA.
In S. aureus Newman, SrtA anchors 19 different surface pro-

teins in the bacterial envelope (27), including SpA, a molecule
that binds the Fcγ and Fab domains of host immunoglobulins
(28), as well as clumping factor A and B, which bind to the γ- and
α-chains of host fibrinogen, respectively (29, 30). Treatment of
S. aureus cultures with the sortase inhibitor 6e reduced the in-
corporation of SpA into the bacterial envelope (Fig. 3 C and D).
Similarly, treatment with compound 6e reduced staphylococcal
association with fibrinogen (Fig. 3E), a key mechanism for the
pathogenesis of bloodstream infections (13). We noticed a slight
reduction in the abundance of Sbi (staphylococcal binder of Ig),
a secreted protein that is not cleaved by SrtA, both in the ΔsrtA
mutant and in staphylococci that had been treated with compound
6e (Fig. 3D); the molecular basis for this phenotype is not known.

Antiinfective Therapy with 3,6-Disubstituted Triazolothiadiazole. De-
letion of the SrtA gene does not affect the in vitro growth of S.
aureus Newman (9), a human clinical isolate (31), or of the
laboratory strain S. aureus RN4220 (32). Unlike MTSET, which
reacts with all available thiolate moieties and rapidly kills
staphylococci (21), the addition of compound 6e concentrations
inhibitory for SrtA (up to 200 μM) to staphylococcal cultures did
not affect the growth of S. aureus Newman (Fig. 4A). Using the
microtiter broth dilution method, we measured the minimal in-
hibitory concentration of compound 6e to be >15 mg/mL
(>40 mM). These results indicate that compound 6e selectively
inhibits sortase activity and does not function as an antibiotic for
S. aureus.

Fig. 3. In vivo inhibition of staphylococcal sortase. (A) Diagram illustrating
SpA precursors P1 and P2 and the sortase-catalyzed mature anchored
product (M). (B) Pulse-chase experiment with [35S]Met/Cys (0 and 5 min)
reveals the migratory positions of the P1/2 precursors and mature (M) species
of S. aureus on SDS/PAGE. Treatment of S. aureus with the noncompetitive
inhibitor MTSET and with compound 6e causes accumulation of SpA pre-
cursors, revealing the inhibition of SrtA activity. (C) The abundance of Ig
binding to SpA in the bacterial cell wall envelope was quantified with FITC-
labeled human IgG and washed S. aureus cells from cultures grown in the
absence of inhibitor (control) or in the presence of variable concentrations
of compounds 6b, 6h, and 6e; values for the srtA deletion mutant are in-
cluded as a control. Statistical significance (*P < 0.05, **P < 0.01) was de-
termined using the unpaired, two-tailed Student t test (n = 3, brackets
identify the mean and the SEMs). (D) The abundance of SpA in the bacterial
cell wall envelope was quantified by SDS/PAGE immunoblotting with SpA-
reactive antibodies using S. aureus cultures grown in the absence of inhibitor
(S. aureus Newman) or in the presence of variable concentrations of com-
pounds 6b and 6e; the srtA deletion mutant was included as control. The
migratory position of cross-reactive Sbi is identified. (E) Binding of S. aureus
Newman cells grown for indicated amounts of time (hours) in the presence
of variable concentrations of compound 6e or mock control to fibrinogen-
coated microtiter plates was quantified with crystal violet staining and ab-
sorbance measurements (A570). As control, the srtA deletion mutant cannot
anchor fibrinogen binding surface proteins (ClfA and ClfB) in the bacterial
cell wall. Microtiter plate staining without staphylococci was used to de-
termine background signal. Statistical significance (*P < 0.05, **P < 0.01) was
determined using the unpaired, two-tailed Student t test (n = 3, brackets
identify the mean and the SEMs).
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Cohorts of BALB/c mice (n = 14) received i.p. injections with
either drug vehicle (mock) or with compound 6e (40 mg/kg body
weight) in 12-h intervals for 120 h (5 d). Four hours following the
initiation of treatment, mice were infected via i.v. inoculation of
5 × 107 colony-forming units (CFUs) S. aureus Newman, a chal-
lenge dose that is lethal for healthy animals (33). Mock-treated
mice died of staphylococcal bacteremia within 32 h, whereas
animals that had received treatment with compound 6e displayed
increased time to death and 10% survival (mock vs. compound
6e, P < 0.001; Fig. 4B). This experiment was repeated (n = 15)
with a lower challenge dose (1 × 107 CFUs) of S. aureus New-
man. As before, all of the mock-treated animals succumbed to
staphylococcal bacteremia, whereas more than half (8/15) of the
compound 6e-treated mice survived staphylococcal bacteremia
(mock vs. compound 6e, P < 0.001; Fig. 4C). These data suggest
that sortase inhibitors may be useful as antiinfective therapy to
prevent S. aureus bloodstream infections in hospital settings.

Inhibition of Sortase from Different Gram-Positive Bacteria. Most
Gram-positive bacteria assemble surface proteins in their cell wall

envelope via a sortase-catalyzed mechanism (34). The LPXTG
motif is conserved in a wide variety of surface proteins (35);
however, the chemical structure of the peptidoglycan crossbridge
varies between different bacterial species (36). Although struc-
turally similar (37–40), the amino acid identity between sortases
from different Gram-positive bacteria is limited to a few key
residues at or near the active site (34). We therefore asked
whether compound 6e can inhibit sortase from three different
microbes: Bacillus anthracis, Streptococcus pneumoniae, and
Streptococcus pyogenes. Compounds 6e and 6h both inhibited
purified, recombinant sortase from S. pyogenes. Using the fluo-
rescence-based assay, we calculated the compound 6e IC50 of
0.82 μM, revealing a 10-fold higher inhibitory activity for
S. pyogenes sortase than for the staphylococcal enzyme (Fig. 5A);
this result was confirmed with the orthogonal HPLC assay (Fig.
5B). The structural analogs 6d, 6h, 6j, 6l, and 6n also displayed
inhibitory activities for sortases from S. pyogenes, S. pneumoniae,
and B. anthracis (Table S2). S. pyogenes sortase-catalyzed cleavage
of the IsdA surface protein from S. aureus was inhibited in a dose-
dependent manner by compounds 6e and 6h (Fig. 5C). These data
suggest that 3,6-disubstituted triazolothiadiazole inhibit sortase
enzymes from different Gram-positive bacteria.

Fig. 4. Antiinfective therapy with 3,6-disubstituted triazolothiadiazole. (A)
The addition of sortase inhibitors does not affect the growth of S. aureus. (B)
BALB/c mice (n = 14) received mock or compound 6e (40 mg/kg body weight)
treatment via i.p. injection at 12-h intervals for 5 d. Four hours after the first
injection, animals were challenged by i.v. injection with 5 × 107 CFU S. aureus
Newman, and survival was recorded. (C) BALB/c mice (n = 15) were treated as
in B and challenged with 1 × 107 CFU S. aureus Newman. Statistical significance
was examined with the log-rank test (mock vs. compound 6e, P < 0.001).

Fig. 5. Inhibition of SrtA from Streptococcus pyogenes. (A) Purified recombi-
nant S. pyogenes sortase (SrtAΔN81) was incubated with fluorogenic substrate
abz-LPATG-dnp, and relative activity was measured in the presence of variable
concentrations of compound 6e. Each reaction condition was assayed in trip-
licate, and average values and SEMs were determined. (B) S. pyogenes
SrtAΔN81 catalyzed transpeptidation with abz-LPATG-dnp and Gly3 generates
abz-LPAT-Gly3 and G-dnp, which was perturbedwith increasing concentrations
of compound 6e. The relative inhibitory rate was calculated (IC50 = 7.8 μM). (C)
SDS/PAGE analysis of transpeptidation reactions with 10 μg S. pyogenes
SrtAΔN81, 10 μg S. aureus IsdA64–323, and 3 mM Gly3 were incubated for 2 h at
37 °C with variable concentrations of compound 6b, 6h, or 6e. Migratory
positions of IsdA64–323 substrate precursor (P) and mature transpeptidation
product (M) are indicated.
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Discussion
Hospital-acquired infections with multidrug-resistant bacteria
represent a global public health threat, and MRSA is currently
the most frequent cause of morbidity and mortality (41). The
emergence of multidrug-resistant MRSA isolates acquiring gly-
copeptide resistance during vancomycin therapy documents the
urgent need for controlling the use of antibiotics (42). Recent
research efforts have been directed at developing antiinfective
therapies against S. aureus, focusing on small molecules that in-
terfere with virulence gene regulation (43). S. aureus agr, a four-
gene operon, promotes the constitutive synthesis and secretion of
the AgrB-AgrD–derived autoinducing pheromone (AIP) (44),
which activates the sensory kinase-response regulator AgrC-
AgrA at threshold concentrations to promote staphylococcal
expression and secretion of exotoxins (45). AIP-mediated acti-
vation of AgrC can be inhibited with peptide analogs and small
molecules, which diminishes S. aureus colonization and invasion of
skin and soft tissues (43, 46). AIP is inactivated by neutrophil
Nox2 NADPH oxidase modification and apolipoprotein B binding
(47, 48), which interferes with agr-mediated quorum sensing when
S. aureus enters the bloodstream (49, 50). In agreement with this
model, AgrC inhibitors do not affect staphylococcal load, abscess
formation, or disease outcome when mice are challenged by i.v.
inoculation with S. aureus (51).
In contrast to agr-controlled virulence gene expression, sor-

tase-mediated assembly of surface proteins in the bacterial en-
velope is essential for the pathogenesis of abscess formation and
lethal bacteremia following i.v. inoculation of the pathogen (12,
13). Earlier work used in vitro (inhibition of fluorogenic sub-
strate cleavage) and virtual screening of compound libraries to
identify sortase inhibitors (15, 52–56). Although these studies
identified both competitive and noncompetitive inhibitors (57,
58), isolated compounds have not yet been shown to inhibit in
vivo sortase activity in staphylococci, i.e., the cleavage of sorting
signals or the assembly of surface proteins into the bacterial cell
wall (54, 59–62). Many of the isolated compounds diminish or
block staphylococcal growth, indicating that they cannot function
as selective inhibitors of S. aureus sortase (53, 61, 63, 64). Thus,
the efficacy of sortase inhibitors as antiinfective therapeutics was
heretofore not demonstrated (62, 65).
We used virtual screening for compounds that bind the active

site of sortase and experimental validation to identify 3,6-
disubstituted triazolothiadiazole compounds as a new class of sor-
tase inhibitors. SARs were studied to improve the efficacy of sortase
inhibitors, which characterized 3-(4-pyridinyl)-6-(2-sodiumsulfo-
natephenyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (compound 6e)
as the most potent inhibitor. Of note, compound 6e blocked
sortase-catalyzed cleavage and transpeptidation reactions with
LPXTG substrate peptides and inhibited the incorporation of
surface proteins into the staphylococcal envelope. Although
not optimized for its pharmacokinetic and pharmacodynamics
attributes, compound 6e displayed efficacy as an antiinfective
in preventing the lethal outcome of S. aureus bacteremia in
mice. Earlier work synthesized a wide variety of 3,6-disubstituted
triazolothiadiazole derivatives and examined these compounds
for their antibacterial, antifungal, and analgesic attributes (16).

Although certain members of this class of compounds can inhibit
bacterial or fungal growth, antibiotic or analgesic effects are not
universal attributes of 3,6-disubstituted triazolothiadiazole com-
pounds (16), which may be explored further for clinical de-
velopment of antiinfectives (16).
Sortases and cell wall-anchored surface proteins contribute to

the virulence strategies of many different bacterial pathogens
(34). Sortases and surface proteins with LPXTG sorting signals
are found in other nosocomial pathogens, for example, Entero-
coccus faecalis, Enterococcus faecium, and Clostridium difficile (66–
68). Earlier work revealed the contribution of sortase toward
enterococcal virulence and the pathogenesis of urinary tract
infections or endocarditis (67, 69, 70). Thus, antiinfective therapy
with sortase inhibitors may be useful to broadly prevent nosoco-
mial infections with antibiotic-resistant Gram-positive bacteria.

Materials and Methods
In Vivo Inhibition of Staphylococcal Sortase A. S. aureus cultures were pulse-
labeled with [35S]Met/Cys for 1 min, and all further incorporation of radio-
active amino acids into proteins was quenched by the addition of excess
unlabeled Met/Cys (chase). At timed intervals, 0 and 5 min after the addition
of the chase, culture aliquots were precipitated with trichloroacetic acid,
washed in acetone, and dried, and the cell wall peptidoglycan was digested
with lysostaphin. MTSET (100 mM in water) was added at a final concen-
tration of 2 mM 10 s after labeling with [35S]Met/Cys had commenced. Com-
pound 6e (100 mM in water) was added at a final concentration of 200 μM
10 min before pulse-labeling with [35S]Met/Cys. SpA was immunoprecipitated
with SpA-specific antibodies, and radiolabeled polypeptides were analyzed
by 10% SDS/PAGE and PhosphoImager.

Animal Model of S. aureus Infection. Lethal challenge experiments were
performed at the Shanghai Public Health Clinical Center following animal
care and use protocols that were reviewed, approved, and supervised by the
Committee for Animal Experiments at FudanUniversity. Overnight cultures of
S. aureus Newman were diluted 1:1,000 into 30 mL fresh tryptic soy broth
(TSB) and grown with rotation at 37 °C for 3 h. Bacteria were centrifuged at
3,000 × g, washed, and suspended in PBS to A600 0.8 or 1.6. Cohorts of BALB/c
mice (6-wk-old females; Shanghai Super-B&K Laboratory Animal Corp.)
were randomly assigned into of two cohorts. Water and laboratory chow
were provided ad libitum. Compound 6e was dissolved in sterile double-
distilled water (ddH2O) and administered by i.p. injection at a dose of 40mg/kg
in 12-h intervals. Four hours after the first injection of compound 6e or mock
(ddH2O) control, animals were challenged by periorbital injection of S. aureus
Newman; aliquots of the inoculum were plated for enumeration of CFUs, and
animals were monitored for survival over a 20-d observation period. The log-
rank test was used to analyze mortality data; P < 0.05 was deemed statistically
significant.

Other Procedures. Detailed procedures are available in SI Materials and Methods.
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