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The ordering of subject, verb, and object is one of the fundamental
components of the syntax of natural languages. The distribution
of basic word orders across the world’s languages is highly non-
uniform, with the majority of languages being either subject-
object-verb (SOV) or subject-verb-object (SVO). Explaining this fact
using psychological accounts of language acquisition or processing
requires understanding how the present distribution has resulted
from ancestral distributions and the rates of change between
orders. We show that Bayesian phylogenetics can provide quantita-
tive answers to three important questions: how word orders are
likely to change over time, which word orders were dominant his-
torically, and whether strong inferences about the origins of syntax
can be drawn from modern languages. We find that SOV to SVO
change is more common than the reverse and VSO to SVO change is
more common than VSO to SOV, and that if the seven language
families we consider share a common ancestor then that common
ancestor likely had SOVword order, but also that there are limits on
how confidently we can make inferences about ancestral word or-
der based on modern-day observations. These results shed new
light on old questions from historical linguistics and provide clear
targets for psychological explanations of word-order distributions.
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The sentence “dog bites man” is easily understood by a speaker
of English, but switching the order of the words either ren-

ders it incomprehensible (“dog man bites”) or changes its
meaning (“man bites dog”). Only one of the six possible orders of
these three words—the subject (S), verb (V), and object (O)—is
commonly used in English sentences. However, the ordering of
these three elements is a fundamental component of syntax, and
varies significantly across languages. English is an SVO language,
but among the world’s languages, the six possible basic word
orders are, from most to least common: SOV (48%), SVO
(41%), VSO (8%), VOS (2%), OVS (1%), and OSV (0%) (1, 2).
Several attempts have been made to explain the cross-

linguistic word-order distribution in psychological terms (3–6).
All of these efforts have proceeded under the assumption that
SOV is somehow optimal (e.g., requiring minimum working
memory for parsing), since it is the most common word order.
This is a “functionalist” approach, where some word orders are
claimed to better facilitate the transmission of information.
However, several linguists have noted that change from SOV to
SVO appears to have been more common historically than
change from SVO to SOV (7–10). If we suppose that, on the
whole, languages tend to change from less to more functional
word orders, then we should seek theories by which SVO is
psychologically superior to SOV, not the other way around.
Under this view, SOV is predominant not due to greater func-
tionality but as a vestige of even greater dominance in the past.
Traditional functionalist explanations also assume that VSO is

less functional than both SOV and SVO, again based on current
frequency. Interestingly, the linguistics literature contains in-
consistent hypotheses about change between these orders. Li (8)
and Givón (9) consider VSO to SVO change to be most typical,
while Gell-Mann and Ruhlen (11) claim SVO to VSO is most
common with “occasional reversion” from VSO to SVO. Ven-
nemann (7) does not appear to propose a preference, permit-
ting change back and forth between the two orders. Without
a definitive answer to this question, we cannot completely assess

the explanatory adequacy of any putative theory of word-order
functionality.
Some authors have suggested that all present languages are

descended from a common ancestor with SOV word order (10,
11). This hypothesis is interesting in light of results suggesting
a preference for SOV in improvised gestural communication
(12–15), although the “monogenesis” idea of one common an-
cestor for all modern languages is controversial (16). The idea
that SOV to SVO change is preferred over the opposite change
plays a central role in these claims about ancestral SOV word
order; however, it usually takes the form of a bare assertion, not
backed up by quantitative data.
Psychology and linguistics thus leave us with three important

questions: how word orders are likely to change over time, which
word orders were dominant historically, and whether strong
inferences about the origins of syntax can be drawn from modern
languages. Insight into questions like the first two is increasingly
being sought using (iterated) artificial language learning experi-
ments, which can help to identify learning biases (17–19). We
instead address all three questions using statistical analysis of
language data, while agreeing that these two approaches can
complement one another (20). Specifically, we show how meth-
ods from Bayesian phylogenetics can shed light on these ques-
tions. Recent work has explored how similar methods might be
used to determine the time depth and homeland of proto-Indo-
European (21, 22) (the most recent common ancestor of all
Indo-European languages), as well as a range of other problems
in historical linguistics (23–28). This previous work has most
often, but not always, focused on the lexicon of ancient lan-
guages, examining how words tend to change over time. Only two
previous papers have dealt specifically with word order. Pagel
(24) reconstructs the ancestral word order of Indo-European to
be SOV and examines the frequent directions of change but does
not consider any other language families. Dunn et al. (25) ex-
amine word-order change in four different language families, but
they consider SV vs. VS and VO vs. OV as separate parameters,
and do not attempt to infer ancestral values of either parameter.
Our work is, to our knowledge, the first attempt to infer ancestral
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word orders and frequent directions of word-order change for
multiple language families simultaneously.

Model
We considered a total of 671 languages from the following families:
Afro-Asiatic, Austronesian, Indo-European, Niger-Congo, Nilo-
Saharan, Sino-Tibetan, and Trans-New Guinea. Family classi-
fications and basic word-order data for each language were taken
from the World Atlas of Language Structures (1). The number of
languages with each basic word order in each family is given in
Supporting Information. The distribution of word orders in this
sample does not accurately reflect the global distribution: SVO is
overrepresented, comprising 55% of the languages in our sam-
ples but 41% of all languages. This limitation and its implications
are discussed in Discussion. For each family, we made inferences
about word-order ancestry and change using two probabilistic
generative models: one for phylogenetic trees and one for word
orders at the leaves of trees. Further details are provided in
Materials and Methods.

Generative Model for Trees. Trees were generated using neighbor
joining (29), specifically the NINJA implementation (30). Neigh-
bor joining constructs trees with n leaves from n × n matrices of
pairwise distances, such that languages that are close together
according to the matrix become closely related in the tree. We
specified four procedures for generating distance matrices. Each
method constructs a base matrix based on either geographical
distance between language locations, expert genetic classification
of languages (e.g., Swedish is not just Indo-European but also
Germanic, North Germanic, and East Scandinavian), comparison
of linguistic features, or a combination of these. Individual ma-
trices were obtained by adding random noise to the base matrix.
This process defines a probability distribution over trees, P(T).
Sampling from this distribution results in trees that feature some
random variation but are still constrained (by the structure of the
base matrix) to not vary too wildly from what data and expert
opinion suggests is probable.

Generative Model for Word-Order Data. Our generative model for
leaf word orders was based on an ensemble of continuous-time
Markov chains (CTMCs). The state space of each chain consists
of six values, corresponding to the six basic word orders. Tran-
sitions between states are probabilistic in two senses. First, the
state that the chain will be in after a transition is a random
variable that depends only on the state of the chain at the time of
the transition, as per a regular Markov chain. Second, transitions
do not occur at regular time steps but rather at randomly dis-
tributed times along a continuum. For example, if a CTMC
begins at time t = 0, the first state transition may happen at time
t = 0.76, the next at time t = 2.45, the next at t = 3.88, etc.
CTMCs are commonly used in biology for estimating phyloge-
netic trees from present-day genetic data, or for inferring an-
cestral genetic traits using data and known trees; see ref. 31 for
a summary.
The behavior of one of our CTMCs is characterized by 36

parameters: 25 probabilities tij, i, j = 1, . . ., 6, i ≠ j, denoting the
probability of transitioning between any two states and six rate
parameters λ1, . . ., λ6, which control the waiting times between
transitions. Each waiting time is sampled from an exponential
probability distribution with rate parameter λi, where i is the
state of the chain at the beginning of the wait time. These
parameters can be represented as a single 6 × 6 “rate matrix”
Q = [qij], where:

qij =
�
−λi if i= j
λitij otherwise : [1]

For any time t ≥ 0, the matrix P = exp (tQ) gives the probability
pij that a chain starting in state i will be in state j after a time
delay of t.

We model the generation of word-order data for the leaf
nodes of trees as follows. The word order of the tree’s root
language is selected uniformly at random. Then word orders are
sampled for each descendent node of the root, from the prob-
ability distribution over the state of a CTMC l units of time after
transitioning to order k, where l is the length of the branch
connecting the node to the root and k is the root word order.
This process continues downward to the leaves of the tree. At
each branching point in the tree, the Markov chain splits into two
chains that are in the same instantaneous state at the branching
point but thereafter evolve independently of one another,
according to a single parameter matrix Q. This process induces
a probability distribution over word-order data for a given tree
and rate matrix, P(DjT, Q).

Inference.Given known word orders D for languages at the leaves
of a tree T, we used Bayes’ theorem to invert the generative
model for leaf data and compute P(QjT, D) ∝ P(DjT, Q)P(Q).
We used the Metropolis−Hastings algorithm (32, 33) to sample
from the posterior distribution over rate matrices. The posterior
mean matrix tells us about the dynamics of word-order change.
The sampled matrices can also be used with belief propagation
(34) to assess the evidence that present word-order data provides
about each family’s ancestral word order.
For each language family that we analyze, we apply the same

inference algorithm to 100 different trees, sampled randomly
from the distribution P(T) induced by one of our generative
models for trees. We draw 1,000 samples of Q for each tree.
These are then pooled to give 100,000 samples total, and we use
these to estimate posterior means, etc. This is an approximation
to integrating out our uncertainty about the trees using P(T) as
a prior:

PðQjDÞ=
Z
T

PðQjT;DÞPðTÞdT ’ 1
100

X100
i=1

PðQjTi;DÞ; [2]

where the Ti are our sampled trees.
Because of this approach, our results do not depend critically

on any one putative phylogenetic tree for any language family.
We wish to emphasize the theoretical point that uncertainty
about a family’s phylogenetic tree need not translate into an
equivalent amount of uncertainty about anything that may be
inferred from that tree, such as historical change dynamics or the
ancestral word order. It is possible that the observed data D and
the high-level structure that is common to most or all plausible
candidate trees can together provide enough constraints for the
inference process to return some findings with high confidence.
The approach of marginalizing over unknown details of tree
topology, branch length, and change dynamics has been previously
applied to estimating ancestral genetic traits in biology (35).

Results
Two decisions must be made before applying this inference
scheme to our data. The first is which of the four tree-generating
methods should be used. The second is whether to fit a separate
Qmatrix to each of the seven language families or use a common
Q, assuming that the word-order change dynamics have been the
same for all seven families over their collective lifetime. In
Supporting Information, we perform model selection using the
Bayesian information criterion (36), which prefers the “combi-
nation” trees with a common Q parameter. We present the
results for this analysis here, and note in passing the extent to
which each result is robust across the different approaches.
Supporting Information includes further discussion of the relative
merits of the different models, the results for other analyses, and
various work intended to establish the reliability of our methods.

Word-Order Change Dynamics. Each sample of Q contains the rate
parameters λi for each word order, from which we can compute
the mean time that a language will remain in any given word
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order. Taken together, all of the samples define a posterior
distribution over these mean times, and Fig. 1 shows these dis-
tributions. We find that SOV is the most diachronically stable
word order, with posterior probability 0.63, followed by SVO
with probability 0.37. VSO is the third most stable word order,
and VOS, OVS, and OSV are all substantially less stable than all
other orders. A similar picture holds for the “geographic” trees
(SOV most stable with probability 0.55) and “genetic” trees
(SOV probability 0.67). The probability of SOV being more
stable than SVO is in all cases fairly low, so we cannot make this
claim with certainty; however, we can claim with a high degree of
confidence that SOV and SVO are both more stable than VSO
and that VSO is more stable than the remaining three orders.
Each Q sample also provides information about the different

transition probabilities, and in this regard, our results are much
clearer. We find that SOV languages prefer changing to SVO
over VSO, with posterior probability 0.84, and that changing to
SVO is on average roughly 3.5 times more likely than changing
to VSO. This is more consistent with the characterization of
Gell-Mann and Ruhlen (11) (SOV → SVO → VSO) than with
those of Li (8) and Givón (9) (SOV → VSO → SVO). However,
we find Gell-Mann and Ruhlen’s SVO → VSO transition to be
only roughly half as probable as an SVO → SOV “reversion,”
with the reversion being more probable, with posterior proba-
bility 0.74. We find that VSO → SVO is preferred over VSO →
SOV, with posterior probability 0.91, and that VSO changing
to SVO is on average more than 4 times as likely as changing
to SOV. This is consistent with Li and Givón’s proposals as well
as some comments by Gell-Mann and Ruhlen. Overall, we
find that word-order change is best characterized as being
dominated by slow cycles between SOV and SVO and faster
cycles between SVO and VSO (these cycles are faster due to
VSO’s lower stability). In Supporting Information, we show that
this characterization generally holds for the geographic, genetic,
and feature trees as well.

Ancestral Word Orders. Using our recovered Q matrix, we can
compute posterior distributions over the ancestral word orders
for each language family, according to P(WjD) ∝ P(DjW)P(W),
where P(W) is some prior over ancestral orders (dependencies
on T and Q omitted for clarity). If we use a uniform prior distri-
bution over ancestors, such that the maximum posterior (MAP) an-
cestor is the one that assigns the maximum likelihood to the data, the
MAP ancestors for Indo-European, Niger-Congo, Nilo-Saharan,
and Sino-Tibetan are all OSV, while Afro-Asiatic is OVS,
Austronesian is VOS, and Trans-New Guinea is SOV.
These findings are surprising, as OVS and OSV combined

account for barely more than a single percent of today’s lan-
guages. This result is due to the extreme instability of these
orders (a similar phenomenon gives VOS unexpectedly high
posterior probability). If a language tree that is thousands of
years old has, say, OVS at its root, that OVS language is almost
certain to have changed to an SOV or SVO language well before
the time of the leaf languages, and these more stable orders can
persist until the leaves. In this way, an ancestral OVS or OSV
word order is no less able to explain the leaf data than an SOV or
SVO order. Because of this, modern-day language data cannot
reliably give us strong evidence either for or against ancestral
VOS, OVS, or OSV word order.
Despite this finding, we should not believe that most of the

families considered likely to have had ancestral OVS or OSV
word order. Because these word orders were found to be highly
unstable, we should in fact consider them to be very improb-
able ancestors for most families. We can incorporate this ex-
pectation into our analysis through the use of a nonuniform
prior. We define a parameterized family of priors of the form
PtðwiÞ∝ expð−tλiÞ:
For any particular value of t, Pt assigns to any word order

a prior probability proportional to the probability that a language
with that word order has not changed after t years. P0 is the
uniform distribution, and as t → ∞, the prior probability of

unstable word orders such as VOS, OVS, and OSV quickly tends
toward zero. Fig. 2 shows how the posterior probability of dif-
ferent ancestral word orders for each family changes as we sweep
through the family of priors, beginning at the uniform prior P0
and stopping at t = 10,000 y. Observe that the posterior proba-
bility of the unstable orders drops rapidly for all families. For the
majority of priors in the family, Afro-Asiatic, Indo-European,
Sino-Tibetan, and Trans-New Guinea all have SOV as their most
probable ancestral word orders. Niger-Congo’s most probable
ancestral word order is SVO, while Austronesian switches from
being most probably VOS to VSO after t ’ 3,750. Nilo-Saharan
is the only family that does not develop a clearly preferred an-
cestral word order at any point. VSO has the highest posterior
probability for most t values, but its probability never exceeds
SOV’s by more than 0.2, and the difference between these two
orders shrinks to almost zero by t = 10,000. In Supporting In-
formation, we consider a number of alternative priors to the
family outlined above, and we also present a separate analysis of
Indo-European using extinct language data.
At this point, SOV is a most probable ancestor for four of our

seven families. This makes it the most widespread ancestral word
order in our sample, but SOV ancestry is not ubiquitous. The
evidence for ancestral VOS or VSO word order in Austronesian
and SVO order in Niger-Congo is strong, while the evidence for
SOV ancestry in Nilo-Saharan is not especially strong. However,
an important theoretical point is that we have investigated the
ancestors of our seven families independently so far, associating
no penalty with different language families having widely dif-
fering ancestral word orders. If we take a polygenetic view, where
each family’s protolanguge was created de novo, this is fine.
However, under a monogenetic view, the protolanguages of
these seven families are siblings, descended from a common
ancestor that could only have had a single word order. We
should therefore not treat each family independently, and in-
stead expect a degree of consistency across the families. This
perspective is pursued in Looking into the Past and Future.

Looking into the Past and Future. In addition to answering ques-
tions about the ancestral word orders of language families, knowl-
edge of Q lets us answer questions about the long-term behavior of
word-order dynamics, looking into both the past and the future.
Previous researchers have made the (controversial) claim that

SOV was the word order of a language that is a common an-
cestor for all present-day languages (10, 11), and our model
allows us to perform quantitative investigation of this claim. We
can join the roots of the seven family trees to a single parent
node, creating a mongenetic “supertree.” We can then compute
a distribution over word orders at the common ancestor. Of
course, this method is not able to establish that such a mono-
genetic relationship actually exists, but it lets us establish what

Fig. 1. Results of inferring a single mutation matrix Q for all six language
families. (Left) Heat map showing the transition probabilities between word
orders. Higher intensity (white, yellow) indicates more-probable transitions
compared with lower intensity (red, brown), so SOV is most likely to tran-
sition to SVO and SVO to SOV. VSO is much more likely to transition to SVO
than to SOV. (Right) Inferred posterior distributions of stability parameters
for each word order. The horizontal axis shows the stability parameter,
expressed as the mean time between transitions; i.e., higher values indicate
a more stable word order.
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could be said, and with how much confidence, about the com-
mon ancestor language if it does exist.
Fig. 3A shows how the posterior probability of different word

orders at the root changes with the assumed age of the common
ancestor. For young common ancestors (younger than about
48,000 y), VSO is the most likely ancestral word order. This is
due to the high posterior probability of VSO for Afro-Asiatic,
which is the oldest language family we consider and therefore
has its root nearest to the common ancestor. For common
ancestors any older than 48,000 y, the influence from Afro-Asi-
atic is decreased and SOV is the most probable word order. So,
under a monogenetic view of language, “proto-human” was most
probably SOV. However, this claim cannot be made with great
confidence: The probability of an SOV common ancestor is
never much higher than 0.25; put differently, the probability that
the common ancestor had some word order other than SOV is
never far below 0.75. This suggests that our ability to make
strong claims about the word order of the earliest human lan-
guages is quite limited. SOV may be the safest bet for a common
ancestral word order, but it is not an especially safe bet to take.
If the seven families had a common ancestor with SOV word

order, this fact constrains the word order of each family’s root
language, just like the known word orders of the leaf languages
do. If the common ancestor of all families is SOV, then SOV is
also the MAP common ancestor of every family except Niger-
Congo (which remains most probably SVO) for any common
ancestor age less than 100,000 y. Thus, a monogenetic perspec-
tive, which introduces a bias for consistency among the ancestors
of each family, suggests that SOV is the most probable ancestor
of six of our seven families, rather than of four under a poly-
genetic perspective.
Regarding the future, we can explore how the present-day

cross-linguistic distribution may be expected to evolve (see Fig.
3B). SOV and SVO are predicted to swap places as first and
second most frequent word order after around a little less than
10,000 y. After around 35,000 y, there is relatively little change,
as the Markov chain represented by our inferred Q slowly settles
into a “stationary distribution,” an unchanging distribution that
depends only on the evolutionary dynamics represented by Q.
The mean stationary distribution has SVO as its mode, at 52%
(compare to ∼41% today), followed by SOV at 41% (compare to
∼48% today). Note that this is the only finding we present in
which SVO is in any way privileged over SOV. Since SVO is the
most frequent word order in our database, it is possible that this
finding may be due to that bias. Of course, these predictions
cannot and do not take into account possible, e.g., demographic,
social, or political influences.

Discussion
Our primary motivation was to clarify the explanatory target for
psychological explanations of word-order change. The traditional
view has been that SOV must be more functional than SVO due
to it being more common, and several explanations have been
formulated based on this view. Our results suggest that a more
nuanced view must be taken of cross-linguistic word-order dis-
tributions and how they come to be. We find only quite weak
evidence that SOV is more stable than SVO, and find that cy-
cling back and forth between these two orders is a common form
of word-order change. We also find strong evidence that VSO
languages appear to prefer changing to SVO over SOV. The
overall picture does not seem consistent with SOV being more
functional than SVO. We find that SOV is the most probable
ancestral word order for four of our seven families, and that
SOV and VSO are roughly equally probable for a fifth. We also
find that a hypothetical common ancestor of all seven families is
most likely to have had SOV word order (unless the ancestor was
not much older than Afro-Asiatic). However, this is only slightly
more probable than other ancestral orders. On the whole, it
seems that the higher frequency of SOV in present languages is
perhaps best attributed to widespread descent from ancestral
SOV languages, while the high frequency of SVO seems to be

due to preferred directions of word-order change and variation
in word-order stability, both of which are presumably affected
by functionality.
The implications of this work for psychological explanations of

the distribution of word orders are that two independent lines of
research should be pursued. One asks whether there is any
psychological reason that SOV should be such a frequent an-
cestral word order. In light of other results showing a preference
for SOV in improvised gestural communication (12–15), it seems
likely that there is something special about SOV (this suggests

Fig. 2. Posterior probabilities of different ancestral word orders for each
language family, under a parameterized family of priors. Each prior assigns
word orders probabilities proportional to the probability of a language
starting with that word order not changing after a certain length of time.
The longer the timespan, the stronger the preference for stable ancestral
word orders.
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that perhaps we should consider a nonuniform prior for ancestral
word orders that favors SOV, which would make an SOV com-
mon ancestor for all seven families a safer bet). We should en-
deavor to learn what is special about SOV and why. The other
line of research seeks to identify functional concerns that might
drive the most frequent changes (SOV to SVO, SVO to both
SOV and VSO, and VSO to SVO) as well as inhibit rare changes
(SOV to VSO and VSO to SOV). Note that this schema of
changes is not compatible with any straightforward ranking of
the six orders by functionality, as has traditionally been assumed.
Pursuing these two lines of research in parallel, informed by
further computational analyses, provides a path toward un-
derstanding the roots of syntax.
The computational methodology presented here is a valuable

tool for this research program, and others like it. Neighbor
joining is fast compared with alternative methods like maximum
parsimony and maximum likelihood, so our approach can scale
up to very large datasets. The distance-based approach permits
easy integration of linguistic data of many different types. How-
ever, as it is developed thus far, the method is not without lim-
itations. The method is unable to handle family-specific variation
in word-order change dynamics. Dunn et al. find evidence for
such variation (25); however, see refs. 37 and 38 for critiques.
The method also does not feature any possibility of word-
order change due to language contact (analogous to “horizontal
transmission” in biology), or any systematic variation in change
rates due to, e.g., population size or the development of writing.
Recent work has shown that contact-induced change can have
significant influence on phonology (39), and this may also be the
case for word order.
There is also the issue of our language sample and the non-

representativeness of its word-order distribution. A more rep-
resentative sample poses methodological difficulties; most of the
languages not in our seven families are SOV, as expected, but
they belong to a large number of relatively small families. To get
more SOV than SVO languages, we would need to add a great
many more families, and make age estimates for each of these. It

is unclear how much impact this sampling problem has on our
results. SVO languages outnumber SOV in our sample, but our
methods do not conclude that SVO is more stable than SOV.
Presumably this is due to the family-level phylogenetic structure
of the data: There are families in our sample where SOV is 10
times more common than SVO, and families where the two
orders are roughly equally common. This suggests that including
large families that capture the different family-level variation in
the relative frequency of SOV and SVO may be more impor-
tant than capturing the global statistics. Exploring how a wider
range of families can be incorporated into a computational anal-
ysis of the history of word order is an important direction for
future research.

Materials and Methods
Constructing Trees. Our trees were generated using neighbor joining (29),
which required the construction of pairwise distance matrices. We used four
separate methods for generating these matrices. The parameters of all four
methods were calibrated using two reference trees estimated from cognate
data and used in previous research. The reference trees were for the Aus-
tronesian (40) and Indo-European (22) families.

The geographic method uses only the “great circle” distance between
the location of each language as given by The World Atlas of Language
Structures (1), normalized so that the most distant languages in any
family have a distance of 1.0. We then take the logarithm of these dis-
tances and find a and b such that a + b log(d(l1, l2)) has a cumulative
density function (CDF) that best matches the CDF of the normalized
pairwise distances for the Austronesian and Indo-European reference
trees, as measured by the Kolmogorov−Smirnov coefficient. The resulting
pairwise distances have correlations of 0.46 and 0.65 with the Austronesian
(Au) and Indo-European (IE) reference trees, respectively. Using the loga-
rithmic distance yields a higher correlation than linear distance, consistent
with previous findings (39).

The genetic method uses genetic classifications of languages taken from
Ethnologue (41). The classifications are used to assign a “genetic distance”
between languages as follows. Let language A be classified as A1 ⊃ A2 ⊃ . . .

An and language B as B1 ⊃ B2 ⊃ . . . Bm. Without loss of generality, let n ≤ m.
We discarded Bn+1, . . ., Bm if necessary. If Ai = Bi for i = 1, . . ., k, i.e., A and B
are classified identically for the first k refinements of their family, then the
distance is M−

Pk
i=1α

i , where α = 0.69 and M is the maximum value the sum
can take, i.e., when k = n, so that identically classified languages have
a distance of zero. Since α < 1, each additional matching refinement con-
tributes less to the sum, reflecting the fact that later refinements tend to be
much more fine grained. Values of α, a, and b were chosen to fit a + bd
(l1, l2)’s CDF against the Au and IE reference trees, yielding correlations of
0.64 and 0.87.

The “feature”method is based on language feature data fromWALS. Not
all languages in WALS have a known value for every feature in the database.
We identified 25 features that had at least one data point for either two Au
or two IE languages in our reference trees. For any individual feature, we let
the distance between two languages be a simple Hamming distance (i.e., 0 if
the feature values are identical and 1 otherwise). If either language is
missing data for the feature in question, we set the value to the mean dis-
tance for that feature in the relevant language family. We then performed
a stochastic search through the 225 possible combinations of these features,
performing least squares regression on both reference trees. A set of ten
features (listed in Supporting Information) maximized the lowest of the two
correlations. We used weighted least squares regression with these features and
the combined data of both reference trees, and then fit a and b in the usual
way, yielding a pairwise distance measure with correlations of 0.29 and 0.49.

The “combination” method simply uses a linear combination of the three
other methods, fitted against the reference trees using weighted least
squares. The relative weights of the three methods are 0.18 for geographic,
0.77 for genetic, and 0.08 for feature. This combination yields correlations of
0.67 and 0.90 with the reference trees.

The methods described above yield one pairwise distance matrix for any
given family, which we call the “base matrix.” To generate a tree for a given
method and family, we take the base matrix and add to each pairwise dis-
tance a random variate drawn from a N(0, σ2) distribution, with σ = 2/30 (so
that the random noise almost never exceeds 20% of the maximum distance
between any two languages). We then renormalize the matrix and pass it
to the neighbor joining algorithm. We can repeat this process to sample as
many distinct trees as we like.

Fig. 3. Inferences about the distant past and future of the cross-linguistic
word-order distribution. (A) How the posterior probability distribution over
the word order of a hypothetical common ancestor for all six families changes
as we increase the age of that ancestor (the prior distribution is uniform). (B)
How the probability of a randomly selected language having a particular
word order is expected to evolve from the present-day distribution.
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The trees produced by neighbor joining were rooted at their midpoint. We
then multiply each branch length by a change rate parameter, sampled from
a lognormal distribution with a mean of 1.0 (following ref. 42). We interpret
the resulting branch lengths as the product of the amount of time that
separates two languages and the rate of word-order change during this
time, as a proportion of the mean. This permits language change to occa-
sionally occur faster or slower at certain places on the tree. After introducing
rate variation, we scale all branch lengths such that the leaf farthest from
each tree’s root is at a distance corresponding to an estimate of the ap-
propriate language family’s age. The estimated language family age was
randomly sampled for each tree instantiation, from a family-specific distri-
bution. For all language families except Indo-European, tree ages were
drawn from normal distributions, with means corresponding to published
estimates of that family’s age and variance set so that sampled ages rarely
differ from the mean by more than 25%. The age estimates were 25,000 y
for Afro-Asiatic (43), 7,000 y for Austronesian (44), 17,500 y for Niger-Congo
and Nilo-Saharan (43), 7,500 y for Sino-Tibetan (45), and 8,000 y for Trans-
New Guinea (46). Reflecting the controversy surrounding Indo-European
dating, ages for IE trees were sampled from a sum of two normal dis-
tributions, one with mean 6,000 y (the Kurgan hypothesis of IE origins) and
one with mean 8,750 y (the Anatolian hypothesis) (21). The DendroPy (47)
and Newick (http://users-birc.au.dk/mailund/newick.html) software libraries
were used for tree generation.

Inference. Given a tree T and a matrix Q, it is straightforward to compute the
conditional probability of the known word-order data D, P(DjT, Q). We be-
gan at the root of the tree and placed a uniform prior distribution over the

word order at that node. Then we simply moved down the tree, computing
a probability distribution for each node based on the parent node’s distri-
bution and rate matrix Q until we arrived at the leaves. Then P(DjT, Q) was
just the product of the probabilities of each individual leaf having taken its
observed value.

We placed a prior distribution over Q that was unbiased with respect to
the direction of transitions but was biased toward stability of word order.
Recall that the 6 × 6 rate matrix can be expressed in terms of six waiting
time rate parameters λ1, . . ., λ6 and 30 transition probabilities tij. Higher
values of λi make a word order less stable, so we put independent expo-
nential prior distributions on each λi, with parameter values of 3.0. Thus,
PðQÞ= 36 exp ð3P6

i=1λiÞ. With the prior defined, we can compute the posterior
probability of a given matrix, P(QjT, D) ∝ P(DjT, Q)P(Q).

The Metropolis−Hastings algorithm allowed us to draw samples from the
posterior and compute an approximation to the posterior mean. Our pro-
posal step operated directly on Q and randomly selected from a set of moves
including adding normally distributed values of mean zero to randomly
selected matrix elements and swapping randomly selected rows or columns.
For each tree, we collected 1,000 samples after a burn-in of 5,000 samples,
with an intersample lag of 100 iterations.
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