
The “Neurovascular Unit approach” to Evaluate Mechanisms of
Dysfunctional Autoregulation in Asphyxiated Newborns in the
era of Hypothermia Therapy

Lina F. Chalak, MD1,*, Takashi Tarumi, Ph.D., M.A2, and Rong Zhang, PHD MSCS.2

1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX

2 Department of internal medicine at University of Texas Southwestern Medical Center, Dallas,
TX

Abstract

Despite improvements in obstetrical and neonatal care, and introduction of hypothermia as a

neuroprotective therapy, perinatal brain injury remains a frequent cause of cerebral palsy, mental

retardation and epilepsy. The recognition of dysfunction of cerebral autoregulation is essential for

a real time measure of efficacy to identify those who are at highest risk for brain injury.

This article will focus on the “neurovascular unit” approach to the care of asphyxiated neonates to

review 1) potential mechanisms of dysfunctional cerebral blood flow (CBF) regulation, 2) optimal

monitoring methodology such as NIRS (near infrared spectroscopy), and TCD (transcutaneous

Doppler), and 3) clinical implications of monitoring in the neonatal intensive care setting in

asphyxiated newborns undergoing hypothermia and rewarming.

Critical knowledge of the functional regulation of the neurovascular unit may lead to improved

ability to predict outcomes in real time during hypothermia, as well as differentiate nonresponders

who might benefit from additional therapies.
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Neonatal hypoxic-ischemic encephalopathy (HIE) secondary to birth asphyxia remains a

major public health problem that afflicts millions of newborns worldwide and may result in

cerebral palsy, mental retardation, learning disabilities, and even death.1,2 Impaired cerebral

blood flow is the principal culprit leading to brain injury and is likely to occur as a

consequence of interruption of placental blood flow and gas exchange; a state that we will
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refer to as asphyxia to avoid the terminology debates of hypoxic ischemic injury (HIE) and

neonatal encephalopathy (NE) . The first section of the review will focus on the physiology

of cerebral autoregulation in the infant born at term in health and in the presence of HIE.

The second section of the review covers the methodology, as well as clinical applications of

neuromonitoring in relation to autoregulation and outcomes.

I. Mechanisms of cerebral autoregulation in the neurovascular unit

A successful transition from the fetal to the neonatal environment

CBF increases with postnatal age in parallel with increased cerebral metabolic rates and

energy demands in the growing brain. There is tight coupling of brain function, metabolism

and blood flow during transition from fetal to neonatal life to support normal

development.13 Autoregulation of CBF refers to maintenance of constant flow over a broad

range of cerebral perfusion pressures (CPP) ranging from 25-50 mmHg in newborns.14

At term neonatal CBF is 10-20ml/100gm/min and represents approximately 40% of adult

values. The fetus has low oxygen tension but compensatory elevations in Hgl F, cardiac

output (CO), hematocrits and 2-3DPG which promotes release of oxygen to tissue and offset

the low PO2 of the fetus. The most dramatic change in CBF occurs at the time of birth. In

the lamb, three fold decrease in CBF occurs in the first 24 hours after birth correlating with

increased oxygen content 13.

What regulates cerebral blood flow?

The “neurovascular unit” consists of specialized endothelial cells interconnected by an

elaborate network of complex tight junctions surrounded by basal lamina, astrocytes and

neurons. The astrocytes that surround the microvasculature provide the cellular link to the

neurons and play an active role in signal transduction pathways and regulating the blood

brain barrier. 15

The endothelium produces several vasoactive factors that regulate CBF, including nitric

oxide (NO: endothelium-dependent hyperpolarization factor), eicosanoids, and endothelins.

Cerebral autoregulation occurs through arteriolar vasoconstriction with increases, and

vasodilatation with decreases in CPP.16,17 The stimulus for autoregulatory change in

vascular diameter appears to be mediated by endothelial derived signals through NO and/or

prostaglandins, and calcium activated K+ channels vasodilation, and endothelin-1 promoting

vasoconstriction.14,18,19

The control of CBF is complex and requires involvement of every single component of the

neurovascular unit to accomplish the following:

1. Cerebral autoregulation which maintains constant flow in response to change in

CPP.

2. Flow-metabolism coupling which regulates blood flow to match metabolic activity.

3. Neurogenic regulation. 20
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Initial adaptive responses to an asphyxia injury

Asphyxia starts with a fetal insult due to impaired CBF as a consequence of a substantial

interruption of maternal and/or fetal placental blood flow and gas exchange. The timing,

severity, pattern and duration of the fetal insult as well as the degree of recovery via fetal

adaptive mechanisms determine the spectrum of disease, outcomes and possibly the

responses to therapy. 14 The fetal circulatory response to hypoxemia and asphyxia is a rapid

centralization and autoregulation of blood flow in favor of the vital organs: brain, heart and

adrenals, at the expense of almost all other peripheral organs. The latter contributes to

multiple organ dysfunction which is considered an integral part of HIE and likely precedes

significant brain effects.21-23 At the cellular level, the initial reduction in CBF and oxygen

delivery initiates a cascade of deleterious biochemical events resulting in a switch to

anaerobic metabolism, and ultimately energy failure with depletion of high energy

phosphorylated compounds such as ATP and phosphcreatinine.24-16 The immediate

reperfusion period is demarcated with return of CBF and is characterized by a normal BP

and acid base status.25 More importantly, reperfusion injury occurs with a later increase in

CBF between 12 and 24 h, which can last hours to days and is associated with secondary

energy failure and final cell death occurs.

Mechanisms of Autoregulation with perinatal asphyxia

The adaptive redistribution of blood flow assures a larger proportion of cardiac output to the

brain leading to an initial increase in CBF. This is subsequently followed by exhausted

cerebral autoregulation due to final decrease in cardiac output and CPP. Figure.1 presents

the hypothetical mechanism by which ensuing hypoxia, hypercapnia and acidosis could lead

to loss of autoregulation and possible improvement following hypothermia therapy in

patients with good outcomes.

Impaired autoregulation and reperfusion injury in HIE

Neonatal animal studies have confirmed impaired cerebral autoregulation in the face of

hypoxia26, hypercarbia27 and acidosis28, all of which are integral components of neonatal

HIE. Indeed, a linear relationship between CBF and systolic blood pressure was first

reported in asphyxiated newborns using Xenon clearance studies.29 This suggests that

changes in arterial pressure are passively transmitted into the maximally dilated cerebral

circulation. Specifically, asphyxiated newborns with the most severe brain damage (death

and isoelectric EEG) had the highest CBF, loss of autoregulation in response to blood

pressure, and impaired vasomotor reactivity to carbon dioxide stimuli.11-30 These

observations of cerebrovascular dysfunction associated with hyperperfusion have been

attributed to lactate accumulation during secondary energy failure causing maximum

vasodilation.31,32

Hypothermia therapy and the re-warming challenge

Hypothermia therapy provides neuroprotection via multiple pathways, including the

reduction in cerebral metabolism and CBF. 33-35 The need for a better understanding of

cerebrovascular function during re-warming is underscored by studies demonstrating that
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exposure to hyperthermia increases neuronal injury.36,37 Moreover, brain injury may occur

even with modest, brief increases in brain temperature 38-40,35,41,42

Rapid re-warming can result in transient uncoupling of cerebral circulation and metabolism

with a transient increase in extracellular glutamate and lactate as demonstrated by cardiac

bypass studies with 1 hour duration of hypothermia.43 Temperature increments are

associated with increased heart rate, cardiac output and altered hemoglobin-oxygen affinity

that could result in a mismatch between oxygen delivery and consumption44 and between

CBF and metabolic requirements during re-warming.45 For instance, rapid re-warming can

exacerbate traumatic axonal injury and impair the cerebrovascular autoregulatory

response.46,47 Notably, increased metabolic demands and seizures have been described in

hypothermic cardiac bypass surgery.48 Neonatal clinical trials have avoided rapid

rewarming described in surgical and cardiac patients, and have all adopted an empirical

0.5C/hour rate of rewarming. It is still possible however, that an impaired autoregulatory

capacity induced by the severity of the primary insult could also cause more injury at a later

stage due to hemodynamic changes in CBF and metabolic demands leading to seizures

during the re-warming phase.

In summary, the regulation of CBF is complex and relies on the integrity the neurovascular

unit to provide cerebral pressure autoregulation and blood flow-metabolism. The asphyxial

injury with acidosis, hypoxia and hypercarbia, as well as the increased metabolic demands

during rewarming, which all lead to a varying disturbances in this homeostatic system.

II. Methodology of Monitoring the “Neuro-Vascular Unit” in an NICU setting

Despite an era of medical and technological advances, fundamental gaps of knowledge

remain such as lack of accessible tools for clinicians to easily determine which infants have

intact CBF regulation. In fact, most of the technology reviewed below is limited to research

settings.

Transcranial Doppler Ultrasonography (TCD)

TCD provides continuous measurements of CBF velocity in the basal cerebral arteries

including the middle cerebral artery (MCA), anterior cerebral artery (ACA) and the posterior

cerebral artery (PCA). Changes in CBF velocity represent changes in volumetric CBF if the

diameters of the insonated arteries remain relatively constant. CBF velocity waveforms are

displayed in real-time and can be used to obtain beat-to-beat changes in systolic, diastolic,

and mean CBF velocity. TCD is non-invasive and therefore can be a useful tool to monitor

cerebral hemodynamics in newborns with HIE undergoing hypothermia and re-warming.

Using this approach, cerebral autoregulation can be assessed during spontaneous changes in

arterial pressure and is referred to as dynamic cerebral autoregulation. 49 Typically, dynamic

cerebral autoregulation is quantified using a transfer function method between changes in

arterial pressure and CBF velocity. 50-52 The metrics of the estimated transfer function gain

(the amplitude relationship between changes in arterial pressure and CBF velocity), phase

(the temporal relationship between changes in arterial pressure and CBF velocity), and the

coherence (the linear correlation between changes in arterial pressure and CBF velocity)
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have been used to quantify cerebral autoregulation. More specifically, increases in transfer

function gain and reduction in phase have been suggested to indicate impaired

autoregulation and vice versa. It also has been shown that dynamic autoregulation is likely -

most effective at the low frequencies of changes in arterial pressure in the range between

0.002 to 0.20 Hz50. Dynamic autoregulation also can be assessed in the time domain using

correlation analysis between changes in arterial pressure and CBF velocity .53 Impaired

autoregulation has been observed in the newborns with HIE using invasive PET studies. 11

One of the major limitations of using Doppler CBF velocity as a proxy of CBF is when the

arterial cross sectional area is dynamically regulated such as during seizures when changes

in blood pressure are associated with enhanced sympathetic reactivity. 54 In addition,

assessment of dynamic cerebral autoregulation using the transfer function method may be

appropriate only if changes cerebral hemodynamics are stationary (i.e., time-invariant) under

steady-state conditions, while physiologic changes will lead to changes in vascular diameter

in most clinical scenarios. Furthermore, the intrinsic nonlinear properties of the cerebral

circulation may challenge the validity of transfer function methods. 54

Near Infrared Spectroscopy (NIRS)

NIRS is a non-invasive tool that can be used to measure changes in oxygenated (HbO2),

deoxygenated (Hb), and total hemoglobin (HbT) of brain tissue. 55 Recently developed

spatially resolved near infrared spectroscopy also can be used for bedside monitoring brain

tissue oxygenation index (TOI) or regional tissue O2 saturation (rSO2). 55 TOI or rSO2

measures the mixed arterial, capillary, and venous O2 saturation. This constitutes an

estimation of changes in cerebral tissue oxygenation (venous 75%, capillary 5%, arterial

20%).56 The value under physiological conditions, range between 65- 80% in newborns. 56

The measurement of TOI or rSO2 provides indirect measures of CBF under conditions of

stable arterial oxygen saturation (SaO2).57 In addition, NIRS measurement of HbT can be

used to estimate changes in cerebral blood volume (ΔCBV = ΔHbO2+ ΔHb) 58. Good

agreement has been reported between NIRS and TCD autoregulation.59

Fractional tissue O2 extraction (FTOE = (SaO2 − TOI)/SaO2) can be used to reflect brain

tissue oxygen utilization which is influenced by CBF and SaO2 and normal reference ranges

between 0.2–0.3 in newborns58. A normal FTOE suggests an intact coupling between CBF

and brain metabolic needs. During restricted blood flow, increases in FTOE are expected to

occur to compensate for potential reduction in TOI. Conversely in the presence of constant

oxygen delivery, a decrease of FTOE suggests decreased oxygen extraction due to less

utilization as seen with cell death.60 In asphyxiated newborns, before the hypothermia era,

high rSO2 and lower FTOE at 24h reflected secondary energy failure and poor

outcomes.32,61-63,64

TOI or rSO2 can be affected by arterial saturation, CBF, cerebral blood volume and cerebral

oxygen consumption.65 Therefore, these variables need to be stable in order to for TOI to

reflect accurate steady-state measurements24 tissue oxygenation or CBF. Furthermore,

changes in skin blood flow may contaminate NIRS signal for assessment of brain tissue

oxygenation.
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Amplitude-integrated (aEEG) as a measure of neuronal integrity

aEEG is a simple, non-invasive bedside tool that permits continuous evaluation of cortical

electrical activity widely used since 1969 66and has been extensively reviewed in the

neonatal literature. 9 Studies of aEEG by our group 67 as well as by others have reported the

usefulness of using aEEG to predict outcomes 68-70and detection of subclinical seizures in

newborns with HIE71. The aEEG therefore can provide quantitative as well as qualitative

assessment of brain electrical activity during different phases of hypothermia or rewarming.

Together with the TCD and NIRS monitoring of cerebral hemodynamics, aEEG can be used

as a useful marker to examine the integrity of the neurovascular unit in newborns with HIE.

Complete absence of background cortical electrical activity has been reported when CBF

falls below 7ml/100g/min (i.e., ≈50% of normal resting CBF). 11

III. Clinical applications in newborns undergoing hypothermia & re-warming

A continuous neuromonitoring protocol for newborns with HIE started in 2010 at Parkland

hospital in Dallas to determine dynamic autoregulation and to evaluate responses to

hypothermia and re-warming. This protocol includes monitoring with a digital data

acquisition system (Vital Sync System, Somanetics) that allows input from all bedside

monitoring tools, including pulse oximetry, blood pressure, heart rate and NIRS

neuromonitoring as well as aEEG qualitative and quantitative analysis using the Brain

AnalyZe Research software, which exports the raw data and calculates minute to minute

average values for the maximum and minimum electrical activity. Illustrative cases are

presented below in Figures 2 and 3 depicting clinical scenarios where neuromonitoring

provided insights into mechanism of injury and associated outcomes.

Conclusions

Despite improvements in obstetrical and neonatal care and introduction of hypothermia as a

neuroprotective therapy, perinatal cerebral hypoxic-ischemic injury remains a frequent cause

of cerebral palsy and mental retardation. The recognition of dysfunctional cerebral

autoregulation in asphyxiated neonates may identify those who are at highest risk for brain

injury and seizures.
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Key guidelines

- CBF increases with postnatal age in parallel with increased cerebral metabolic rates

and energy demands in the growing brain.

- The control of CBF is complex and requires involvement of every single

component of the neurovascular unit. There is tight coupling of brain function,

metabolism and blood flow during transition from fetal to neonatal life to support

normal development.

- The asphyxial injury with acidosis, hypoxia and hypercarbia, as well as higher

metabolic demands of rewarming after hypothermia can all lead to disturbances in

CBF autoregulation.

- In high risk HIE infants, ongoing neurological monitoring of the neurovascular unit

with NIRS, Doppler and AEEG could provide useful prognostic information.

Research directions:

- Fundamental gaps of knowledge remain with respect to development of clinical

tools to determine an intact CBF regulation or how to quantify the extent of impaired

autoregulation.

- We lack evidence as to whether modulation of autoregulation measures can affect

outcomes.

- Future studies to identify sensitive biomarkers of cerebrovascular integrity are

highly needed and may guide future targeted neuroprotective therapies to optimize

outcomes of neonatal care.
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Figure 1.
Hypothetical diagram illustrating 1a: the response of cerebral and systemic hemodynamics

to short asphyxia with adaptive responses ensuring a stable cerebral blood flow and 1b: the

response of cerebral and systemic hemodynamics to sustained asphyxia with both reduced

cardiac output and cerebral blood flow and the possible effect of hypothermia.
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Figure 2.
Normal regulation of 2a: cerebral oxygen saturation (rSO2), cerebral fractional tissue

oxygen extraction (FTOE), mean arterial pressure (MAP) and 2b: amplitude EEG (aEEG)

during 6 hours of hypothermia (left) and re-warming (right). Polynomial line fit was used to

show the trend of cerebral and systemic hemodynamic variables over time. Patient maintains

normal reference ranges of rSO2 (70-85%) and FTOE (25-35%) as well as continuous aEEG

with sleep wake cycles during hypothermia and re-warming. His clinical condition was

stable with oxygen saturation of 100% on room air, HR (80 bpm), and MAP (35-45 mmHg).

This patient had a normal Bayley III outcome >85 at 24 months.
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Figure 3.
Impaired regulation of 3a: cerebral oxygen saturation (rSO2), cerebral fractional tissue

oxygen extraction (FTOE), mean arterial pressure (MAP) and 3b: amplitude EEG (aEEG)

during 6 hours of hypothermia (left) and re-warming (right) . Polynomial line fit was used to

show the trend of cerebral and systemic hemodynamic variables over time. Note the

persistently increased rSO2 of 95% with a concurrent FTOE of <5%. aEEG revealed a

pattern of low voltage discontinuous activity with no sleep wake cycles. Infant had seizures

four hours after initiation of re-warming (red arrow). This infant had an abnormal outcome

(Bayley III at 24 months: cognitive score 65, motor score 82).
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