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Abstract

This paper is concerned with screening features in ultrahigh dimensional data analysis, which has

become increasingly important in diverse scientific fields. We develop a sure independence

screening procedure based on the distance correlation (DC-SIS, for short). The DC-SIS can be

implemented as easily as the sure independence screening procedure based on the Pearson

correlation (SIS, for short) proposed by Fan and Lv (2008). However, the DC-SIS can

significantly improve the SIS. Fan and Lv (2008) established the sure screening property for the

SIS based on linear models, but the sure screening property is valid for the DC-SIS under more

general settings including linear models. Furthermore, the implementation of the DC-SIS does not

require model specification (e.g., linear model or generalized linear model) for responses or

predictors. This is a very appealing property in ultrahigh dimensional data analysis. Moreover, the

DC-SIS can be used directly to screen grouped predictor variables and for multivariate response

variables. We establish the sure screening property for the DC-SIS, and conduct simulations to

examine its finite sample performance. Numerical comparison indicates that the DC-SIS performs

much better than the SIS in various models. We also illustrate the DC-SIS through a real data

example.
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1. INTRODUCTION

Various regularization methods have been proposed for feature selection in high

dimensional data analysis, which has become increasingly frequent and important in various

research fields. These methods include, but are not limited to, the LASSO (Tibshirani,

1996), the SCAD (Fan and Li, 2001; Kim, Choi and Oh, 2008; Zou and Li, 2008), the LARS

algorithm (Efron, Hastie, Johnstone and Tibshirani, 2004), the elastic net (Zou and Hastie,

2005; Zou and Zhang, 2009), the adaptive LASSO (Zou, 2006) and the Dantzig selector

(Candes and Tao, 2007). All these methods allow the number of predictors to be greater than

the sample size, and perform quite well for high dimensional data.
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With the advent of modern technology for data collection, researchers are able to collect

ultrahigh dimensional data at relatively low cost in diverse fields of scientific research. The

aforementioned regularization methods may not perform well for ultrahigh dimensional data

due to the simultaneous challenges of computational expediency, statistical accuracy and

algorithmic stability (Fan, Samworth and Wu, 2009). These challenges call for new

statistical modeling techniques for ultrahigh dimensional data. Fan and Lv (2008) proposed

the SIS and showed that the Pearson correlation ranking procedure possesses a sure

screening property for linear regressions with Gaussian predictors and responses. That is, all

truly important predictors can be selected with probability approaching one as the sample

size diverges to ∞. Hall and Miller (2009) extended Pearson correlation learning by

considering polynomial transformations of predictors. To rank the importance of each

predictor, they suggested a bootstrap procedure. Fan, Samworth and Wu (2009) and Fan and

Song (2010) proposed a more general version of independent learning which ranks the

maximum marginal likelihood estimators or the maximum marginal likelihood for

generalized linear models. Fan, Feng and Song (2011) considered nonparametric

independence screening in sparse ultrahigh dimensional additive models. They suggested

estimating the nonparametric components marginally with spline approximation, and

ranking the importance of predictors using the magnitude of nonparametric components.

They also demonstrated that this procedure possesses the sure screening property with

vanishing false selection rate. Zhu, Li, Li and Zhu (2011) proposed a sure independent

ranking and screening (SIRS) procedure to screen significant predictors in multi-index

models. They further show that under linearity condition assumption on the predictor vector,

the SIRS enjoys the ranking consistency property (i.e, the SIRS can rank the important

predictors in the top asymptotically). Ji and Jin (2012) proposed the two-stage method:

screening by Univariate thresholding and cleaning by Penalized least squares for Selecting

variables, namely UPS. They further theoretically demonstrated that under certain settings,

the UPS can outperform the LASSO and subset selection, both of which are one-stage

approaches. This motivates us to develop more effective screening procedures using two-

stage approaches.

In this paper, we propose a new feature screening procedure for ultrahigh dimensional data

based on distance correlation. Szekely, Rizzo and Bakirov (2007) and Szekely and Rizzo

(2009) showed that the distance correlation of two random vectors equals to zero if and only

if these two random vectors are independent. Furthermore, the distance correlation of two

univariate normal random variables is a strictly increasing function of the absolute value of

the Pearson correlation of these two normal random variables. These two remarkable

properties motivate us to use the distance correlation for feature screening in ultrahigh

dimensional data. We refer to our Sure Independence Screening procedure based on the

Distance Correlation as the DC-SIS. The DC-SIS can be implemented as easily as the SIS. It

is equivalent to the SIS when both the response and predictor variables are normally

distributed. However, the DC-SIS has appealing features that existing screening procedures

including SIS do not possess. For instance, none of the aforementioned screening procedures

can handle grouped predictors or multivariate responses. The proposed DC-SIS can be

directly employed for screening grouped variables, and it can be directly utilized for

ultrahigh dimensional data with multivariate responses. Feature screening for multivariate
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responses and/or grouped predictors is of great interest in pathway analyses. As in Chen, et

al. (2011), pathway here means sets of proteins that are relevant to specific biological

functions without regard to the state of knowledge concerning the interplay among such

protein. Since proteins may work interactively to perform various biological functions,

pathway analyses complement the marginal association analyses for individual protein, and

aim to detect a priori defined set of proteins that are associated with phenotypes of interest.

There is a surged interest in pathway analyses in the recent literature (Ashburner, et al.,

2000; Mootha, et al., 2003; Subramanian, et al., 2005; Tian, et al., 2005; Bild, et al., 2006;

Efron and Tibsirani, 2007; Jones, et al., 2008). Thus, it is of importance to develop feature

screening procedures for multivariate responses and/or grouped predictors.

We systematically study the theoretic properties of the DC-SIS, and prove that the DC-SIS

possesses the sure screening property in the terminology of Fan and Lv (2008) under very

general model settings including linear regression models, for which Fan and Lv (2008)

established the sure screening property of the SIS. The sure screening property is a desirable

property for feature screening in ultrahigh dimensional data. Even importantly, the DC-SIS

can be used for screening features without specifying a regression model between the

response and the predictors. Compared with the model-based screening procedures (Fan and

Lv, 2008; Fan, Samworth and Wu, 2009; Wang, 2009; Fan and Song, 2010; Fan, Feng and

Song, 2011), the DC-SIS is a model-free screening procedure. This virtue makes the

proposed procedure robust to model misspecification. This is a very appealing feature of the

proposed procedure in that it may be very difficult in specifying an appropriate regression

model for the response and the predictors with little information about the actual model in

ultrahigh dimensional data.

We conduct Monte Carlo simulation studies to numerically compare the DC-SIS with the

SIS and SIRS. Our simulation results indicate that the DC-SIS can significantly outperform

the SIS and the SIRS under many model settings. We also assess the performance of the

DC-SIS as a grouped variable screener, and the simulation results show that the DC-SIS

performs very well. We further examine the performance of the DC-SIS for feature

screening in ultrahigh dimensional data with multivariate responses; simulation results

demonstrate that screening features for multiple responses jointly may have dramatic

advantage over screening features with each response separately.

The rest of this paper is organized as follows. In Section 2, we develop the DC-SIS for

feature screening and establish its sure screening property. In Section 3, we examine the

finite sample performance of the DC-SIS via Monte Carlo simulations. We also illustrate the

proposed methodology through a real data example. This paper concludes with a brief

discussion in Section 4. All technical proofs are given in the Appendix.

2. INDEPENDENCE SCREENING USING DISTANCE CORRELATION

2.1. Some Preliminaries

Szekely, Rizzo and Bakirov (2007) advocated using the distance correlation for measuring

dependence between two random vectors. To be precise, let φu(t) and φv(s) be the respective

characteristic functions of the random vectors u and v, and φu,v(t, s) be the joint
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characteristic function of u and v. They defined the distance covariance between u and v
with finite first moments to be the nonnegative number dcov(u, v) given by

(2.1)

where du and dv are the dimensions of u and v, respectively, and

with cd = π(1+d)/2/Γ{(1+d)/2}. Throughout this paper, ||a||d stands for the Euclidean norm of

a ∈ ℝd, and ||φ||2 = φφ̄ for a complex-valued function φ with φ̄ being the conjugate of φ. The

distance correlation (DC) between u and v with finite first moments is defined as

(2.2)

Szekely, Rizzo and Bakirov (2007) systematically studied the theoretic properties of the DC.

Two remarkable properties of the DC motivate us to utilize it in a feature screening

procedure. The first one is the relationship between the DC and the Pearson correlation

coefficient. For two univariate normal random variables U and V with the Pearson

correlation coefficient ρ, Szekely, Rizzo and Bakirov (2007) and Szekely and Rizzo (2009)

showed that

(2.3)

which is strictly increasing in |ρ|. This property implies that the DC-based feature screening

procedure is equivalent to the marginal Pearson correlation learning for linear regression

with normally distributed predictors and random error. In such a situation, Fan and Lv

(2008) showed that the Pearson correlation learning has the sure screening property.

The second remarkable property of the DC is dcorr(u, v) = 0 if and only if u and v are

independent (Szekely, Rizzo and Bakirov, 2007). We note that two univariate random

variables U and V are independent if and only if U and T(V), a strictly monotone

transformation of V, are independent. This implies that a DC-based feature screening

procedure can be more effective than the marginal Pearson correlation learning in the

presence of nonlinear relationship between U and V. We will demonstrate in the next section

that a DC-based screening procedure is a model-free procedure in that one does not need to

specify a model structure between the predictors and the response.

Szekely, Rizzo and Bakirov (2007, Remark 3) stated that
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where Sj, j = 1, 2 and 3, are defined below:

(2.4)

where (ũ, ṽ) is an independent copy of (u, v).

Suppose that {(ui, vi), i = 1, ···, n} is a random sample from the population (u, v). Szekely,

Rizzo and Bakirov (2007) proposed to estimate S1, S2 and S3 through the usual moment

estimation. To be precise,

Thus, a natural estimator of dcov2(u, v) is given by

Similarly, we can define the sample distance covariances  and .

Accordingly, the sample distance correlation between u and v can be defined by

2.2. An Independence Ranking and Screening Procedure

In this section we propose an independence screening procedure built upon the DC. Let y =

(Y1, ···, Yq)T be the response vector with support Ψy, and x = (X1, …, Xp)T be the predictor

vector. We regard q as a fixed number in this context. In an ultrahigh-dimensional setting

the dimensionality p greatly exceeds the sample size n. It is thus natural to assume that only

a small number of predictors are relevant to y. Denote by F(y | x) the conditional distribution

function of y given x. Without specifying a regression model, we define the index set of the

active and inactive predictors by
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(2.5)

We further write x  = {Xk : k ∈ } and x  = {Xk : k ∈ }, and refer to x  as an active

predictor vector and its complement x  as an inactive predictor vector. The index subset 

of all active predictors or, equivalently, the index subset  of all inactive predictors, is the

objective of our primary interest. Definition (2.5) implies that y ⫫ x  | x , where ⫫

denotes statistical independence. That is, given x , the remaining predictors x  are

independent of y. Thus the inactive predictors x  are redundant when the active predictors

x  are known.

For ease of presentation, we write

based on a random sample {xi, yi}, i = 1, …, n. We consider using ωk as a marginal utility to

rank the importance of Xk at the population level. We utilize the DC because it allows for

arbitrary regression relationship of y onto x, regardless of whether it is linear or nonlinear.

The DC also permits univariate and multivariate response, regardless of whether it is

continuous, discrete or categorical. In addition, it allows for groupwise predictors. Thus, this

DC based screening procedure is completely model-free. We select a set of important

predictors with large ω̂
k. That is, we define

where c and κ are pre-specified threshold values which will be defined in condition (C2) in

the subsequent section.

2.3. Theoretical Properties

Next we study the theoretical properties of the proposed independence screening procedure

built upon the DC. The following conditions are imposed to facilitate the technical proofs,

although they may not be the weakest ones.

(C1) Both x and y satisfy the sub-exponential tail probability uniformly in p. That is,

there exists a positive constant s0 such that for all 0 < s = ≤ 2s0,

(C2) The minimum distance correlation of active predictors satisfies
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Condition (C1) follows immediately when x and y are bounded uniformly, or when they

have multivariate normal distribution. The normality assumption has been widely used in the

area of ultrahigh dimensional data analysis to facilitate the technical derivations. See, for

example, Fan and Lv (2008) and Wang (2009).

Next we explore condition (C2). When x and y have multivariate normal distribution, (2.3)

gives an explicit relationship between the DC and the squared Pearson correlation. For

simplicity, we write dcorr(Xk, y) = T0 (|ρ(Xk, y)|) where T0(·) is strictly increasing given in

(2.3). In this situation, condition (C2) requires essentially that

, where Tinv(·) is the inverse function of T0(·). This is parallel

to condition 3 of Fan and Lv (2008) where it is assumed that . This

intuitive illustration implies that condition (C2) requires that the marginal DC of active

predictors cannot be too small, which is similar to condition 3 of Fan and Lv (2008). We

remark here that, although we illustrate the intuition by assuming that x and y are

multivariate normal, we do not require this assumption explicitly in our context. The

following theorem establishes the sure screening property for the DC-SIS procedure.

Theorem 1—Under condition (C1), for any 0 < γ < 1/2 − κ, there exist positive constants

c1 > 0 and c2 > 0 such that

(2.6)

Under conditions (C1) and (C2), we have that

(2.7)

where sn is the cardinality of .

The sure screening property holds for the DC-SIS under milder conditions than those for the

SIS (Fan and Lv, 2008) in that we do not require the regression function of y onto x to be

linear. Thus, the DC-SIS provides a unified alternative to existing model-based sure

screening procedures. Compared with the SIRS, the DC-SIS can effectively handle grouped

predictors and multivariate responses.

To balance the two terms in the right hand side of (2.6), we choose the optimal order γ = (1

− 2κ)/3, then the first part of Theorem 1 becomes
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for some constant c1 > 0, indicating that we can handle the NP-dimensionality of order log p

= o(n(1−2κ)/3. If we further assume that Xk and y are bounded uniformly in p, then we can

obtain without much difficulty that

In this case, we can handle the NP-dimensionality log p = o (n1−2κ).

3. NUMERICAL STUDIES

In this section we assess the performance of the DC-SIS by Monte Carlo simulation. Our

simulation studies were conducted using R code. We further illustrate the proposed

screening procedure with an empirical analysis of a real data example.

In Examples 1, 2 and 3, we generate x = (X1, X2, ···, Xp)T from normal distribution with zero

mean and covariance matrix Σ = (σij)p×p, and the error term ε from standard normal

distribution (0, 1). We consider two covariance matrices to assess the performance of the

DC-SIS and to compare with existing methods: (i) σij = 0.8|i−j| and (ii) σij = 0.5|i−j|. We fix

the sample size n to be 200 and vary the dimension p from 2,000 to 5,000. We repeat each

experiment 500 times, and evaluate the performance through the following three criteria.

1. : the minimum model size to include all active predictors. We report the 5%,

25%, 50%, 75% and 95% quantiles of  out of 500 replications.

2. : the proportion that an individual active predictor is selected for a given model

size d in the 500 replications.

3. : the proportion that all active predictors are selected for a given model size d in

the 500 replications.

The  is used to measure the model complexity of the resulting model of an underlying

screening procedure. The closer to the minimum model size the  is, the better the screening

procedure is. The sure screening property ensures that  and  are both close to one when

the estimated model size d is sufficiently large. We choose d to be d1 = [n/log n], d2 =

2[n/log n] and d3 = 3[n/log n] throughout our simulations to empirically examine the effect

of the cutooff, where [a] denotes the integer part of a.

Example 1—This example is designed to compare the finite sample performance of the

DC-SIS with the SIS (Fan and Lv, 2008) and SIRS (Zhu, Li, Li and Zhu, 2011). In this

example, we generate the response from the following four models:

(1.a)

(1.b)
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(1.c)

(1.d)

where 1(X12 < 0) is an indicator function. The regression functions E(Y | x) in models (1.a)–

(1.d) are all nonlinear in X12. In addition, models (1.b) and (1.c) contain an interaction term

X1X2, and model (1.d) is heteroscedastic. Following Fan and Lv (2008), we choose βj =

(−1)U(a + |Z|) for j = 1, 2, 3 and 4, where , U ~ Bernoulli(0.4) and Z ~ (0, 1).

We set (c1, c2, c3, c4) = (2, 0.5, 3, 2) in this example to challenge the feature screening

procedures under consideration. For each independence screening procedure, we compute

the associated marginal utility between each predictor Xk and the response Y. That is, we

regard x = (X1, …, Xp)T ∈ ℝp as the predictor vector in this example.

Tables 1 and 2 depict the simulation results for ,  and . The performances of the DC-

SIS, SIS and SIRS are quite similar in model (1.a), indicating that the SIS has a robust

performance if the working linear model does not deviate far from the underlying true

model. The DC-SIS outperforms the SIS and SIRS significantly in models (1.b), (1.c) and

(1.d). Both the SIS and SIRS have little chance to identify the important predictors X1 and

X2 in models (1.b) and (1.c), and X22 in model (1.d).

Example 2—We illustrate that the DC-SIS can be directly used for screening grouped

predictors. In many regression problems, some predictors can be naturally grouped. The

most common example which contains group variables is the multi-factor ANOVA problem,

in which each factor may have several levels and can be expressed through a group of

dummy variables. The goal of ANOVA is to select important main effects and interactions

for accurate predictions, which amounts to the selection of groups of dummy variables. To

demonstrate the practicability of the DC-SIS, we adopt the following model:

where q1, q2 and q3 are the 25%, 50% and 75% quantiles of X12, respectively. The variables

X with the coefficients ci’s and βi’s are the same as those in Example 1. We write

These four correlated variables naturally become a group. The predictor vector in this

example becomes x = (X1, …, X11, x̃12, X13, …, Xp)T ∈ ℝp+2. We remark here that the

marginal utility of the grouped variable x̃12 is defined by
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The 5%, 25%, 50%, 75% and 95% percentiles of the minimum model size  are

summarized in Table 3. These percentiles indicate that with very high probability, the

minimum model size  to ensure the inclusion of all active predictors is small. Note that [n/

log(n)] = 37. Thus, almost all  and  of the DC-SIS equal 100%. All active predictors

including the grouped variable x̃12 can perfectly be selected into the resulting model across

all three different model sizes. Hence, the DC-SIS is efficient to select the grouped

predictors.

Example 3—In this example, we investigate the performance of the DC-SIS with

multivariate responses. The SIS proposed in Fan and Lv (2008) cannot be directly applied

for such settings. In contrast, the DC-SIS is ready for screening the active predictors by the

nature of DC. In this example, we generate y = (Y1, Y2)T from normal distribution with mean

zero and covariance matrix Σy|x = (σx,ij)2×2, where σx,11 = σx,22 = 1 and σx,12 = σx,21 = σ(x).

We consider two scenarios for the correlation function σ(x):

(3.a): , where β1 = (0.8, 0.6, 0, …, 0)T.

(3.b): , where β2 = (2 − U1, 2 − U2, 2 − U3, 2 −

U4, 0, …, 0)T with Ui’s being independent and identically distributed according to

unisform distribution Uniform[0, 1].

Tables 4 and 5 depict the simulation results. Table 4 implies that the DC-SIS performs

reasonably well for both models (3.a) and (3.b) in terms of model complexity. Table 5

indicates that the proportions that the active predictors are selected into the model are close

to one, which supports the assertion that the DC-SIS processes the sure screening property.

It implies that the DC-SIS can identify the active predictors contained in correlations

between multivariate responses. This may be potentially useful in gene co-expression

analysis.

Example 4—The Cardiomyopathy microarray dataset was once analyzed by Segal,

Dahlquist and Conklin (2003) and Hall and Miller (2009). The goal is to identify the most

influential genes for overexpression of a G protein-coupled receptor (Ro1) in mice. The

response Y is the Ro1 expression level, and the predictors Xk’s are other gene expression

levels. Compared with the sample size n = 30 in this dataset, the dimension p = 6319 is very

large.

The DC-SIS procedure ranks two genes, labeled Msa.2134.0 and Msa.2877.0, at the top.

The scatter plots of Y versus these two gene expression levels with cubic spline fit curves in

Figure 1 indicate clearly the existence of nonlinear patterns. Yet, our finding is different

from Hall and Miller (2009) in that they ranked Msa.2877.0 and Msa.1166.0 at the top with

their proposed generalized correlation ranking. A natural question arises: which screening

procedure performs better in terms of ranking? To compare the performance of these two

procedures, we fit an additive model as follows:
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The DC-SIS, corresponding to k = 1, regards Msa.2134.0 and Msa.2877.0 as the two

predictors, while the generalized correlation ranking proposed by Hall and Miller (2009),

corresponding to k = 2, regards Msa.2877.0 and Msa.1166.0 as predictors in the above

model. We fit the unknown link functions ℓki using the R mgcv package. The DC-SIS

method clearly achieves better performance with the adjusted R2 of 96.8% and the deviance

explained of 98.3%, in contrast to the adjusted R2 of 84.5% and the deviance explained of

86.6% for the generalized correlation ranking method. We remark here that deviance

explained means the proportion of the null deviance explained by the proposed model, with

a larger value indicating better performance. Because both the adjusted R2 values and the

explained deviance are very large, it seems unnecessary to extract any additional genes.

4. DISCUSSION

In this paper we proposed a sure independence screening procedure using distance

correlation. We established the sure screening property for this procedure when the number

of predictors diverges with an exponential rate of the sample size. We examined the finite-

sample performance of the proposed procedure via Monte Carlo studies and illustrated the

proposed methodology through a real data example. We followed Fan and Lv (2008) to set

the cutoff d in this paper and examine the effect of different values of d. As pointed out by a

referee, the choice of d is very important in the screening stage. Zhao and Li (2012)

proposed an approach to selecting d for Cox models based on controlling false positive rate.

Their approach is merely for model-based feature screening methods. Zhu, Li, Li and Zhu

(2011) proposed an alternative method to determine d for the SIRS. One may adopt their

procedure for the DC-SIS. We opt not to pursue this further. Certainly, the selection of d is

similar to selection of the tuning parameter in regularization methods, and plays an

important role in practical implementation. This is a good topic for future research.

Similar to the SIS, the DC-SIS may fail to identify some important predictors which are

marginally independent of the response. Thus, it is of interest to develop an iterative

procedure to fix such an issue. In the earlier version of this paper, we proposed an iterative

version of DC-SIS. Our empirical studies including Monte Carlo simulation and real data

analysis imply that the proposed iterative DC-SIS may be used to fix the problem in a

similar spirit of ISIS (Fan and Lv, 2008). Theoretical analysis of the iterative DC-SIS needs

further study. New methods to deal with identification of important predictors which are

marginally independent of the response is an important topic for future research.
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APPENDIX

Appendix A: Some Lemmas

Lemmas 1 and 2 will be used repeatedly in the proof of Theorem 1. These two lemmas

provide us two exponential inequalities, and are extracted from Lemma 5.6.1.A and

Theorem 5.6.1.A of Serfling (1980, page 200–201).

Lemma 1

Let μ = E(Y). If Pr(a ≤ Y ≤ b) = 1, then
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Lemma 2

Let h(Y1, ···, Ym) be a kernel of the U-statistic Un, and θ = E {h(Y1, ···, Ym)}.

If a ≤ h(Y1, ···, Ym) ≤ b, then, for any t > 0 and n ≥ m,

where [n/m] denotes the integer part of n/m.

Due to the symmetry of U-statistic, Lemma 2 entails that

Let us introduce some notations before giving the proof of Theorem 1. Let {X̃
k, ỹ} be an

independent copy of {Xk, y}, and define Sk1 = E||Xk − X̃
k||1||y − ỹ||q, Sk2 = E||Xk − X̃

k||1E||y −

ỹ||q, and Sk3 = E{E(||Xk − X̃
k||1|Xk)E(||y − ỹ||q|y)}, and their sample counterparts

By definitions of distance covariance and sample distance covariance, it follows that

Appendix B: Proof of Theorem 1

We aim to show the uniform consistency of the denominator and the numerator of ω̂
k under

regularity conditions respectively. Because the denominator of ω̂
k has a similar form as the

numerator, we deal with its numerator only below. Throughout proof, the notations C and c

are generic constants which may take different values at each appearance.

We first deal with Ŝk1. Define , which is a

usual U-statistic. We shall establish the uniform consistency of  by using the theory of U-

statistics (Serfling, 1980, Section 5). By using the Cauchy-Schwartz inequality,
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This together with condition (C1) implies that Sk1 is uniformly bounded in p, that is,

. For any given ε > 0, take n large enough such that Sk1/n < ε. Then it can

be easily shown that

(B.1)

To establish the uniform consistency of Ŝk1, it thus suffices to show the uniform consistency

of . Let h1(Xik, yi; Xjk, yj) = ||Xik − Xjk||1||yi − yj||q be the kernel of the U -statistic . We

decompose the kernel function h1 into two parts: h1 = h11(h1 > M) + h11(h1 ≤ M) where M

will be specified later. The U-statistic can now be written as follows,

Accordingly, we decompose Sk1 into two parts:

Clearly,  and  are unbiased estimators of Sk1,1 and Sk1,2, respectively.

We deal with the consistency of  first. With the Markov’s inequality, for any t > 0, we

can obtain that

Serfling (1980, Section 5.1.6) showed that any U-statistic can be represented as an average

of averages of independent and identically distributed (i.i.d) random variables. That is,

, where  denotes the summation over all

possible permutations of (1, …, n), and each Ω1(X1k, y1; ···; Xnk, yn) is an average of m =
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[n/2] i.i.d random variables (i.e., ). Since the exponential

function is convex, it follows from Jensen’s inequality that, for 0 < t ≤ 2s0,

which together with Lemma 1 entails immediately that

By choosing t = 4εm/M2, we have . Therefore, by

the symmetry of U-statistic, we can obtain easily that

(B.2)

Next we show the consistency of . With Cauchy-Schwartz and Markov’s inequality,

for any s′ > 0. Using the fact (a2 + b2)/2 ≥ (a + b)2/4 ≥ |ab|, we have

which yields that

The last inequality follows from the Cauchy-Schwartz inequality. If we choose M = cnγ for 0

< γ < 1/2 − κ, then Sk1,2 ≤ ε/2 when n is sufficiently large. Consequently,
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(B.3)

It remains to bound the probability . We observe that the events satisfy

(B.4)

To see this, we assume that  for all 1 ≤ i ≤ p. This assumption will lead

to a contradiction. To be precise, under this assumption,

. Consequently, , which is a

contrary to the event . This verifies the relation (B.4) is true.

By invoking condition (C1), there must exist a constant C such that

The last inequality follows from Markov’s inequality for s > 0. Consequently,

(B.5)

Recall that M = cnγ. Combining the results (B.2), (B.3) and (B.5), we have

(B.6)

In the sequel we turn to Ŝk2. We write Ŝk2 = Ŝk2,1Ŝk2,2, where ,

and . Similarly, we write Sk2 = Sk2,1Sk2,2, where Sk2,1 = E{||Xik −

Xjk||1} and Sk2,2 = E{||yi − yj||q}. Following arguments for proving (B.6) we can show that

(B.7)

Condition (C1) ensures that  and

 are uniformly bounded. That is,
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for some constant C. Using (B.7) repetitively, we can easily prove that

(B.8)

and

(B.

9)

It follows from Bonferroni’s inequality, inequalities (B.8) and (B.9) that,

(B.10)

where the last inequality holds when ε is sufficiently small and C is sufficiently large.

It remains to the uniform consistency of Ŝk3. We first study the following U -statistic:

(B.11)

Here, h3(Xik, yi; Xjk, yj; Xlk, yl) is the kernel of U -statistic . Following the arguments to

deal with , we decompose h3 into two parts: h3 = h31(h3 > M) + h31(h3 ≤ M).

Accordingly

Following similar arguments for proving (B.2), we can show that
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(B.12)

where m′ = [n/3] because  is a third-order U -statistic.

Then we deal with . We observe that

, which will be

smaller than M if for all 1 ≤ i ≤ p. Thus, for any ε > 0, the events satisfy

By using the similar arguments to prove (B.5), it follows that

(B.13)

Then, we combine the results (B.12) and (B.13) with M = cnγ for some 0 < γ < 1/2 − κ to

obtain that

(B.14)

By the definition of Ŝk3,

Thus, using similar techniques to deal with Ŝk1, we can obtain that

Using similar arguments for dealing with Sk1, we can show that Sk3 is uniformly bounded in

p. Taking n large enough such that {(3n − 2)/n2}Sk3 ≤ ε and {(n − 1)/n2}Sk1 ≤ ε, then

(B.15)

The last inequality follows from (B.6) and (B.14). This, together with (B.6), (B.10) and the

Bonferroni’s inequality, implies
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(B.

16)

for some positive constants c1 and c2. The convergence rate of the numerator of ω̂
k is now

achieved. Following similar arguments, we can obtain the convergence rate of the

denominator. In effect the convergence rate of ω̂
k has the same form of (B.16). We omit the

details here. Let ε = cn−κ, where κ satisfies 0 < κ + γ < 1/2. We thus have

The first part of Theorem 1 is proven.

Now we deal with the second part of Theorem 1. If  ⊈ , then there must exist some k ∈

 such that ω̂
k < cn−κ. It follows from condition (C2) that |ω̂

k − ωk| > cn−κ for some k ∈ ,

indicating that the events satisfy {  ⊈ } ⊆ {|ω̂
k − ωk| > cn−κ, for some k ∈ }, and hence

. Consequently,

where sn is the cardinality of . This completes the proof of the second part.
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Figure 1.
The scatter plot of Y versus two genes expression levels identified by the DC-SIS.
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