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Abstract

Urease pre-treatment of urine has been utilized since the early 1960s to remove high levels of urea

from samples prior to further processing and analysis by gas chromatography-mass spectrometry

(GC-MS). Aside from the obvious depletion or elimination of urea, the effect, if any, of urease

pre-treatment on the urinary metabolome has not been studied in detail. Here, we report the results

of three separate but related experiments that were designed to assess possible indirect effects of

urease pre-treatment on the urinary metabolome as measured by GC-MS. In total, 235 GC-MS

analyses were performed and over 106 identified and 200 unidentified metabolites were quantified

across the three experiments. The results showed that data from urease pre-treated samples 1) had

the same or lower coefficients of variance among reproducibly detected metabolites, 2) more

accurately reflected quantitative differences and the expected ratios among different urine

volumes, and 3) increased the number of metabolite identifications. Overall, we observed no

negative consequences of urease pre-treatment. In contrast, urease pretreatment enhanced the

ability to distinguish between volume-based and biological sample types compared to no

treatment. Taken together, these results show that urease pretreatment of urine offers multiple

beneficial effects that outweigh any artifacts that may be introduced to the data in urinary

metabolomics analyses.
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1 Introduction

Urine is a commonly used biofluid for metabolite analysis and metabolomics studies in

humans due to its facile and noninvasive collection and metabolite richness. It is an almost

perfect matrix for identifying and monitoring biomarkers for various aspects of human

health. The glomerular filtrate (the glomerulus is the filtering unit of the nephron; both

kidneys of a human contain a combined ~2,400,000 nephrons) has almost exactly the same

composition as blood plasma, with the exception of protein content (Guyton, 1981). Blood

plasma is directly linked to the extracellular fluids in the body, and the rate of blood flow

through the kidneys is ~1200 mL/min for a 70 kg man (Guyton, 1981). Thus, metabolites

present in blood due to cell damage/death or excretion stand an excellent chance of

appearing in the urine as biomarkers. Urinary metabolite biomarkers of interest include

those used to assess drug (Wilkins, 1997) and anabolic steroid abuse (Shelby et al., 2011),

identify individuals with cancer (Ganti and Weiss, 2011) and other diseases (Kussmann et

al., 2006), diagnose inborn errors of metabolism (Kuhara, 2007), determine exposure to

carcinogens (Hecht, 2002), pesticides (Egeghy et al., 2011), and endocrine disruptors

(Meeker et al., 2009), and monitor levels of oxidative stress (Roberts and Morrow, 2000).

Current metabolite analysis and metabolomics studies rely almost exclusively on nuclear

magnetic resonance spectroscopy, liquid chromatography-mass spectrometry (LC-MS), and

gas chromatography-mass spectrometry (GC-MS) (Metz et al., 2007). GC in particular is

unsurpassed in terms of separation peak capacity – a measure of the number of

chromatographic peaks that can be baseline-resolved within the analysis time – and is used

extensively in the analysis of small molecules in various matrices, including urine. High

levels of urinary urea (typically on the order of 9.3–23.3 g/L (Putnam, 1971)) present a

challenge in GC-MS-based metabolomics analyses and can consume the chemical

derivatizing reagent, resulting in incomplete derivatization of other metabolites. Urea can be

eliminated by pre-treating urine with the enzyme urease prior to metabolite extraction,

derivatization, and analysis. Wells et al. (1964) first reported on the use of urease pre-

treatment of urine samples in 1964, and the method has been improved by others

(Shoemaker and Elliott, 1991; Matsumoto et al., 1994; Chan et al., 2011) over the years.

While urease pre-treatment of urine can completely remove urea from the sample, its effects,

if any, on the measurement of the urinary metabolome are unknown. Creatine is converted

to creatinine during urease pre-treatment (Shoemaker and Elliott, 1991; Matsumoto and

Kuhara, 1996), due to the increase in pH of the sample from liberation of two moles of

ammonia per mole of urea, and various preparations of urease can introduce contaminants

such as myoinositol (Clements and Starnes, 1975) and citrate (Shoemaker and Elliott, 1991).

In developing a comprehensive urinary metabolomics approach for identifying kidney

cancer, Kind et al. (2007) observed decreased abundances for aconitate, acotinate, ascorbate,

citrate, glycerol, hypoxanthine, succinate, and tyrosine using GC-MS, and for several

unidentified compounds using LC-MS, after urease pre-treatment. However, beyond these

findings, a detailed analysis of the potential metabolomic artifacts of urease pre-treatment of

urine has not yet been reported. Therefore, we conducted a statistical analysis of the effects

of urease pre-treatment of urine samples as measured by GC-MS over three separate
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experiments involving 1) a constant volume of urine, 2) varying volumes of urine, and 3) a

comparison of male and female urines.

2 Materials and methods

2.1 Chemicals and reagents

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless

otherwise noted. A mixture of fatty acid methyl esters (FAMEs) dissolved in hexane was

prepared for use as a retention index standard. Even numbered FAMEs from C8 to C28 were

prepared at 533.3 µg/mL, with the exception of C16 which was prepared at 733.3 µg/mL. A

creatinine assay kit (DetectX Urinary Creatinine Detection Kit; catalog number K002-H1)

was obtained from Arbor Assays (Eisenhower, PA). Deionized and purified water was used

to prepare buffer and standard solutions (Milli-Q System Advantage A10, Merck Millipore,

Billerica, MA).

2.2 Urine samples

Approval for the conduct of this programmatic research was obtained from the Pacific

Northwest National Laboratory Institutional Review Board. Urine samples from consenting

male and female donors (n = 20 each, Supplemental Table S1) after an overnight fast were

purchased from Bioreclamation, LLC (Hicksville, NY) and received frozen on dry ice and

deidentified. To create a uniform sample for Experiments 1 and 2 (see below), aliquots from

each individual sample were pooled, realiquoted, and stored at −80°C until used.

2.3 Urease pre-treatment of urine samples

2.3.1 Experiment 1 – Constant Urine Volume—To initially evaluate the effects of

urease pre-treatment on the urinary metabolome, we compared the urine metabolite profiles

from pooled urine after pre-treatment with urease, water, or no treatment at all. For this, 100

µL aliquots of the pooled urine sample were incubated (n = 5, each) with 100 µL of a 1

mg/mL solution of urease (Sigma-Aldrich catalog number U4002) prepared in water

(urease-treated; ‘UT’) or an equal volume of water alone (water-treated; ‘WT’) for 30 min at

37°C with mild shaking (500 rpm). Identical aliquots (n = 5) were not subjected to any

treatment (no treatment; ‘NT’) and allowed to sit at room temperature for 30 minutes.

Metabolites were then extracted with concomitant protein precipitation by addition of 1 mL

of cold (−20°C) methanol with vortexing for 30 s, and precipitated proteins were removed

by centrifugation at 15,000×g for 10 min at 4°C. The supernatants were transferred to glass

autosampler vials and then dried in vacuo prior to chemical derivatization. If the extracts

could not be immediately derivatized and analyzed by GC-MS, then they were stored at

−80°C.

2.3.2 Experiment 2 – Varying Urine Volumes—To evaluate whether the effects of

urease pre-treatment of urine varied with the volume of urine prepared, we compared the

urine metabolite profiles from pooled urine after pretreatment with urease (UT) and after no

treatment (NT) using various volumes of urine. For this, several volumes (5, 10, 25, 50, and

100 µL) of the pooled urine sample were incubated (n = 3, each) with 100 µL of a 1 mg/mL
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solution of urease or were not subjected to any treatment, each as described above.

Metabolites were then extracted as described above.

2.3.3 Experiment 3 – Male Versus Female Urines—Finally, to evaluate whether any

artifacts introduced by urease pre-treatment on the urinary metabolome interfered with the

ability to distinguish between comparative samples, we compared the metabolite profiles

from individual male and female urine samples after pretreatment with urease or after no

treatment (previous metabolomics studies of male and female urines (Pasikanti et al., 2008;

Slupsky et al., 2007; Saude et al., 2007; Psihogios et al., 2008) have reported differences in

metabolite levels). For this, 50 µL aliquots of individual male and female urine samples (n =

20, each) were blocked, randomized, and then incubated with 50 µL of a 1 mg/mL solution

of urease (UT) or were not subjected to any treatment (NT), each as described above.

Metabolites were then extracted as described above. Creatinine was quantified in each

sample using the DetectX Urinary Creatinine Detection Kit according to the manufacturer’s

instructions, with the exception that a simple linear regression was used for the standard

curve.

2.4 Chemical derivatization

Dried metabolite extracts were chemically derivatized using a modified version of the

protocol used to create FiehnLib (Kind et al., 2009). Briefly, dried metabolite extracts were

dried again to remove any residual water if they had been stored at −80°C. To protect

carbonyl groups and reduce the number of tautomeric isomers, 20 µL of methoxyamine in

pyridine (30 mg/mL) were added to each sample, followed by vortexing for 30 s and

incubation at 37°C with generous shaking (1000 rpm) for 90 min. At this point, the sample

vials were inverted one time to capture any condensation of solvent at the cap surface,

followed by a brief centrifugation at 1000×g for 1 min. To derivatize hydroxyl and amine

groups to trimethylsilyated (TMS) forms, 80 µL of N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) were

then added to each vial, followed by vortexing for 10 s and incubation at 37°C with shaking

(1000 rpm) for 30 min. Again, the sample vials were inverted one time, followed by

centrifugation at 1000×g for 5 min. The samples were allowed to cool to room temperature

and were analyzed in the same day.

For Experiment 1, the derivatized samples were split into 3 portions and transferred to 3 new

autosampler vials with inserts. For Experiment 2, the derivatized samples were kept intact

and each transferred to a single new autosampler vial with insert. For Experiment 3, the

derivatized samples were split into 2 portions and transferred to 2 new autosampler vials

with inserts.

2.5 GC-MS analysis

Samples were analyzed according to the method used to create FiehnLib (Kind et al., 2009).

An Agilent GC 7890A coupled with a single quadrupole MSD 5975C (Agilent

Technologies, Inc; Santa Clara, CA) was used, and the samples were blocked and analyzed

in random order for each Experiment. A HP-5MS column (30 m × 0.25 mm × 0.25 µm;

Agilent Technologies, Inc) was used for untargeted metabolomics analyses. The sample
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injection mode was splitless, and 1 µL of each sample was injected. The injection port

temperature was held at 250°C throughout the analysis. The GC oven was held at 60°C for 1

min after injection, and the temperature was then increased to 325°C by 10°C/min, followed

by a 5 min hold at 325°C (Kim et al., 2013). The helium gas flow rates for each Experiment

were determined by the Agilent Retention Time Locking function based on analysis of

deuterated myristic acid and were in the range of 0.45-0.5 mL/min. Data were collected over

the mass range 50 – 550 m/z. A mixture of FAMEs (C8-C28) was analyzed once per day

together with the samples for retention index alignment purposes during subsequent data

analysis. All raw GC-MS data will be made available via the Metabolights metabolomics

data repository (http://www.ebi.ac.uk/metabolights/index).

2.6 Data processing and metabolite identification

GC-MS raw data files from each Experiment were processed using the Metabolite Detector

software, version 2.0.6 beta (Hiller et al., 2009). Briefly, Agilent.D files were converted to

netCDF format using Agilent Chemstation, followed by conversion to binary files using

Metabolite Detector. Retention indices (RI) of detected metabolites were calculated based

on the analysis of the FAMEs mixture, followed by their chromatographic alignment across

all analyses after deconvolution. Metabolites were initially identified by matching

experimental spectra to an augmented version of FiehnLib (Kind et al., 2009) (i.e., the

Agilent Fiehn Metabolomics Retention Time Locked (RTL) Library, containing spectra and

validated retention indices for over 700 metabolites), using a Metabolite Detector match

probability threshold of 0.6 (combined retention index and spectral probability). All

metabolite identifications were manually validated to reduce deconvolution errors during

automated data-processing and to eliminate false identifications. We propose that this

approach results in a metabolite identification confidence of Level 1.5, according to the

guidelines recommended by the Metabolomics Standards Initiative Chemical Analysis

Working Group of the Metabolomics Society (Sumner et al., 2007). While the library used

to identify metabolites was generated by an external laboratory, this library contains both

retention indices and mass spectra from analyses of authentic chemical standards, and our

analyses were performed using methods identical to those used to create the library. The

NIST 08 GC-MS library was also used to cross validate the spectral matching scores

obtained using the Agilent library and to provide identifications of unmatched metabolites

(Level 2 identifications). The three most abundant fragment ions in the spectra of each

identified metabolite were automatically determined by Metabolite Detector, and their

summed abundances were integrated across the GC elution profile; fragment ions due to

trimethylsilylation (i.e. m/z 73 and 147) were excluded from the determination of metabolite

abundance. A matrix of identified metabolites, unidentified metabolite features

(characterized by mass spectra and retention indices and assigned as ‘unknown’; Level 4

identifications), and their abundances was created for each Experiment for statistical

analysis. Features resulting from GC column bleeding were removed from the data matrices

prior to further data processing and analysis.

2.7 Statistical Pre-processing

The GC-MS data matrices from all Experiments were log10 transformed and processed

similarly to remove metabolites with inadequate information for statistical analyses and

Webb-Robertson et al. Page 5

Metabolomics. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ebi.ac.uk/metabolights/index


identify outlier GC-MS analyses. For each Experiment, metabolites were filtered from the

dataset if they did not meet the minimum requirements for a quantitative statistical test, such

as t-test or Analysis of Variance (ANOVA), and qualitative test (G-test) (Webb-Robertson et

al., 2010). However, the data processing of the GC-MS raw files (Section 2.6) did not return

any features, identified or unidentified, with inadequate data for statistics in one or more

treatment groups from any Experiment. Extreme behavior in GC-MS datasets (outliers) were

identified using a combination of correlation, principal component analysis (PCA), and an

approach based on a robust Mahalanobis distance (rMd) to assess the reproducibility of the

distribution of metabolite abundance values across replicate runs of the same sample, as well

as across related biological samples (Matzke et al., 2011). Strategies for normalization of the

identified metabolite and unidentified metabolite feature abundances in each data matrix

were evaluated using the Statistical Procedure for the Analyses of Normalization Strategies

(SPANS) protocol (Webb-Robertson et al., 2011).

2.7.1 Experiment 1-Constant Urine Volume—Experiment 1 resulted in the

identification of 228 metabolites across 45 total GC-MS analyses (5 aliquots of urine

measured in triplicate across three pre-treatment approaches). Outlier evaluation found data

from one GC-MS analysis displaying extreme behavior (Supplemental Figure S1). Analysis

via SPANS found that all strategies, both global and local, introduced bias into the dataset.

Further exploration found that the UT group had significantly larger overall abundance

profiles affecting the majority of the metabolites and that adequate metabolites with

unchanging profiles were not confidently identified to normalize against (Supplemental

Figure S2). However, as seen in Figure 1A, after averaging technical replicates, the variation

between GC-MS datasets within each pre-treatment were minimal and therefore lack of

normalization will not dramatically affect the results of subsequent statistics.

2.7.2 Experiment 2 – Varying Urine Volumes—The second experiment resulted in the

identification of 250 metabolites across 30 total GC-MS analyses (3 aliquots of urine

measured across 5 dilutions with 2 pre-treatment approaches). Outlier evaluation found no

unusual behavior. Again, due to the significant differences in the volumes of the metabolites

being measured, no normalization was performed; however, the variability between

replicates was low, since they were based on a common pool (Figure 1B).

2.7.3 Experiment 3 – Male Versus Female Urines—Finally, the last experiment

comparing the profiles from individual male and female urines resulted in 207 total

metabolite identifications across 160 GC-MS analyses (20 males and 20 females in duplicate

for each of 2 pre-treatments). Processing for outliers found no unusual behavior. For direct

comparison of NT to UT, no normalization was required since the samples were paired and

the analysis is based on the difference between paired samples. However, to compare males

versus females within each pre-treatment, subset normalization was required. We chose to

not normalize the data against donor’s urinary creatinine levels as it was previously reported

from a 6-year survey of >20,000 individuals that adult males have significantly greater (p <

0.0001) urinary creatinine concentrations than adult females (Barr et al., 2005), and

normalizing metabolite abundances against creatinine levels would have artificially

increased the metabolite abundances in female versus male urine samples. Despite the fact
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that there was no statistical difference (two-sample t-test; p-value ~0.3) between male and

female urinary creatinine values in our study, normalization of metabolite abundances

against urinary creatinine resulted in every detected metabolite being statistically significant

at a p-value of 0.05 due to bias introduced by this normalization step. In particular, the

means and standard deviations after creatinine normalization were 8.2 ± 3.3 and 7.3 ± 3.8

for the males and females, respectively. Performing a paired test based on the rank order of

the samples was highly significant (p~4.4e-5). In lieu of creatinine normalization, we used a

global median normalization, which was found to not introduce bias using the SPANS

algorithm. Figure 1C shows the resulting distribution of each GC-MS dataset after

normalization. In addition, since the sample sizes were large for this experiment, all p-values

computed from statistical hypothesis tests were corrected across metabolites using a

Bonferroni correction (Broadhurst and Kell, 2006).

3 Results and Discussion

3.1 Exploratory Analysis of Pre-treatment Approaches

In Experiment 1, we evaluated the effects of urease pre-treatment (UT) vs water treatment

(WT) or no treatment (NT) on the urinary metabolome using a constant volume (100 µL) of

urine. The data matrix consisted of abundance values for 228 metabolites across 45 GC-MS

analyses (Supplemental Table S2). Eighty-eight of these were identified based on matching

of spectra and retention indices to entries in the Agilent Fiehn Metabolomics RTL Library,

while 140 remain unidentified. Unsupervised exploratory analysis was performed using

Principal Component Analysis (PCA) without imputation of missing values based on a

sequential projection pursuit (sppPCA) approach (Webb-Robertson et al., 2013), meaning

that when a metabolite was not identified for a sample we did not attempt to infer the

mechanism by which it was missing or estimate the value of the missing observations. The

sppPCA analysis shows a clear discrimination of UT from WT and NT samples in the scores

plot based on the first principal component (Figure 2A). In the second dimension, some

segregation of WT and NT samples is observed, and although we do not know the reason for

this segregation, a separate control experiment showed that metabolite abundances from WT

treated samples was consistently more variable than that from NT samples (data not shown).

Due to the similarity between the WT and NT treatments both in the exploratory data

analysis and in more in depth statistical analyses (see section 3.3, below), we chose only to

compare UT and NT in Experiments 2 and 3.

To determine if the effects of urease pre-treatment on the urinary metabolome were volume

dependent, Experiment 2 compared UT versus NT over five volumes (5, 10, 25, 50 and 100

µL) of urine. The data matrix consisted of abundance values for 250 metabolites across 30

GC-MS analyses (Supplemental Table S3). Ninety-six of these were identified based on

matching of spectra and retention indices to entries in the Agilent Fiehn Metabolomics RTL

Library, while 154 remain unidentified. The sppPCA analysis, Figure 2B, again showed a

clear discrimination of NT from UT; however, in this case pre-treatment was associated with

the second principal component, while the largest variation driving the first principal

component was urine volume.
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Lastly, to evaluate whether the effects of urease pre-treatment on the urinary metabolome

confounded the ability to identify statistical differences between comparative samples, we

compared UT vs NT in the analysis of fasting urine from male and female donors (n = 20,

each; Supplemental Table S1). As mentioned above, previous metabolomics studies of male

and female urines (Pasikanti et al., 2008; Slupsky et al., 2007; Saude et al., 2007; Psihogios

et al., 2008) have reported differences in metabolite levels. The final data matrix in our

study consisted of abundance values for 207 metabolites across 80 GC-MS analyses

(Supplemental Table S4). Eighty-three of these were identified based on matching of spectra

and retention indices to entries in Agilent Fiehn Metabolomics RTL Library, while 124

remain unidentified. We observed that the largest source of variability was based on pre-

treatment with variability related to gender viewed as a lower-resolution visual separation on

the second principal component (Figure 2C).

3.2 Reproducibility of Pre-treatment Approaches

The reproducibility of all experiments was evaluated using the percent coefficient of

variation (CV) within replicates for the pre-treatment groups. The CV shows the level of

variability in relation to the mean of each group. Since raw abundance values are always

positive, we calculated CVs using the final normalized data back-transformed from the log

scale to original units.

3.2.1 Experiment 1-Constant Urine Volume—Of the 226 metabolites measured in

Experiment 1, 212 had sufficient observations across the technical replicates of the three

pre-treatments to compute CV values. The average percent CVs for WT, NT, and UT were

16.6%, 12.5% and 12.3%, respectively. However, the median percent CVs were 7.9%, 8.5%

and 7.7%, respectively (the larger average percent CV for WT was driven by several large

values (outliers) for a small number of metabolites). Due to the non-normality of the CV

values across the 212 metabolites, we used a Friedman’s test (Hollander and Wolfe, 1999) to

compare the abundance distributions. A Friedman’s test is a non-parametric equivalent to a

two factor ANOVA, treating CV as the primary factor and metabolite as a secondary factor.

The Friedman’s test identified no statistically significant differences between the three pre-

treatments (p-value ~0.08); however, WT was noted as having several extreme values.

3.2.2 Experiment 2 – Varying Urine Volumes—Of the 250 metabolites measured in

Experiment 2, 202 metabolites had sufficient observations across the process replicates of

the two pre-treatments to calculate CVs. The CVs were first computed on process replicates

within each concentration. Thus, each treatment was represented by five CV values, which

were then averaged, improving the overall power of the CV estimate. In this case, the

comparison of UT versus NT is highly significant (p-value ~2e-20; Wilcoxon signed rank

test). Comparing UT versus NT within each volume, the UT group had a significantly lower

median percent CV than NT at all volumes except for 25 µL (Table 1).

3.2.3 Experiment 3 –Male Versus Female Urines—For Experiment 3, the CV was

computed for each metabolite across technical replicates within each of the two pre-

treatments, followed by averaging across biological replicates to obtain an average CV per

metabolite. Of the 207 quantified metabolites, there were 168 with sufficient observations to
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calculate CV values for both pre-treatments. The median percent CV for NT was 14.1%

versus 11.2% for UT, a difference that was significantly lower for UT based on a Wilcoxon

signed rank test (p-value ~4e-20).

3.3 Differential Metabolite Abundances Across Pre-treatments

Finally, we analyzed the data from our study to identify any metabolites with statistical

differences in abundances, which might reflect biases for or against specific metabolites or

metabolite classes due to UT. In addition, for Experiment 2 we evaluated the data as they

related to the experimental design; for example, the comparison of observed to expected

metabolite abundance ratios and true positive separations between samples due to

differences in urine volumes.

3.3.1 Experiment 1-Constant Urine Volume—The statistical trend for each metabolite

quantified in Experiment 1 was calculated using Dunnett’s test and a G-test to compare the

WT and NT groups to the UT group for quantitative and qualitative differences,

respectively. The number of significantly different metabolites is reported for both tests

based on a p-value threshold associated with a Bonferroni correction (Broadhurst and Kell,

2006) that accounts for the 228 metabolites evaluated (a corrected p-value threshold of

~0.00022). The G-test results are not affected by the Bonferroni correction, meaning there

were no metabolites with marginal G-test evidence. Consequently, either the metabolite was

observed nearly completely in one treatment or was absent from the other. Table 2 gives the

number of metabolites that were significant and the associated trends based on decreases or

increases in metabolite abundances in UT versus WT and/or NT. There were no trends

where metabolite abundances in UT increased versus one treatment and decreased versus the

other; these trends were thus excluded from Table 2. We observed that ~49% of the

quantified metabolites have a significantly higher abundance or presence in the UT group

versus either alternate treatment combined. In contrast, only 7% of metabolites were

detected in lower abundance or presence in WT and/or NT versus UT.

Overall the numbers of metabolites with increases or decreases in abundances are highly

similar for comparison of UT vs either WT or NT with either the Dunnett or G-test

(Supplemental Figure S3) for which counts are combined in Table 2. The decreased

abundances of metabolites in WT and NT versus UT samples is likely due to a combination

of consumption of the derivatizing reagent by high levels of urea, as reported by Shoemaker

and Elliot (1991), and to chromatographic effects from overwhelming urea concentrations.

Indeed, we observed poor chromatographic peak shapes for metabolites that co-eluted with

urea in WT and NT samples, such as for threonine (Supplemental Figure S4); these

metabolites exhibited wide, flat peaks that could not be effectively defined by the software

used to automatically process the GCMS data. Supporting the hypothesis of consumption of

derivatizing reagent by high urea levels, the metabolites that were identified with higher

abundances in UT versus WT and NT groups eluted for the most part after the region of urea

elution (data not shown), and also were comprised of sugars and related molecules with

large numbers of exchangeable protons (Supplemental Table S5). There were 4 identified

(glyceric acid, hippuric acid, pyroglutamic acid, and phosphoric acid) and 11 unidentified

metabolites that showed statistically significant increases in abundance in WT and NT
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versus UT, but their retention times were relatively uniformly distributed across the

chromatograms.

Among the metabolites with statistically significant differences in abundances

(Supplemental Tables S5 and S6), urea was found significant by G-test with presence in WT

and NT but not in UT, as expected. Lactose showed significantly increased abundance in UT

samples; however, lactose was added to the urease formulation as a stabilizer, similar to

previous reports of metabolites present in other sources of urease (Clements and Starnes,

1975; Shoemaker and Elliott, 1991), and so its increase is likely an artifact of the urease pre-

treatment. The manufacturer of the urease used in this study acknowledges that phosphate is

also added to the formulation, and we detected trace amounts of dithiothreitol in methanol

extracts of the urease. We did not detect dithiothreitol or phosphate in our analyses of urease

pre-treated urine; interestingly, phosphoric acid was among 16 metabolites determined to be

significantly increased in WT and NT versus UT samples based on Dunnett’s test and a G-

test.

In a previous study, Kind et al. (2007) observed decreased abundances for aconitate,

acotinate, ascorbate, citrate, glycerol, hypoxanthine, succinate, and tyrosine using GC-MS

and for several unknown compounds using LC-MS after urease pre-treatment. In our study,

we found that citrate, hypoxanthine, and aconitate (identified as trans-aconitate) were

significantly increased in UT versus WT and NT samples (Supplemental Table S5).

Similarly, tyrosine was significantly increased in UT versus WT but not NT samples

(Supplemental Table S5). We also quantified glycerol, but its abundance was not

significantly different between UT and WT/NT groups. As mentioned above, we identified

glyceric acid, hippuric acid, pyroglutamic acid, and phosphoric acid, as well as 11

unidentified metabolites, as increased in abundance in WT/NT versus UT groups, but none

of these metabolites overlap with the list reported by Kind et al. as decreased in abundance

after urease pre-treatment. The differences in metabolite abundances between UT and NT in

this study compared to that published by Kind et al. may be due to the number of process (n

= 5) and technical (n = 3) replicates performed in this study, which can increase or decrease

statistical significance for some metabolites. We also speculate that the differences between

the two studies could be due to the sensitivity of the instruments utilized (quadrupole MS

detector in this study versus time-of-flight (TOF) MS in that by Kind et al.); a quadrupole

MS is less sensitive than a TOF MS and therefore requires more sample to be extracted in

order to achieve similar coverage of the urinary metabolome. Finally, differences in the

urine samples themselves in terms of the metabolome or the urine matrix may contribute to

the quantitative and qualitative differences reported in the two studies.

3.3.2 Experiment 2 – Varying Urine Volumes—To compare differences in metabolite

abundances between UT and NT, we performed both a paired t-test and a G-test on data

from each urine volume (note that because n = 3, significance by G-test is only achieved

when a metabolite is observed in all replicates for one treatment and in no replicates from

the other treatment). Figure 3A shows the numbers of metabolites that were significantly

different in abundance between the two treatments at each volume. At lower volumes (5 and

10 µL) of urine prepared, metabolites from NT treated samples were detected in higher

abundance more frequently than in UT treated samples, which is consistent with the
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observations reported by Kind et al. (2007), who typically prepare ~10 µL of urine for GC-

MS analyses (T. Kind, personal communication). However, in contrast to the previous study

(Kind et al., 2007), we did not identify the same metabolites (aconitate, acotinate, ascorbate,

citrate, glycerol, hypoxanthine, succinate, and tyrosine) present in lower abundance in NT vs

UT. Instead, we found that 2-methyl-3-hydroxybutyrate, dehydroalanine (likely produced as

an artifact of derivatization of cysteine (Kim et al., 2011)), glycine (partial derivative),

hippurate, hypoxanthine, porphine, and 5 unidentified metabolites were higher in abundance

in NT versus UT samples at all volumes. Again, the differences between these two studies in

terms of the effects of UT could be due to experimental design, instrumentation used, or the

cohort studied.

There were 32 metabolites found to have significantly higher abundances in NT versus UT

samples at a majority (≥3) of urine volumes evaluated. Eighteen of these remain

unidentified, while gluconate (25, 50, and 100 µL), glycine (complete derivative; 25, 50, and

100 µL), malate (25, 50, and 100 µL), 3-indoleacetate (10, 25, and 50 µL), fumarate (5, 10,

and 50 µL), and 3-aminoisobutyrate (5, 10, 25, and 50 µL) were significantly different

between the two treatments at the volumes indicated. It is difficult to identify common

physical properties that might result in lower abundances for these metabolites in UT versus

NT samples. As expected, urea was also consistently identified in higher abundance in NT

versus UT samples. At 25 µL of urine prepared, there was roughly an equal number of

metabolites detected in higher abundance in either treatment compared to the other. At 50

and 100 µL of urine, there were increasingly more metabolites detected in higher abundance

in UT vs NT samples. Qualitatively, more metabolites were detected in UT versus NT

samples at all volumes (Figure 3B) based on a G-test. As expected, the number of

metabolites detected increased as the volume increased within each treatment (data not

shown).

We also compared the data from UT samples to that from NT samples in terms of the global

identification rate. There were 198 metabolites that were identified at all 5 volumes for both

treatments, and 52 metabolites with missing identifications for one or more volumes and

pre-treatment combinations. Table 3 shows the distribution of the identifications of these 52

metabolites across each volume/pre-treatment combination and the overlap between

pretreatments within a volume. For example, at 5 µL of urine prepared there are 7

metabolites that were detected in all replicates for either NT or UT, but only 3 of these were

detected in all replicates for both NT and UT. Using a z-test of proportion (Ott and

Longnecker, 2008) at each volume, significant increases in complete identifications were

observed for UT versus NT at volumes of 50 µL and above. As expected, we observed a

clear log-linear relationship between the number of unique metabolites identified

reproducibly (i.e. across all replicates) and the volume of urine prepared (Supplemental

Figure S5). When the same data is plotted on a non-log scale, the increase in identifications

becomes relatively flat for both treatments from 50 to 100 µL of urine. There was a higher

metabolite identification rate with the UT versus NT group; however, the 95% confidence

intervals for the two treatments did overlap (data not shown). Based on an F-test, there were

20 metabolites in the NT group that did not show linear behavior (p-value > 0.05; null

hypothesis that the data is non-linear). In contrast, there were only 5 metabolites in the UT

group that showed a non-linear relationship between abundance and urine volume.
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Experiment 2 data were further analyzed in the context of the expected differences in

metabolite abundances due to the different urine volumes studied. Dividing the largest urine

volume of 100 µL by the other volumes yields ratios of 20:1, 10:1, 4:1 and 2:1 for 5, 10, 25

and 50 µL, respectively, and Figure 4 clearly shows that the data from UT samples had

experimental ratios that were closer to these expected ratios relative to that from NT

samples. The observed average ratios (back-transformed from log10 scale) of the UT group

were 19.9, 10.5, 4.2 and 2.1 for urine volumes of 5, 10, 25 and 50 µL, respectively. These

ratios were 16.1, 8.6, 3.4 and 1.7 for the corresponding volumes in the NT group. To

evaluate these differences statistically, we subtracted the expected log ratios from each of

the observed ratios and performed a t-test to test the hypothesis that the ratios were drawn

from a random sample with a mean of zero and an unknown variance. The p-values for UT

data ranged from 0.20 to 0.91, meaning that the average ratios from this treatment were not

significantly different than that expected by the design of the experiment. However, in all

cases the observed ratios for NT were less than expected based on the experimental design,

with p-values ranging from 2e-3 to 9e-16.

Lastly, we evaluated the two treatments based on the assumption that we should be able to

detect increases in metabolite abundances as the volume of urine prepared increases. We

performed an ANOVA within each treatment across volumes and used a Tukey’s adjusted p-

value to identify the number of significantly increased metabolites as volume increased for

all 10 possible volume comparisons (5 versus 10 µL, 5 versus 25 µL, 5 versus 50 µL, 5

versus 100 µL, 10 versus 25 µL, 10 versus 50 µL, 10 versus 100 µL, 25 versus 50 µL, 25

versus 100 µL and 20 versus 100 µL). This quantitative test was performed on all

metabolites that were detected across all 30 samples (198 metabolites). We chose not to use

a Bonferroni correction of p-values in this case due to the relatively small sample size. In all

comparisons, more significantly increased metabolites were identified in the UT rather than

the NT group (Supplemental Figure S6). In particular, we observed that UT does much

better at identifying differences at close volumes, for example, UT identifies 179 of the 198

as significant when comparing 50 to 100 µL, but NT only identifies 149. Presumably this is

related to the lower CV values for the UT group, which improves the ability to statistically

discriminate between volumes.

The data presented above indicates that there are distinct relationships between the numbers

of metabolite identifications and the associated metabolite abundances with the volume of

urine prepared for both UT and NT as measured using GC-MS. These relationships suggest

that there could be serious implications when comparing the results of GC-MS-based

urinary metabolomics studies where different volumes of urine have been prepared, and

caution should be exercised among the community when such comparisons are attempted.

These relationships may or may not extend to metabolomics studies of other sample types

using GC-MS, or to other analytical platforms

3.3.3 Experiment 3 – Male Versus Female Urines—Similar to our observations for

Experiments 1 and 2, more metabolites showed a significant increase in abundance with UT

(67; 32%) versus NT (24; 11%) at a Bonferroni corrected p-value (2.4e-4) in Experiment 3.

For all metabolites where at least 50% of the observations were missing from either UT or

NT groups, a G-test was performed to qualitatively assess the data. There were 16
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metabolites that met this criterion – 8 of the 16 had significantly more observations with UT

versus NT, whereas 2 had significantly more observations with NT vs UT.

We next performed a two-sample t-test on the log10 transformed abundance values of each

of the 207 metabolites to determine which, if any, were significantly different between male

and female urines. When applying a Bonferroni correction to the p-value threshold of 0.05

(a corrected p-value threshold of ~0.00024), we found only 1 metabolite to be statistically

different between male and female urine samples in either UT (2–3-dihydroxybutyrate) or

NT (Unknown 62) samples. Thus, we conclude that either there is no significant difference

in the urinary polar metabolite levels of the 20 male and 20 female subjects in our study as

measured by GC-MS, or that the variability in urine concentrations among these subjects

was high enough to prevent the identification of significant differences. In comparative

metabolomics studies of urine, it may be necessary to account for differences in metabolite

concentrations by determining the specific gravity among samples and selecting the volumes

of urine prepared in such a way as to ensure that the same amount of metabolites are

extracted from each sample. We also conclude that urease pre-treatment of urine samples

does not confound the ability to identify (or to not identify, in this case) statistical

differences between comparative samples. However, in order to more effectively compare

our data with previous comparisons of male and female urines, we relaxed our p-value

thresholds to 0.05. Using this threshold, we determined that 43 and 41 metabolites were

statistically different between male and female urine samples in either UT or NT,

respectively, with an overlap of 21 metabolites. Of the metabolites that were statistically

different in at least one of the treatments, 27 were identified by library matching and are

shown in Table 4. The overlap in statistical significance of the identified metabolites is

relatively poor – only 7 were found to be significant between the two treatments. Previous

metabolomics studies of male and female urines (Pasikanti et al., 2008; Slupsky et al., 2007;

Saude et al., 2007; Psihogios et al., 2008) also identified statistical differences in some of the

metabolites reported here, but these studies also identified differences in metabolites that

were not determined to be significant or were not detected in our study, illustrating the likely

variation in both the methods and sample cohorts used.

Finally, we ran a Naïve Bayesian classifier with 5-fold cross-validation on both the complete

metabolites associated with the UT and NT datasets and calculated the classification

accuracy (CA) and the area under a Receiver Operating Characteristics curve (AUC) to gain

a global metric of accuracy. To place confidence bounds on the metrics of accuracy the

same 5-fold cross-validation subsets were evaluated for NT and UT with random 5-fold

cross-validation repeated 1000 times. We observed that UT provided higher average CA and

AUC compared to NT (Supplemental Table S7).

4 Concluding Remarks

Our study goal was to evaluate the effects of urease pre-treatment on the urinary

metabolome as measured by GC-MS. In the three Experiments performed, we observed

beneficial effects of urease pre-treatment on the resulting data, including lower CVs among

process replicates, increased abundance or presence for most metabolites detected, more
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accurate determination of differences in metabolite abundances among different volumes,

and more metabolite identifications compared to untreated samples.

The results of the volume study suggest that urease pre-treatment is particularly beneficial

when working with urine volumes of 25 µL or higher; however, this observation may be

biased by the relative sensitivity of the single quadrupole MS instrument used in this study,

which is not as sensitive as TOF MS instrumentation and therefore requires more sample to

be prepared for optimal coverage of the metabolome. A similar evaluation of urease-

pretreatment and no treatment may need to be performed using a more sensitive GC-MS

platform to determine if pre-treatment is as beneficial with the lower amounts of sample

required for these instruments.

We feel that the benefits of pre-treatment outweigh any potential artifacts introduced to the

data and recommend this protocol for all GC-MS-based studies of the urinary metabolome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Boxplots displaying the distributions of the log10 transformed abundances of all metabolites

for each process or biological replicate from (A) constant volume experiment, (B) varying

volume experiment and (C) male versus female experiment. The central dot represents the

median, the edges of the box represent the 25-th and 75-th percentiles, and the lines extent to

the 5-th and 95-th percentiles. WT: water pre-treatment; NT: no pre-treatment; UT: urease

pretreatment.
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Figure 2.
Scores plots of the first two principal components for the (A) constant volume experiment,

(B) varying volume experiment and (C) male versus female experiment based on estimates

from Sequential Projection Pursuit PCA (sppPCA) show large amounts of variation being

driven by pre-treatment. WT: water pre-treatment; NT: no pre-treatment; UT: urease

pretreatment.
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Figure 3.
The proportion of metatbolites significantly changed when comparing urine pretreatments

using either a (A) t-test or (B) g-test. NT: no pre-treatment; UT: urease pre-treatment.
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Figure 4.
The average observed ratio comparing 100 µL to 5, 10, 25 and 50 µL urine volumes for pre-

treatments. The green line represents the expected ratio based on the experimental design.

NT: no pre-treatment; UT: urease pre-treatment.
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Table 1

The median percent CV for each volume and pre-treatment and a 2-sided Wilcoxon rank sum test comparing

medians between the two treatments. UT: urease pre-treated; NT: no pre-treatment.

Volume (µL) NT CV (%) UT CV (%) p-value

5 10.2 8.1 1e-3

10 9.7 5.1 6e-10

25 5.7 6.5 0.02

50 6.7 3.1 9e-9

100 16.7 6.2 3e-18

All 9.6 6.1 1e-20
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Table 2

The number and type of significant changes in metabolite abundance when comparing UT to WT and NT by

either a quantitative Dunnett test (with a Bonferroni correction) or qualitative G-test. WT: water pre-treatment;

NT: no pre-treatment; UT: urease pre-treatment.

UT vs WT UT vs NT Interpretation Number Significant Metabolites

UT > WT UT > NT Increase in UT versus WT and NT 111

UT > WT Only increase of UT over WT 13

UT > NT Only increase of UT over NT 11

UT < WT UT < NT Decrease in UT versus WT and NT 17
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Table 3

The number of metabolites with complete information within each volume and pre-treatment from the 52 total

metabolites with some level of missing observations in Experiment 2. UT: urease pre-treated; NT: no pre-

treatment.

Volume (µL) NT UT Overlap p-value

5 7 7 3 0.5

10 12 17 9 0.14

25 21 27 13 0.12

50 31 40 22 0.03

100 33 41 25 0.04
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Table 4

Metabolites significantly different (p < 0.05, t-test) between male and female urines. UT: urease pre-treated;

NT: no pre-treatment; NS: not significant; N/A: not applicable due to insufficient data. PubChem Compound

numbers and IUPAC International Chemical Identifiers (InChIs) are provided in Supplemental Table S4.

Metabolite UT p-value Increase in Male/Female NT p-value Increase in Male/Female

1-methyladenosine 0.01 Female 0.09 NS

1-methylhistidine# 0.04 Male 0.01 Male

2,4-dihydroxybutyrate 1 0.01 Female 0.06 NS

2,3-dihydroxybutyrate 1 0.04 Female 0.09 NS

2,3-dihydroxybutyrate 2 4e-05 Male 0.02 Male

2-deoxyribonate 0.1 NS 0.008 Male

3-(3-hydroxyphenyl)-3-hydroxypropionate 0.04 Female 0.04 Female

alpha-ketoglutarate 0.01 Female 0.5 NS

aminomalonate 0.5 NS 0.02 Female

benzoate 0.3 NS 0.0006 Female

citramalate 0.0002 Female 0.007 Female

citrate#,¥,€ 0.01 Female 0.4 NS

D-(+)-melezitose 0.1 NS 0.02 Female

dehydroalanine 0.02 Male 0.9 NS

D-xylose 1 0.002 Female 0.2 NS

ethanolamine 0.002 Female 0.05 NS

fumarate¥,§ 0.1 NS 0.04 Female

glycerate 0.03 Female N/A NS

hippurate#,€ 0.1 NS 0.002 Female

L-(+)-lactate#,€ 0.03 Female 0.009 Female

L-glutamate 0.4 NS 0.007 Female

L-glutamine 0.05 NS 0.01 Female

L-threonate 2 0.2 NS 0.01 Female

pantothenate 0.003 Female 0.02 Female

phosphate 0.5 NS 0.01 Male

ribose 0.0006 Female 0.2 NS

sucrose 0.03 Female 0.04 Female

#
Also identified as significantly different in (Saude et al., 2007)

¥
Also identified as significantly different in (Slupsky et al., 2007)

€
Also identified as significantly different in (Psihogios et al., 2008)

§
Also identified as significantly different in (Pasikanti et al., 2008)

Note: Numbers after metabolites indicate the number of TMS groups for partially derivatized molecules; otherwise, the molecule is fully
derivatized.
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