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During ribosomal translocation, a process central to the elongation
phase of protein synthesis, movement of mRNA and tRNAs requires
large-scale rotation of the head domain of the small (30S) subunit of
the ribosome. It has generally been accepted that the head rotates
by pivoting around the neck helix (h28) of 16S rRNA, its sole
covalent connection to the body domain. Surprisingly, we observe
that the calculated axis of rotation does not coincide with the neck.
Instead, comparative structure analysis across 55 ribosome struc-
tures shows that 30S head movement results from flexing at two
hinge points lying within conserved elements of 16S rRNA. Hinge 1,
although located within the neck, moves by straightening of the
kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies
within a three-way helix junction that extends to the body through
a second, noncovalent connection; its movement results from
flexing between helices h34 and h35 in a plane orthogonal to the
movement of hinge 1. Concerted movement at these two hinges
accounts for the observed magnitudes of head rotation. Our
findings also explain the mode of action of spectinomycin, an
antibiotic that blocks translocation by binding to hinge 2.
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Central to the elongation phase of protein synthesis is the
process of translocation, in which tRNA moves from the

aminoacyl (A) to peptidyl (P) and P to exit (E) sites of the ribo-
some, coupled with mRNA advancement by exactly one codon.
Translocation can be broadly divided into two steps. First, the
tRNAs move on the large subunit from their classical A/A and P/P
states to their hybrid A/P and P/E states (1, 2), facilitated by
intersubunit rotation, which can occur spontaneously and re-
versibly (3–7). During the second step, which is rate limiting and
EF-G–dependent (8, 9), the tRNA anticodon stem-loops (ASLs)
and their associatedmRNAsmove from theA to P and P to E sites
of the small subunit, thereby advancing the tRNAs into their
classical P/P and E/E states. The latter step is accompanied by the
intrasubunit rotation of the small-subunit head domain, which
unlocks the steric barrier between the P and E sites on the 30S
subunit (10–13) and transports the P-site tRNA into the 30S E site
(14–16). In addition to a growing structural database of trapped
translocation complexes from X-ray and cryo-EM studies (Table
S1), computational approaches are being used to analyze ribo-
some dynamics and to describe the energy landscape of the
translocation process (17–22).
Structures of trapped EF-G–containing translocation inter-

mediates show that, during 30S subunit head rotation, the trans-
locating P-site tRNA precisely maintains contact with the head
domain but moves relative to the 30S body domain, forming a
chimeric hybrid (pe/E) state (14, 15). (Lowercase letters indicate
that the tRNA is bound in a chimeric hybrid state, whereas up-
percase letters indicate binding to the canonical A, P, or E sites.
For example, “pe/E” is meant to indicate that the ASL of the
tRNA is bound between P-site elements of the small subunit head
and E-site elements of the small subunit body, while its acceptor
end is bound to the large-subunit E site.) These findings provide
evidence that small-subunit head rotation plays a central role in
the second step of translocation. A full description of the molec-
ular mechanism of translocation will therefore depend on an un-
derstanding of the structural basis of head rotation.

As has been widely believed (11, 17, 23–26), we anticipated that
the axis of head rotation would pass through helix h28 of
16S rRNA (often called the “neck”), the sole covalent connec-
tion between the head and body of the 30S subunit. Using the
Euler–Rodrigues (E–R) method (27, 28), we localized the axis of
head rotation for structures of 55 ribosome complexes, covering
a range of more than 20° of head rotation. Unexpectedly, the axis
does not pass through helix h28, but is positioned in the space
between h28 and the coaxially stacked helices h35 and h36, which
form a second, noncovalent connection to the body. In a second
approach, we localized the points of divergence of the conserved
core of the 30S head to two hinge points, in h28 (hinge 1) and in
the linker connecting h34 and h35 (hinge 2), which coincide with
the same two features flanking the calculated helical axis. As-
signment of the origins of head rotation to these two hinge points
was further validated by the strong correlation between the
magnitudes of their deflection angles and the degree of head
rotation in the different structures. Finally, our findings explain
the inhibition of translocation by the antibiotic spectinomycin,
which binds to the pivot point of hinge 2 (24, 25, 29, 30).

Results
Localization of the Axis of 30S Head Rotation. To characterize ro-
tation of the 30S head (Fig. S1A), defined as the 3′ major domain
(residues 921–1396) of 16S rRNA and its associated proteins, we
applied the Euler–Rodrigues (E–R) formula (27, 28), as described
in Methods, to 55 structures of ribosomes trapped with varying
degrees of head rotation (Table S1). The E–R formula treats
interdomain movement as a simple rigid-body rotation around
a single calculated axis (the E–R axis) (Fig. 1A), irrespective of the
complexity of the movement. Further analysis (see below) con-
firmed that the 30S head indeed behaves essentially as a rigid
body, in agreement with earlier studies (11, 26). We measured the
magnitude and direction of rotation with respect to a reference
crystal structure of a nonrotated classical-state ribosome complex
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(10) [Protein Data Bank (PDB) ID code 2J00]. Positive rotation is
defined as counterclockwise, as viewed from the top of the 30S
head domain (Fig. 1B and Fig. S1A).
Given that the head and body domains of the 30S subunit are

covalently linked by the neck or helix h28 (Fig. 2A), we antici-
pated that the E–R axis would pass through h28. Surprisingly,
the E–R axis does not coincide with h28, but lies between h28
and the coaxially stacked helices h35 and h36 (Fig. 1C). The E–R
axis is similarly situated between h28 and h35/h36 in all 28 crystal
structures showing significant head rotation in our dataset (Fig.
S2). This unexpected finding indicates that the observed motion
of the 30S subunit head is not the result of a simple rotation
around the neck of the 30S subunit.
Values for 30S head rotation, as well as for intersubunit body

rotation (relative to the 50S subunit; also calculated by the E–R
method) are distributed nearly continuously, from 0° to +21° and
−4° to +10°, respectively (Table S1). Although head and body ro-
tation do not show a general correlation (31) (Fig. S1B), the pres-
ence of bound full-length tRNAs constrains their values to three
well-defined classes, clustered around 2° head, −1.5° body (classi-
cal); 6° head, 7.5° body (hybrid); and 19° head, 2° body (chimeric
hybrid), corresponding to three main tRNA-binding states (SI Text).

Localization of the Origins of Movement. We next identified the
origins of head movement by localizing the precise boundaries
between the static (body) and dynamic (head) structural ele-
ments. This was done by measuring differences between posi-
tions of 16S rRNA in rotated vs. nonrotated ribosomes. By
superimposing the essentially static body domains of different

30S subunits, we identified structural deviations that correlate
with head movement, as described below. We restricted the
comparison dataset to the 41 bacterial ribosome crystal struc-
tures reported at 4 Å resolution or better (Table S1).
The structural core of the 30S subunit head domain of 16S

rRNA comprises a series of contiguous helices stretching in a wide
loop from helix h28 to h36, most of which are coaxially stacked (32)
(Fig. 2 A and B). At one end, h28 (i.e., the neck) covalently con-
nects the head to the body of the subunit, where it forms a con-
tinuous coaxial stack with helices h2, h1, and h3 in the body
domain. At the other end of the series, the GUGA tetraloop of h36
forms a noncovalent bridge to the body via A-minor interactions
with h2 (32) (Fig. 2B). Within this structural core helices h28–h29,
h30–h32, and h35–h36 are coaxially stacked. Thus, the series of
helices h28–h29–h30–h32–h34–h35–h36 leads from the body of the
30S subunit into the head, looping back into contact with the body.
Based on the positions of these core helices, we calculated a con-
tinuous helical axis for the structural core of the 30S head using the
program Curves+ (33) for each structure (Fig. 2B).
Deviation of the positions of nucleotides along the helical axis

in structures with head rotation compared with those for the
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Fig. 2. Origins of 30S head movement. (A) The 16S rRNA core of the head of
the 30S subunit comprises the series of contiguous helices h28 to h36 (red).
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eraged CUR axes were calculated for different structural classes showing head
rotation. Chi, chimeric hybrid state; Hyb, hybrid state; Vac1, Vac2, Vac3, vacant
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unrotated, classical state is plotted in Fig. 2C. A priori, one could
imagine, at one extreme, that head movement results from a lo-
calized change at a single point in the structure, or alternatively,
from the accumulation of multiple smaller changes distributed
over a larger segment of the structure. The measurements plotted
in Fig. 2C show that head rotation originates in two sharply lo-
calized inflection points, adjacent to positions 927 and 1068 of
16S rRNA. Moreover, these same two inflection points are found
for all classes of structures (hybrid, chimeric hybrid and three
classes of vacant ribosomes grouped according to magnitude of
head rotation), despite differences in magnitude of head rotation
and in their bound ligands (Fig. 2C). We refer to these inflection
points as hinge 1 and hinge 2. The relatively linear behavior of the
deviation plot following the sharp inflection at G927 and pre-
ceding the inflection at G1068 (Fig. 2C) suggests that the head
behaves essentially as a rigid body. Superimposition of the head
domains results in an average rmsd of less than 1 Å and a dis-
placement of helical axes of the head domain of less than 2 Å (Fig.
S3), showing that the core of the head domain moves essentially
as a rigid body.

Hinge 1. Hinge 1 lies at a weak point within the G-C–rich helix
h28 (Fig. 3A) around the universally conserved bulged G926,
which is flanked by conserved G·U wobble pairs (Fig. 3B). It
functions as a simple hinge, which is bent in the classical, non-
rotated state at 166° and increasingly straightens during head
rotation to 177°. Straightening of hinge 1 (the neck) results in
progressive widening of the major groove of h28 as a function of

increasing head rotation [correlation coefficient (CC) = 0.83]
across the 41 bacterial crystal structures, as measured from the
cross-strand distance between P927 and P1383 (Fig. 3 A and C).
Additionally, we observe that positions 932 and 1385 show
a consistent decrease in their backbone angles (measured be-
tween consecutive P atoms) as a function of head rotation,
consistent with previous observations (11, 17). These changes are
clearly correlated with head movement (CC = −0.81) and occur
as a result of structural interactions between hinges 1 and 2
(see below).

Hinge 2. Hinge 2 is linked to the coaxially stacked h35 and h36
(Fig. 4A), which form a noncovalent A-minor connection be-
tween the head and body domains (Fig. 2 A and B). Hinge 2 acts
as a flag hinge by allowing h34 to swivel around the immobilized
h35/h36 (Fig. 4 A and B); its movement is roughly orthogonal to
that of hinge 1. It is part of the helical junction formed by h34,
h35, and h38 (Fig. 4C), previously identified as a member of the
RNA structure motif termed as a Family A three-way junction
(34). Helices h35/h36 form a Family C three-way junction with
h37 (34) but remain relatively static, with an rmsd of atomic
positions of less than 1 Å across the 41 ribosomal crystal struc-
tures. The actual hinge point occurs in the loop connecting h34
to h35, between positions 1064 and 1067, where the majority of
conformational changes are found. Most prominent is a decrease
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in the angle subtended by P1064–P1065–P1066 from 94° in the
classical-state reference structure to 72° in the highly rotated
chimeric hybrid complex (Fig. 4B), mimicking the overall 22°
change in head rotation, and decreasing linearly as a function of
increasing head rotation (CC = −0.79) (Fig. 4D). This rear-
rangement directly influences a switch in the interactions be-
tween hinge 1 and hinge 2 through G1064, as described below.
Most notably, this change in backbone angle is directly centered
on the binding site for the antibiotic spectinomycin (30) (Fig.
S5), a well-known inhibitor of translocation (35) (Discussion).

Synergy Between Hinges 1 and 2. We next assessed how the flexing
of each hinge correlates with head rotation and how flexing of the
two hinges correlate with each other. We measured flexing by the
change in the angle between the helical axes flanking the hinges
(compare Figs. 3 and 4), using the E–Rmethod, for each hinge in
each crystal structure. Relative to the classical reference state, the
angular changes at each hinge correlate with head rotation (CC:
hinge 1 = 0.91; hinge 2 = 0.96) (Fig. 5 A and B). Although there is
a strong correlation (CC = 0.88) between movement of hinge 1
and hinge 2, it is clear that for individual examples, hinge 1 and
hinge 2 are able to move independently from one another (Fig.
5C). We conclude that hinge 1 and hinge 2 effectively combine to
result in rotation of the small-subunit head domain, relative to the
body domain, around the E–R axis (Fig. 6).
Hinge 1 and hinge 2 are connected by RNA–RNA backbone

contacts and by interactions mediated by ribosomal protein S5. Of
the three RNA hydrogen-bonded contacts, the two between
helices h28 in hinge 1 and h35/h36 in hinge 2 are retained
throughout head rotation (Fig. S6 A and B). In contrast, phos-
phate 1064 in h34 switches its interactions as a result of swiveling
of h34 toward h28 and straightening of h28 during head rotation
(Fig. S6C). In most structures with less than 8° of head rotation,
phosphate 1064 H bonds with the 2′-OH of ribose 1385 in h28
(Fig. S6D). However, in structures with greater than 16° of head
rotation, this interaction is disrupted, and replaced by a new
tertiary contact between phosphate 1064 and the 2′-OH of the

neighboring ribose 1386 in h28 (Fig. S6 C and D). This switch in
contact between the two hinges influences the backbone confor-
mation of h28. The angle subtended by the consecutive phosphate
positions P931–P932–P933 (paired to positions 1386, 1385, and
1384) decreases as a function of increasing head rotation (CC =
−0.81), with a maximum decrease of ∼22° between the classical
and chimeric hybrid states (Fig. S6E). A further mode of com-
munication between hinges is seen through their mutual inter-
actions with the ribosomal protein S5. The long N-terminal
β-hairpin of protein S5 bridges the static elements of hinges 1 and
2, contacting helices h2 and h36 and the static end of h28, whose
positions are all maintained during head rotation. However, at the
tip of the β-hairpin, Arg25 contacts the mobile helix h34 at posi-
tions 1192 and 1193 (Fig. S7A), a contact that is disrupted upon
flexing of hinge 2 with high angles of head rotation (Fig. S7B).

Discussion
Localizing the Origin of Head Rotation. In this study we sought to
identify the structural basis for 30S head rotation, the large-scale
conformational change in the ribosome that occurs during the
rate-limiting, EF-G–dependent second step of translocation (8).
By comparing structures of ribosome complexes trapped in dif-
ferent conformational states (Table 1 and Table S1), we used the
E–R transform to identify the principal axis of rotation for the 30S
head. Although we anticipated that the axis would pass through
helix h28 of 16S rRNA (i.e., the neck) (11, 31), the sole covalent
connection between the head and body domains of the 30S sub-
unit, we found it positioned instead between h28 and the coaxial
helices h35 and h36 (Fig. 1). Next, measuring the deviation of
positions along the helical axis describing the core of the head, we
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rotation of the 30S head domain around the E–R axis. During head rotation,
movement of hinge 1 is caused by the straightening of the kinked helix h28;
the orthogonal movement of hinge 2 is the result of the swiveling of helix
h34 around the static h35. Cylinders show positions of helical axes in the 16S
rRNA core for the classical (10) (teal) and chimeric (15) (magenta) states.
(B) Cartoon representation showing coupling of structural rearrangements
at the two hinges to 30S head rotation. Dotted lines represent H-bonded
interactions between the two hinges. The backbone contact between h34
and h28 switches between two positions on h28 depending on the degree of
head rotation, as described in the text.
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localized the origins of head movement to two hinge points, lo-
cated at the middle of h28 and the end of h35. These results show
that h28, which has long been implicated in head rotation (11, 25,
36–39), is indeed involved in head movement, although not as the
center of rotation.
Hinge 1 is centered on the bulged base G926 within helix h28,

the neck helix that covalently connects the head and body
domains (Fig. 3). During head rotation, h28, which is kinked in
the nonrotated state, becomes straightened. Hinge 2 is posi-
tioned in the single-strand linker between h34 and the coaxially
stacked h35/h36 (Fig. 4). Hinge 2 swivels around position 1068
(at the tip of h35) in a plane roughly orthogonal to the bending
of hinge 1 (Fig. 6). The coaxial h35/h36, although nominally
a part of the head domain, form a noncovalent connection to the
body and remain static during head rotation (Figs. 2 and 4).
Thus, hinge 1 and hinge 2 are identical to the two structural
elements that were found to flank the E–R axis (Fig. 1C).
Head rotation thus results from the combined flexing at two

separate loci (hinges 1 and 2) in16S rRNA that lie within the two
connectors linking the head and body domains, as depicted sche-
matically in Fig. 6B. The angular change at each hinge (hinges 1
and 2) strongly correlates with the degree of head rotation (CC =
0.91 and 0.96, respectively) (Fig. 5 A and B), validating our con-
clusion that 30S head rotation is based on bending at these two
hinge points. Bending of the two hinges is strongly correlated (CC=
0.88), indicating that their movements are generally coupled (Fig.
5C); however, the observed values for several structures show that
hinge 1 and hinge 2 can move independently in certain contexts
(Fig. 5C), allowing the 30S head to explore a wider range of ori-
entations, such as swiveling or tilting (13, 17, 38, 40).

Functional Implications. There are indications of functional inter-
actions between hinge 1 and mRNA. Previously, the bulged G926
of helix h28 was found to make a hydrogen-bonded interaction
with phosphate +1 of mRNA (41). In addition, the backbone of
the Shine–Dalgarno helix around position 1534 was found to
contact h28 near position 929 (23). Here, we observe interactions
between h28 and the universally conserved A1503, which has
been proposed to act as a translocational pawl by intercalation
between bases −1 and −2 of the mRNA in the chimeric hybrid
state (15). In the classical state, A1503 is held in its retracted
position by H-bonding interactions with ribose 927 and G925 in
h28 (Fig. S8A). In the highly rotated chimeric state, these inter-
actions are disrupted (Fig. S8B), allowing A1503 to flip into its
intercalated state. This appears to be connected to a change in
the backbone conformation around position 927. Although the
resolutions of these structures are not sufficiently high to distin-
guish sugar conformations, an increase in the P927–P928 distance
from ∼5.9 to ∼7.0 Å between the classical and chimeric states (SI
Discussion) is consistent with a change in the ribose sugar pucker
from C3′-endo to C2′-endo (42–44), which could help to explain
disruption of the contacts between A1503 and h28.

The two-hinge mechanism provides a structural explanation for
the inhibition of translocation by the antibiotic spectinomycin.
Spectinomycin binds within the 30S head domain (29), trapping
the head in a partially swiveled state (24, 25) and drastically re-
ducing the rate of translocation (35). Chemical footprinting (29),
mutational analysis (29, 30, 45), and crystal structures of ribo-
somes (25) or 30S subunits (24) in complex with spectinomycin
localized its binding site to G1064, C1066, G1068, A1191, C1192,
and G1193 at the h34/h35 junction. Our findings show that these
contact positions with spectinomycin are centered on the articu-
lation point of hinge 2 (Fig. 7 and Fig. S5), supporting our con-
clusion that spectinomycin inhibits translocation primarily by
locking hinge 2 and confirming an earlier suggestion by Carter
et al. (24). Although spectinomycin also interacts with h28 (Fig. 7
and Fig. S5C), its contact surface is much smaller than that with
hinge 2, contacting only the backbone atoms of h28 at G1387 and
G1388, some distance away from the articulation point of hinge 1
(Fig. 7). It is nevertheless possible that spectinomycin may in-
directly restrict movement of hinge 1, by affecting the interplay
between the two hinges. The site of interaction of S5 with h34 at
position C1192 is a site of mutation conferring spectinomycin
resistance (46) and lies adjacent to hinge 2 at the spectinomycin-
binding site (24, 25). The importance of these interactions of S5
with the hinges for ribosome function is reflected in the finding
that mutation of the universally conserved Gly23 at the tip of the
hairpin to Asp confers cold sensitivity and spectinomycin re-
sistance (47).
Besides our primary focus on the database of abundant bac-

terial ribosome crystal structures, preliminary analysis of the va-
cant yeast 80S ribosome (48) and Tetrahymena (49) 40S ribosomal

Table 1. 30S head and body rotations

Ribosome state† 30S head rotation 30S body rotation‡ No. of structures tRNA states

Classical (Cla) 2.0 ± 1.0 −0.8 ± 0.8 8 Classical
P/E Hybrid (Hyb) 5.9 ± 0.7 7.6 ± 1.1 4 P/E Hybrid
Vacant 1 (Vac1) 8.1 ± 0.1 −3.3 ± 0.1 5 No tRNA
Vacant 2 (Vac2) 11.5 ± 1.3 4.9 ± 1.9 4 No tRNA
Vacant 3 (Vac3) 16.3 ± 0.1 −2.4 ± 0.1 4 No tRNA
Chimeric hybrid (Chi) 19.2 ± 1.3 1.8 ± 0.9 4 Chimeric pe/E–hybrid

The magnitudes of 30S head and body rotation for each ribosome complex were determined by the E–R method relative to 2J00 and
2J01 (10) reference structures (Methods). See Table S1 for the complete list of structures used.
†Defined by the tRNA-binding state. Groups were assigned based on the magnitudes of head rotation and conformational states of
bound tRNAs (Methods).
‡Intersubunit rotation.
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Fig. 7. Spectinomycin binds primarily to hinge 2. Stereoview showing con-
tacts between spectinomycin (Spc) (red) and 16S rRNA in the Escherichia coli
70S ribosome (25). The main contacts made by Spc are in the minor groove
between h34 and h35 (grey), at the articulation point of hinge 2, where it
forms hydrogen bonds with bases G1064, C1066, G1068, A1191, C1192, and
G1193. Spc also contacts h28 (yellow) at the backbone between G1387 and
C1388, away from the articulation point of hinge 1 at the bulged G926.
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subunits, which have ∼16° head rotations, suggests that head
rotation in eukaryotic ribosomes may be similar to that seen in
bacteria. The head and body domains of 18S rRNAs are linked
via dual connectors structured identically to those found in bac-
terial 16S rRNAs. Moreover, the lengths of the core helices in the
head domain, as defined above, are precisely conserved between
bacterial and eukaryotic ribosomes, despite large differences be-
tween the overall sizes of 16S and 18S rRNAs. Analysis of the
core helices shows that the location of inflection points for 18S
head movement coincides with those found in bacteria. Thus, the
two-hinge mechanism may represent a universal strategy for
small-subunit head rotation.
Although we can describe the structural basis of 30S head

rotation, we understand little about how head rotation is trig-
gered and controlled. The rate-limiting step of mRNA and
tRNA ASL movement, which is coupled to head rotation (14,
50), strongly depends on EF-G (8, 51). One possibility is that
head rotation is driven or triggered by movement of domain IV

of EF-G (14, 15), which contacts h34 of the head domain.
However, this possibility seems at odds with the observation (52)
that release factor RF3, which has close structural similarities to
EF-G but completely lacks domain IV, also induces 16° of head
rotation (Table S1). Clearly, additional studies will be needed to
shed light on the mechanisms by which head rotation is induced.

Methods
Our analysis was based on the structures of 55 ribosome complexes as listed in
Table S1. To calculate 30S head rotation using the E–R formula and to vi-
sualize the E–R axis for head rotation, we created a plug-in module for
PyMOL (53). The core domain was assigned based on ref. 32. The helical axis
for the core helices was calculated using Curves+ (33). Further details are
presented in SI Methods.
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