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Abstract

Researchers analyzing longitudinal data often want to find out whether the process they study is 

characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of 

state variability and trait change. Classical latent state-trait (LST) models are designed to measure 

reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) 

models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast 

LST and LGC models from the perspective of measurement invariance (MI) testing. We show that 

establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) 

establishing strong factorial invariance in LST analyses. Analytical derivations and simulations 

demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change 

or hybrid process has generated the data. Furthermore, the inappropriate application of LST 

models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-

specificity, which are typically of key interest in LST analyses. Four tips for the proper application 

of LST models are provided.
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A growing body of research in psychology and the social sciences is concerned with the 

analysis of the longitudinal dynamics of psychological and social science constructs. This 

can be seen from (1) the increasing number of substantive studies that present data from at 

least two measurement occasions and (2) the large body of methodological literature dealing 

with the development, presentation, evaluation, and refinement of statistical methods for 

analyzing longitudinal data (e.g., Bollen & Curran, 2006; Chan, 1998; Collins & Sayer, 

2001; Duncan, Duncan, & Strycker, 2006; Eid, 2007; McArdle, 2009). As explained below, 

in the analysis of the longitudinal dynamics of psychological phenomena, an important 

distinction can be made between state variability processes on the one hand and trait-change 

processes on the other hand.

Modeling State Variability Versus Trait Change

In line with Nesselroade (1991), we refer to state variability as a process that involves 

reversible short-term changes in individuals’ true scores around an invariant set-point or trait 

value and to trait change as a process that involves long-lasting and potentially irreversible 

modifications of psychological traits. Whereas trait change involves changes in the trait 

values themselves, state variability implies that individuals’ trait values do not change, but 

that there are systematic time- or situation-specific “ups and downs” in individuals’ true 

state scores around the fixed trait. Figure 1A illustrates a hypothetical state-variability 

process for three individuals. It can be seen that although inter-individual differences in the 

trait scores (indicated by the solid lines) are present, there are no intra-individual changes in 

the trait scores across time. The longitudinal process is characterized by intra-individually 

stable trait values plus momentary (situation-specific) deviations (indicated by the dotted 

lines) of the true scores from the stable trait values.

As an example of a state-variability process, consider mood states. The longitudinal course 

of many mood constructs can be described by a stable trait mood level with momentary 

deviations from this trait (Eid, Schneider, & Schwenkmezger, 1999). Although systematic 

intra-individual variations in state mood levels across time are expected, these differences 

represent state variability (ups and downs) around a fixed set-point for most people rather 

than enduring changes or “growth” in people’s trait mood. (Note that state variability is 

distinct from measurement error, which represents a separate, unsystematic source of 

variability as shown below.)

Figure 1B illustrates a pure trait-change process. It can be seen that individuals’ trait scores 

change linearly across time in this example. There are no situation-specific deviations from 

the growth trajectory. As an example of a pure trait-change process, consider the 

development of height in children, which involves enduring changes in body length that 

follow a certain trajectory and are irreversible, at least until late adulthood. Situation-

specific deviations from the general growth trajectory would be unlikely in this example, 

given that physical growth typically does not show situation-specific ups and downs that can 

be expected for many psychological variables.

Figure 1C shows a hybrid case, in which the longitudinal process involves both a state-

variability component and a trait-change component. As an example, consider depressed 
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patients who undergo psychotherapy. Despite the fact that, as a result of the therapy, the 

patients show long-term changes (declines) in their depression trait levels, there will likely 

still be days on which the patients feel better or worse relative to the general decline 

trajectory. We suspect that hybrid cases as the one shown in Figure 1C may be common in 

psychological research, as many constructs have both trait and state components (e.g., 

Hertzog & Nesselroade, 1987) and at the same time may involve enduring changes to the 

trait scores across time.

State variability (reversible short-term change) and trait (irreversible long-term) change are 

conceptually and empirically distinct psychological processes. In longitudinal applications, 

it is usually of interest to researchers which process generated the data. For example, in 

intervention studies, it is relevant whether changes seen in true scores after, for example, 

psychotherapy reflect merely short-term variability or whether they are indicative of a long-

term trait modification.

The different longitudinal processes described above are reflected in different types of 

statistical models for longitudinal data. Whereas models of latent state-trait (LST) theory 

(Steyer, Majcen, Schwenkmezger, & Buchner, 1989; Steyer, Ferring, & Schmitt, 1992; 

Steyer, Schmitt, & Eid, 1999) represent prototypical models for measuring state-variability 

processes, trait change (or growth trajectory) processes are often assessed with latent growth 

curve (LGC; Meredith & Tisak, 1990; McArdle, 1988) or latent (trait) change score models 

(McArdle & Hamagami, 2001; Raykov, 1993; Steyer, Eid, & Schwenkmezger, 1997). 

Hybrid models (e.g., Eid & Hoffmann, 1998; Tisak & Tisak, 2000) combine features of 

both, models of state-variability and models of trait change.

In this article, we are concerned with the role that longitudinal measurement invariance (MI) 

plays in distinguishing short-term state-variability processes from long-term trait-change (or 

growth trajectory) processes. The purpose of this article is to show that researchers’ ability 

to discriminate between state-variability and trait-change processes depends crucially on 

whether they employ tests of MI not only in trait-change (e.g., LGC) models, but also in 

state-variability models (i.e., classical LST models). Whereas researchers routinely test for 

MI in trait-change models, testing MI has been widely neglected in past applications of LST 

models as we demonstrate later in this article. We show that when certain measurement 

parameters are non-invariant in an LST model, this may indicate that a trait-change process 

rather than (or in addition to) a state-variability (state-trait) process should be modeled. In 

other words, measurement non-invariance in LST models can mask true trait changes (or 

growth processes) in the underlying construct.

In our presentation, we contrast two prototypical models against each other: (1) the 

singletrait-multistate (STMS) model as a classical LST model for measuring short-term 

state-variability processes and (2) a multiple-indicator linear LGC model that can be seen as 

a hybrid model, capturing both long-term trait-change processes and short-term state-

variability processes. We first show analytically which consequences may arise from 

measurement non-invariance in LST models. Second, we introduce a hybrid model and 

illustrate through a simulation study that LST models with non-invariant parameters can fit 
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data generated by a trait-change (growth) process well and lead to bias in the estimation of 

variance components.

In the following section, we provide a non-technical review of LGC and LST models as well 

as the concept of MI before providing the formal details on why it is important to test for MI 

not only in models of trait change, but also in LST models of state-variability processes. For 

didactic reasons, we begin our review with LGC models, for which the requirement of MI—

as well as the consequences of non-invariance—are widely accepted in the literature.

Latent Growth Curve (LGC) Models

Standard LGC models are appropriate models when the underlying longitudinal process is 

best described as a long-lasting trait-change process such as, for example, a process of 

enduring changes in height, intelligence, or skills (see Figure 1B). LGC models are also 

referred to as growth trajectory models, because they focus on more enduring trait-change 

processes. These models typically include a continuous latent factor that represents true 

individual differences in people’s trait scores at a particular time point (often the first time 

point) and is called intercept factor. In addition, LGC models usually feature one or more 

continuous latent factors that represent individual differences in the rate of trait change over 

time, the so-called latent slope, shape, or curve factors. Depending on the hypotheses of a 

researcher, the slope factor(s) can represent, for example, linear, quadratic, cubic, or an 

unspecified form of change. In LGC models, the focus is typically on the separation of 

measurement error from true individual differences in initial status and trait change as well 

as on the estimation of the “growth parameters”, such as means, variances, and covariances 

of intercept and slope factors. In addition, covariates or outcomes of trait change may also 

be included in the model.

MI in models of trait change

One important aspect to the measurement of trait changes that has been widely recognized in 

the literature is the requirement that psychological traits be measured on the same scale (i.e., 

with the same origin and units of measurement) at each time point so that meaningful 

across-time comparisons can be made. This issue is known as the problem of MI (e.g., 

Borsboom, 2006; Chan, 1998; Cheung & Rensvold, 1999; Meredith, 1993; Millsap, 2011; 

Vandenberg & Lance, 2000; Widaman & Reise, 1997). In longitudinal studies, MI refers to 

whether the parameters of the measurement model (i.e., the factor loadings, measurement 

intercepts, and measurement error variances) that relate an observed variable (indicator) to a 

latent variable have the same value at each measurement occasion. For most types of 

longitudinal CFA models including LGC models (e.g., Chan, 1998; Ferrer, Baluerka, & 

Widaman, 2008) and latent change models (McArdle & Hamagami, 2001; Raykov, 1993; 

Steyer, Eid, & Schwenkmezger, 1997), methodologists agree that MI be established before 

latent variable change can be meaningfully interpreted. This can be viewed as an apples-

and-oranges problem. If the origin or the units of measurement change, examining mean 

changes in the latent variables across time can be difficult (e.g., Vandenberg & Lance, 

2000). Ostensible differences in the latent means could just reflect changes in scale 

difficulty, scale discrimination, or scale meaning.

Geiser et al. Page 4

Behav Res Methods. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For LGC and other models of change, clear guidelines exist as to (1) how different levels of 

MI can be defined (Millsap & Meredith, 2007; Cheung & Rensvold, 1999; Widaman & 

Reise, 1997) and (2) which level of MI is necessary for a meaningful interpretation of latent 

change over time in these models. Widaman and Reise (1997) distinguished four levels of 

MI. Configural invariance only requires the number of factors and the loading pattern to be 

constant across time, without the necessity that specific measurement parameters be 

identical across time. Weak factorial invariance (also referred to as metric invariance) 

requires only the factor loadings to be invariant across time, whereas strong factorial 

invariance (or scalar invariance) requires both invariant factor loadings and intercepts. 

Strict factorial invariance in addition requires time-invariant measurement error variances. 

Strong factorial invariance is the minimum level of MI that allows for a meaningful 

interpretation of change in latent change and LGC models (e.g., Baumgartner & Steenkamp, 

2006). Conceptually, this can be explained by the fact that time-invariant loadings and 

intercepts ensure that the origin and the units of measurement do not change across 

occasions of measurement. If strong invariance holds, the latent variables are measured on 

the same scale at each point in time and scores on the latent variables can be meaningfully 

compared across time.

In practice, MI is often tested in terms of absolute model fit or by comparing the relative 

model fit of competing invariance models (e.g., the configural, weak, strong, and strict 

factorial invariance models; Cheung & Rensvold, 2002). The most parsimonious model that 

still shows an adequate fit is usually retained. Researchers typically hope that they can retain 

a model that has a sufficient level of MI for the purposes of the study—often a model that 

postulates at least strong factorial invariance. If strong factorial invariance cannot be 

established for all indicators of a latent variable, a model of partial measurement invariance 

may still allow for a meaningful interpretation of changes across time under certain 

circumstances (Cheung & Rensvold, 1999).

LST Models

In contrast to LGC models, classical LST models do not focus on enduring trait changes or 

latent growth trajectories, but rather on short-term state-variability processes around an 

invariant trait and the impact of situations on psychological measurement. The basic 

rationale for the development of LST theory was that virtually all measurements in 

psychology are affected not only by random measurement error but also by systematic 

situation-specific influences and person × situation interactions (Anastasi, 1983; Hertzog & 

Nesselroade, 1987; Steyer et al., 1989; 1992; 1999). This is true even for the measurement 

of constructs that in theory are conceived of as stable traits (Deinzer et al., 1995).

LST models are useful, because the longitudinal course of psychological constructs cannot 

always be appropriately described with LGC or other types of trait-change models. As noted 

above, psychological constructs may be characterized by a longitudinal process of trait 

stability (no changes in the trait values over time) combined with short-term changes in the 

true states that may be due to systematic situational influences or person × situation 

interactions (i.e., not just measurement error). Such situation-dependent “ups and downs” 

would not be appropriately captured by a growth trajectory (LGC) model, but instead 
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require an LST model. Variability models (such as LST models) are of also interest as “null 

hypothesis” models of no trait change, for example, in developmental psychology (no 

development) or clinical psychology (no enduring symptom change). As we discuss in more 

details later, LST models can be seen as LGC models, in which the growth factors have a 

mean and variance of zero (Tisak & Tisak, 2000). In summary, LST models focus on a 

different type of change process than LGC models: Whereas standard LGC models focus on 

long-term trait changes, LST models allow researchers to model short-term variability 

processes around an invariant trait.

As we show in more formal detail below, LST models decompose an observed score into a 

component that characterizes the person effect (the latent trait component that is assumed to 

be stable across time), a component that characterizes systematic state variability (the latent 

state residual component that reflects effects of the situation and person × situation 

interactions), and a random measurement error component (that reflects unsystematic 

measurement error or unreliability of the observed scores). In contrast to models designed to 

measure trait-change processes (such as LGC models), standard LST models used in the 

literature assume that there is systematic variability around the latent trait, but that the trait 

itself is stable and does not change over time—at least not over the course of the study from 

which the data were obtained1. As such, LST models are models of state variability that are 

designed to identify reliable, albeit short-term and potentially reversible situation-specific 

fluctuations around an invariant trait as opposed to processes that involve only perfectly 

stable traits or processes that involve more long-lasting and potentially irreversible trait 

changes or growth over time (Eid, 2007).

As an example, Luhmann, Schimmack, and Eid (2011) used LST models to examine the 

variability and stability of subjective well-being (SWB) by parsing variance attributable to 

stable (trait) influences, variable state influences, and random measurement error. Seen 

within the LST framework, the part of SWB that represents the “set point” does not change 

over time. Luhmann et al. found that about 34-47% of the variability in SWB reflected 

stable individual differences (i.e., trait effects), whereas about 48-54% were due to a state-

variability component (situation or person × situation interaction effects).

Like LGC models, measurement models derived from LST theory can be estimated in the 

framework of longitudinal confirmatory factor analysis (CFA). Different kinds of LST 

models have been discussed by Cole (2012), Eid (1996), Eid et al. (1999), Geiser and 

Lockhart (2012), Kenny (2001), and Steyer et al. (1992, 1999; Steyer, Geiser, & Fiege, 

2012). For a comprehensive overview of LST applications in psychology and the social 

sciences, see Geiser and Lockhart (2012).

Measurement invariance (MI) in LST models

Even though the issue of MI has been discussed in detail for CFA models of change 

including LGC models (e.g., Chan, 1998), the role that MI plays in LST models has not been 

1Extensions of LST models that also account for trait changes have been presented in the literature (e.g., Eid & Hoffmann, 1998; Eid, 
Courvoisier, & Lischetzke, 2011; Geiser, Keller, & Lockhart, in press; Steyer, Krambeer, & Hannöver, 2004; Tisak & Tisak, 2000). 
However, our focus in this article is on classical LST models as state-variability models that do not allow for trait changes, as these 
models are the most frequently used LST models in the applied literature.

Geiser et al. Page 6

Behav Res Methods. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



clarified in the literature. Moreover, a review of the LST literature since 1989 revealed that 

MI is rarely explicitly tested in applications of LST models. We identified 52 articles that 

reported applications of LST models. Only 7 applications (14%) explicitly addressed MI and 

used at least one strategy to test it. These studies have generally followed a model-building 

procedure, testing the invariance of factor loadings (e.g., Eid & Diener, 2004; Hermes et al., 

2009) and indicator residual variances over time (e.g. Boll et al., 2010; Schmitt & Steyer, 

1993). Many LST studies (48%) imposed the assumption of equal factor loadings, but did 

not evaluate model fit without this restriction. In addition, many of these studies indicated 

that these constraints were implemented merely for convenience to reduce parameters or to 

facilitate the calculation of variance components. We found five studies (9.6%) that did not 

impose any kind of equality constraints on parameters of the measurement model and an 

additional six studies (11.5%) for which the specification was unclear from the description 

in the papers.

Even though several methodological papers discussed MI in the context of LST models 

(Alessandri, Caprara, & Tisak, 2012; Baumgartner & Steenkamp, 2006; Ciesla, Cole, & 

Steiger, 2007; Tisak & Tisak, 2000), most methodological work in this area has not 

explicitly addressed whether MI is at all relevant to LST analyses and what the 

consequences of measurement non-invariance might be. Although Baumgartner and 

Steenkamp (2006) advocated a model-building procedure for establishing MI based on the 

item loadings and intercepts, in which loadings and intercepts are systematically released 

from invariance (see also Alessandri et al., 2012), they did not specifically discuss the 

relevance of these issues to LST analyses or for the separation of state-variability from trait-

change processes.

Researchers using LST models are confronted with two key questions: First, do I need to 

establish MI in LST analyses before I can claim that the longitudinal process under study is 

best described as a short-term state-variability process and meaningfully interpret the 

parameters of an LST model? Second, what are the potential consequences of ignoring MI 

and estimating an LST model in which the measurement parameters are not invariant across 

time? Here, we focus in particular on the potential consequences of measurement non-

invariance may have on a researcher’s ability to distinguish between a short-term state-

variability versus a long-term trait-change process.

In the following section, we introduce the basic concepts of LST theory. Subsequently, we 

present the STMS model as a prototypical LST model. We then discuss the latent mean and 

variance structures in the model and implications of measurement (non)invariance across 

time in LST analyses for the model-implied mean and variance structure. Even though more 

complex LST models are often used in practice (for an overview, see Geiser & Lockhart, 

2012), the key issues described here apply to more complex LST models as well.

Basic Concepts and Models of LST Theory

The starting point for an LST analysis is a set of multiple repeatedly-administered observed 

variables Yit (i = indicator, i = 1,…, m; t = time point, t = 1, …, n) that pertain to the same 

construct (e.g., anxiety, subjective well-being, extraversion etc.). Indicators for a construct 
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in an LST model could, for example, be different items, scale scores, or physiological 

measures. Similar to classical test theory, in LST theory each indicator variable is 

decomposed into its own (indicator-specific) latent state variable τit and measurement error 

variable εit:

(1)

In LST theory, a latent state variable is defined as the conditional expectation of an observed 

variable given a person (or observational unit) variable U and a situation variable St: τit ≡ 

E(Yit | U, St). This shows that the latent state variable characterizes both persons and 

situations, taking into account that a psychological score is never obtained in a situational 

vacuum (Steyer et al., 1992).

According to LST theory, each latent state variable can be decomposed into an indicator-

specific latent trait variable ξit and an indicator-specific latent state residual variable ζit:

(2)

where ξit ≡ E(Yit | U) and ζit ≡ τit − ζit. Therefore, the trait variables ξit characterize person-

specific (trait) effects only, whereas the latent state residual variables ζit characterize 

systematic effects of the situation or person × situation interactions (Steyer et al., 1992). 

State residuals thus capture the state-variability component of behavior (as opposed to trait 

change).

The STMS model

A simple, testable LST model can be formulated by assuming that all indicators share the 

same latent trait within scaling differences (assumption of congeneric latent trait variables). 

This assumption implies that all latent trait variables are unidimensional, so that they can be 

replaced by a single (“general”) latent trait factor ξ2:

(3)

In Equation 3, the real constants αit and λit can be interpreted as intercept and factor loading 

parameters, respectively. Furthermore, in the STMS model, it is assumed that all indicators 

that are measured at the same measurement occasion share the same latent state residual 

factor within scaling differences (assumption of occasion-specific congenerity of latent state 

residuals). This implies that all latent state residual variables at the same measurement 

occasion are unidimensional and can be replaced by a common (occasion-specific) latent 

state residual factor ζt:

(4)

2For simplicity, we assume in this paper that all indicators are homogeneous in the sense that they share the same trait within scaling 
differences. Geiser and Lockhart (2012) discuss LST models that allow for indicator heterogeneity (unique trait components) and/or 
method effects. The MI issues discussed in the present paper are general in nature and apply to both LST models for homogeneous 
and heterogeneous indicators.
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The real constant δit in Equation 4 can be interpreted as a factor loading parameter. Equation 

4 has no additive constant, because the latent state residual variables have means of zero by 

definition [i.e., E(ζit) = E(ξt) = 0; Steyer et al., 1992]. In addition, the following restrictions 

apply in the STMS model3: E(εit) = Cov(ξ, ζt) = Cov(ξ, εit) = Cov(εit, ζt′) = 0, Cov(ξt, ζt′) = 0 

for t ≠ t′, and Cov(εit, εi′t′) = 0 for (i, t) ≠ (i′, t′).

Figure 2 shows a path diagram of the STMS model for three indicators (i = 1, 2, 3) measured 

on three time points (t = 1, 2, 3). In this model, each observed variable measures a common, 

occasion-unspecific latent trait factor ξ and a common, occasion-specific latent state residual 

factor ζt. This can also be seen by inserting Equations 2, 3, and 4 into Equation 1 which 

yields:

(5)

For reasons of identification, one intercept and one loading parameter have been fixed for 

each factor in Figure 2. We explain these restrictions in detail below.

The STMS model has been used, for example, by Ploubidis and Frangou (2011) to 

determine the proportions of variance in psychological distress attributable to state effects 

across two time points, representing the environmentally-induced (i.e. person-situation 

interaction) portion of the construct, and the effect of a single trait, representing the portion 

that is specific to the individual.

An important feature of LST models is the additive variance decomposition of the observed 

variables that follows from the fact that the latent trait, latent state residual, and 

measurement error variables are uncorrelated:

(6)

This additive variance decomposition allows us to compute three coefficients of 

determination that are of key interest to virtually all applications that have used LST models: 

the consistency (CO), occasion-specificity (OS), and reliability (Rel) coefficients (Steyer et 

al., 1999). CO indicates the degree to which individual differences on the observed variables 

are determined by stable person-specific (trait) effects:

(7)

The CO coefficient is useful to quantify the degree of stability across situations: The larger 

the CO coefficient, the less the scores vary over specific situations or time points.

3Note that some of these restrictions follow by definition of the theoretical concepts in LST theory, whereas others require additional 
assumptions. For the issues discussed in the present article, a distinction between restrictions that follow by definition and restrictions 
that require additional assumptions is not essential. We refer readers interested in the specific details to Steyer et al. (1992) or Steyer, 
Geiser, and Fiege (2012).
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The OS coefficient indicates the degree to which individual differences on the observed 

variables are determined by the situation or person × situation interactions:

(8)

The OS coefficient is thus useful to quantify the extent to which the longitudinal course of a 

construct is affected by a state variability process: The larger the OS coefficient, the stronger 

the situation-specific or person × situation interaction influences on the observed scores.

The reliability coefficient indicates the degree to which observed individual differences are 

due to reliable sources of variances (not measurement error). Reliability equals the sum of 

consistency and occasion-specificity coefficient:

(9)

The consistency, occasion-specificity, and (1 – reliability) coefficients sum up to 1; that is, 

CO(Yit) + OS(Yit) + [1 − Rel(Yit)] = 1.

In summary, the CO, OS, and Rel coefficients are often used to quantify the extent to which 

measurements reflect (1) stable person-specific effects (“traits”), (2) occasion-specific 

fluctuations (situation or person × situation interaction effects), and (3) random 

measurement error. For example, Kertes and van Dulmen (2012) found that cortisol levels in 

children showed both, substantial consistency (accounting for 43% of the variability in 

cortisol levels) and substantial occasion-specificity (accounting for 40% of the variance). 

Note that we presented the CO, OS, and Rel coefficients only for the STMS model, but 

that similar coefficients can be defined for other LST models as well (see Geiser & Lockhart 

[2012] for a detailed overview).

Mean structure—The only latent variables that can have non-zero means in LST models 

are the latent state variables τit and the latent trait variables ξit (as well as the corresponding 

common latent state and latent trait factors, which are defined on the basis of τit and/or ξit). 

This is because both ζit and εit are defined as regression residual variables in LST theory 

(Steyer et al., 1992), and regression residuals have means of zero by definition (Steyer, 

1989). Hence,

(16)

holds for the expectation E(.) of each manifest variable Yit. Furthermore, in the STMS 

model, the mean of a latent trait variable ξit is given by:

(17)

Therefore, the means of the observed variables can be expressed as:
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(18)

Equation 18 shows that in LST models, the mean of each indicator depends on the mean of 

the corresponding latent trait factor, E(ξ), the factor loading λit, and the intercept parameter 

αit. As a consequence, E(ξ) can be identified by setting the intercept parameter of a 

reference indicator (e.g., the first indicator at the first occasion of measurement) to a real 

value (e.g., α11 = 0) and the trait factor loading of the same indicator to a positive real value 

(e.g., λ11 = 1).

Variance structure—In the STMS model, the variances of the (indicator-specific) latent 

trait variables and latent state residual variables from the basic LST decomposition are given 

by:

(19)

(20)

Equations 19-20 show that changes in the factor loadings over time lead to changes in the 

variances of the (indicator-specific) latent trait and latent state residual variances in the 

STMS model.

MI in LST Models

One reason why the issue of MI has not yet received much explicit attention in LST 

modeling may be that in LST analyses the focus is on state variability rather than trait 

change over time. That is, researchers applying LST models typically ask whether the 

constructs that they study are more state-like or more trait-like (e.g., Deinzer et al., 1995; 

Windle & Dumenci, 1998). They focus on the proportions of the observed individual 

differences that are due to (1) stable person-specific effects (CO), (2) situation-specific 

fluctuations or person × situation interactions (OS), and (3) random error (1 − Rel). As we 

noted above, LST studies often assume that the trait itself does not change over the course 

of the study. As a consequence, LST researchers may presume that testing MI is not a 

critical step. Given that trait change is not explicitly modeled, no apples-and-oranges 

problems seem to arise. Related to this issue, researchers rarely model (or report) mean 

structures in LST analyses (for exceptions, see Baumgartner & Steenkamp, 2006; Alessandri 

et al., 2012; Lorber & O’Leary, 2012). Consequently, researchers may not even test for 

mean changes over time.

Because investigators using LST models are usually interested in modeling state-variability 

processes, they often focus exclusively on the covariance structure and on the calculation of 

the CO, OS, and Rel coefficients. In practice, these coefficients can be calculated even when 

MI is not assumed or when mean changes are present. Although this is not a problem per se, 

ignoring the mean structure or specifying an LST model with non-invariant parameters can 

obscure whether or not the trait under study actually changes across time. Furthermore, if 
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trait change is ignored, a researcher may obtain biased estimates of the trait and state-

variability related parameters of the LST model. Such bias may go unnoticed, given that 

LST models with non-invariant parameters may fit trait-change data very well—as we 

demonstrate in a simulation study below. To understand this problem, we first examine how 

the STMS model formally accounts for the observed and latent trait means and variances. 

We start with the intercepts and then turn to the factor loadings.

Intercepts—For simplicity and clarity, we first assume that the trait factor loadings in the 

STMS model are invariant across time, but that the intercepts vary, such that only weak 

factorial invariance holds for the measurement of the trait. Without loss of generality, we 

select the first indicator on the first time point (i.e., Y11) as reference indicator to scale the 

latent trait factor by setting α11 = 0 and λ11 = 1. Then, the trait loadings of the indicators Y1t 

all have to be set to 1 to hold them equal across time (i.e., λ1t = λ1 = 1). The trait factor 

loadings of the remaining indicators Yit, i ≠ 1, do not have to be fixed to a specific value, but 

have to be constrained to be equal across time (i.e., λit = λi for all i and t). Under these 

constraints, the means of the latent trait variables are given by:

(21)

Equation 21 shows that even though E(ξ) is a fixed effect, changes in the latent trait mean 

for each indicator E(ξit) across time are still possible when only weak factorial invariance 

holds. This is because the intercept parameters αit can change over time under this 

specification. (Potentially unexpected) Mean changes across time could thus be captured by 

varying intercept parameters under this specification. This shows that weak factorial 

invariance (i.e., invariant loadings but non-invariant intercepts) is not a sufficient condition 

to establish a pure state-variability (LST) model. The reason is that weak factorial invariance 

still allows for the possibility of changes in the latent trait means over time, leaving open the 

possibility that a trait-change rather than (or in addition to) a state-variability process 

generated the data. Note that the kind of trait change that could be masked by intercept non-

invariance is fairly restricted: Every individual would have to change by exactly the same 

amount αit − αi(t−1) between two measurement occasions. Equation 21 further shows that 

LST models with non-invariant intercepts may confound measurement non-invariance (i.e., 

changes in scale difficulty) with true trait changes.

In this regard, we note that some structural equation modeling software programs used for 

LST analyses automatically include intercepts into the analysis. The default in some 

programs is that the intercepts of all observed variables are freely estimated leading to an 

unrestricted (i.e., saturated) mean structure. Hence, users who are not aware of this issue 

may accidentally fit an LST model with free intercepts to their data, relying on the default 

settings of the software. As we show below, LST models with a saturated mean structure 

tend to fit a wide variety of data well, which tempt researchers into a false sense of security 

that a state-variability (i.e., pure state-trait) model is a good representation of the process 

under study. If the intercepts change significantly over time, however, this conclusion would 

be erroneous. In this case, the underlying process may not be best described as a pure state-

variability process, but may involve changes in the latent trait scores as well.
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Latent trait factor loadings—We now assume the intercept parameters to be invariant 

across time (i.e., αit = αit′ = αi for all i and t), but allow the trait factor loadings to vary 

between occasions of measurement. Although this specification is not usually meaningful in 

practice, it is useful to consider here for didactic reasons, as it helps us to isolate the 

consequences of non-invariant trait factor loadings. Under this condition, the latent trait 

variable means E(ξit) are given by:

(22)

According to Equation 22, even though the intercept parameters are now time-invariant, the 

latent trait factor means E(ξit) could also change under this condition because the loadings 

λit can now take on different values at different time points. If the loadings differ across 

measurement occasions, the latent trait means E(ξit) would necessarily change over time. 

Non-invariance of the trait factor loadings further implies that the variances of the latent 

trait variables, Var(ξit), changed over time. This can be seen from Equation 19, according to 

which these variances are given by . Changes in the variances Varξit 

may reflect true individual differences in change, generating further questions about the 

appropriateness of a strict state-variability model for the data. This shows that in contrast to 

intercept non-invariance, non-invariant loadings can mask trait-change processes that also 

involve individual differences in trait change over time, although the rank order of 

individuals’ trait scores would still be unchanged. Alternatively, changes in the loadings 

may simply reflect measurement bias (changes in the units of measurement or item 

discrimination). These two possibilities (true changes vs. measurement bias) are 

indistinguishable in the LST model.

The above derivations illustrate that strong factorial invariance (i.e., time-invariant 

intercepts and time-invariant loadings) with regard to the measurement of the common trait 

factor ξ is required in the LST model if one seeks to establish a strict state-variability model 

in which only systematic time-specific fluctuations around a fixed set point (trait) are 

allowed, but no trait changes. We now turn to that part of the STMS measurement model 

that relates the observed variables to the latent state residual factors.

Latent state residual factor loadings—By definition, the latent state residual factors ζt 

in LST theory represent systematic time-specific fluctuations of the latent state scores 

around the latent trait scores. Latent state residual factors have means of zero by definition. 

Hence, they do not contribute to potential mean changes in the indicators or the latent trait 

variables. Potential changes in their measurement would not affect the latent trait means or 

variances. Nevertheless, we recommend that the assumption of time-invariant latent state 

residual factor loadings δit = δit′ = δi be tested as well. Non-invariant state residual factor 

loadings indicate that the latent state residual factors are not measured on the same scale at 

each time point. Specifically, according to Equation 20, changes in the loadings would 

imply changes in the variances of the latent state residual variables ζit , even if the common 

state residual factor variances Var(ζit)are constant over time t.
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In summary, MI restrictions are vital to LST models in order to test whether the process 

under investigation is best described as a state-variability or as a trait change process. Most 

importantly, the parameters that are related to the measurement of the latent trait factors 

(i.e., the intercepts αit and the trait factor loadings λit) should be carefully examined for 

invariance, as these parameters are directly related to potential changes in the latent trait 

means and variances over time. In addition, time-invariance of the latent state residual factor 

loadings is also desirable, although not strictly necessary to establish a state-variability 

process.4

Of course, invariance restrictions should never simply be assumed to hold for a given data 

set. They need to be tested, as invariance may not always hold. As mentioned previously, 

LST models with freely estimated loadings and intercepts tend to fit empirical data well. 

Researchers not aware of MI issues could erroneously conclude that a state-variability 

process characterizes the phenomenon under study well, when in fact the true process 

involves trait change over time.

A Multiple-Indicator Linear LGM

To further illustrate the problematic issues that arise from measurement non-invariance in 

LST models, we now directly contrast the STMS model with an LGC model as a 

prototypical model for measuring trait-change processes. For this purpose, we introduce a 

multiple-indicator LGC model within which the STMS model is nested. Even though this 

multiple-indicator LGC model is more complex than the single-indicator LGC models 

commonly used in the literature, this model allows us to further clarify (1) the connection 

between LST models and LGC models and (2) the issues associated with measurement non-

invariance in LST models. The key issues discussed here apply in a similar way regardless 

of whether a researcher uses single- or multiple-indicator LGC models.

Figure 3 shows the multiple-indicator LGC model used here, assuming linear growth. (A 

formal derivation of this model based on concepts of LST theory is provided in Appendix A 

as well as in Bishop, Geiser, & Cole, 2013.) It can be seen that as in standard (single-

indicator) linear LGC models, there is an intercept factor (ξ1) that reflects individual 

differences in the initial (time 1) trait scores and a slope factor (ξ2 − ξ1) that reflects 

individual differences in linear trait change across time. Intercept and slope factor can be 

correlated.5

In contrast to single-indicator LGC models, the present model allows for multiple indicators 

at each time point. The indicators are allowed to have different intercepts and loadings 

within the same time point to account for potential differences in scaling. Using multiple 

indicators at each time point makes it possible to account for a state-variability process in 

this model in addition to the trait-change process that is reflected in the slope factor. The 

4It should be noted that the STMS model is often specified as a higher order factor model, in which the observed variables load onto 
common latent state factors τt which themselves load onto a second-order latent trait factor ξ (see, e.g., Steyer et al., 1992). In this 
type of specification, not only the first-order factor loadings and intercepts should be tested for time-invariance, but also the second-
order factor loadings and intercepts that relate the latent state factors to the latent trait factor.
5Note that this model could be extended to include additional latent change variables (ξ3 − ξ1) and (ξ4 − ξ1) to measure specific 
components of change. For simplicity, such more complex latent change score models are not considered in the present article.
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state-variability process is captured by the latent state residual factors ζit that have the same 

meaning as in the STMS model. With just a single indicator, the state variability process 

could not be separated from trait change and random measurement error (which represents a 

limitation of standard single-indicator LGC models).

The LGC model in Figure 3 can thus be seen as a hybrid model: It accounts for both a linear 

trait change process [reflected in the slope factor (ξ2 − ξ1)] and a state-variability process 

(reflected in the latent state residual factors ζt). The model in Figure 3 is more general than 

single-indicator LGC models, as it allows separating random measurement error from true 

state-variability processes. Furthermore, the STMS model can be viewed as a special case of 

this model. The LGC model in Figure 3 reduces to the STMS model if the latent trait-change 

component is zero, that is, if Var(ξ2 − ξ1) = (ξ2 − ξ1) = 0. In this case, all indicators measure 

a single time-invariant latent trait ξ1 = ξ as in the STMS model, and there is no trait-change 

process.

Although not obvious at first sight, the model in Figure 3 is closely related to McArdle’s 

(1988) second-order or curve-of-factors LGC model for multiple indicators. The only 

difference between the model used here and the more commonly seen second-order LGC 

model is that the model in Figure 3 allows estimating the loadings on the latent state residual 

factors as independent model parameters (δit), whereas the same loadings are implicitly 

constrained to be equal to the trait loadings (λit) in McArdle’s model. We chose the more 

general model with independent state residual loadings here to make the relationship 

between the STMS model and multiple-indicator LGC models clearer. Nonetheless, the 

basic interpretation of this model is the same as in McArdle’s (1988) multiple-indicator 

LGC model.

In the linear LGC model, the means of the latent trait variables are given by:

(30)

for t = 1, …, n. Equation 30 shows us that, in contrast to the STMS model, in this linear 

LGC model, changes in the means of the latent trait variables over time can arise from three 

sources: (1) changes in the intercepts αit, (2) changes in the trait loadings λit, and/or (3) true 

trait change as represented by the mean of the slope factor, E(ξ2 − ξ1). In other words, in this 

model, true changes in the means of the latent trait variables [as represented by E(ξ2 − ξ1)] 

can be separated from changes in the measurement parameters (αit and λit). This is not 

possible in the STMS model, because this model assumes that there is no trait change.

A similar argument holds for changes in the variances of the latent trait variables, Var(ξit). 

In the linear LGC model, these variances can be expressed as:

(31)
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As a consequence, changes in the latent trait variances can be due to (1) changes in the 

loadings λit, (2) true growth variance [as represented by Var(ξ2 − ξ1)], or (3) the growth 

factor covariance {as represented by Cov[ξ1, (ξ2 − ξ1)]}.

In summary, even if αit and λit are constrained to be time-invariant for all indicators in the 

LGC model (as would be recommended by most methodologists), mean and variance 

change over time is still allowed in the LCG model, because of the true trait-change 

component (ξ2 − ξ1). This feature distinguishes the LGC model from the STMS model, in 

which true trait change (if present) will be confounded with non-invariance of αit, λit, or 

both. In other words, the LGC model clearly distinguishes true trait change from (usually 

undesirable) changes in the trait factor loadings and intercepts, whereas such a distinction 

cannot be made in the STMS model with non-invariant parameters.

In the hybrid model, the CO coefficient is defined as follows:

(32)

As can be seen from Equation 32, both the intercept and slope contribute to the CO 

coefficient in the hybrid model, as both are related to the trait part of the model. The OS 

coefficient is defined in the same way as in the STMS model (see Equation 8) and Rel(Yit) = 

OS(Yit) + CO(Yit).

Our description of the LGC model makes clear that if a true trait-change or a hybrid process 

generated the data (be it a linear or other growth process), it is preferable to analyze the data 

with an appropriate LGC or other kind of latent trait-change model rather than an LST 

model. The reason is that although an LST model with non-invariant parameters is able to 

capture trait change, it does so in a conceptually ambiguous way, that is, by allowing 

measurement-related parameters (αit, λit) to be non-invariant. This is conceptually 

problematic because it confounds potential measurement non-invariance (i.e., measurement 

bias) with true change in the trait values. In contrast, the LGC model separates measurement 

(non)invariance issues from true trait change in the structural model. The LCG model is 

therefore preferred when the process under study involves trait change rather than or in 

addition to state-variability processes. The following simulation study demonstrates some 

consequences of fitting an LST model with non-invariant parameters to data generated by a 

trait-change process.

Simulation Study

Method

The purpose of this simulation was to (1) show that LST models with non-invariant 

parameters fit data generated by a trait-change process well across a wide range of 

conditions and (2) examine the problematic consequences of accepting LST models and 

interpreting the resulting parameter estimates for trait-change data. The purpose of the 

simulation is not to examine all possible constellations of non-invariance or trait change; 

rather, we use this simulation to illustrate the practical relevance of our analytical 
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derivations through concrete examples. We defined several population models that not only 

included a state-variability process (in terms of a non-zero amount of occasion-specific 

variance), but also included (1) true changes in the latent trait means and (2) individual 

differences in trait change over time. The multiple-indicator LGC model introduced in the 

previous section (see Figure 3) served as the basis for generating the population data for 

three indicators (i = 3) measured on four measurement occasions (t = 4). As explained 

above, this model contains not only a true trait component (as represented by the latent 

intercept factor ξ1) as in the STMS model, but also a true trait-change component [as 

represented by the linear slope factor (ξ2 − ξ1)]. In addition, latent state residual components 

(δitζt) at each time point reflect systematic state-variability in line with conventional LST 

models. In summary, this model can be seen as a hybrid, involving not only a state-

variability process, but also (linear) changes in the trait scores over time.

In our simulation, we used nine different population models to show that the issues 

discussed in this paper hold across a range of conditions, including models with small and 

large amounts of trait change over time. The population models varied in terms of (1) the 

level of mean trait change over time as reflected in different latent slope factor means (we 

included three conditions of small, medium, and large mean differences according to 

Cohen’s [1988] conventions for effect sizes in terms of Cohen’s d) and (2) three levels of 

individual differences in trait change over time as reflected in different latent slope factor 

variances (we included conditions in which the latent slope factor variance was specified to 

be 1%, 5%, or 10% of the time 1 trait factor variance). State residual factor loadings in this 

model were specified as time-invariant (all loadings were fixed to 1). The exact population 

parameter specifications of the population LGC model are described in Appendix B.

Multivariate normal data were generated for each of the nine population models for four 

different sample size conditions (N = 250; N = 500; N = 1,000; and N = 5,000). We chose 

these sample sizes for the following reasons. First, we wanted to include a sample size that 

is found in typical LST applications. Geiser and Lockhart (2012) reviewed 57 LST 

applications and found a median sample size of N = 249 (68.4% of studies in their review 

used sample sizes ≤ 500). Second, we wanted to ensure that a seemingly good fit of an 

incorrectly specified model was not simply due to low statistical power, caused by small 

sample size. We therefore used three additional, larger sample size conditions (N = 500; N = 

1,000; and N = 5,000) as well to demonstrate that even when power is very high, the chi-

square test may not reliably identify an LST model with non-invariant parameters as 

incorrect for data derived from a true population model of change.

We generated 1,000 replications for each cell of the design using Mplus 6 (Muthén & 

Muthén, 1998-2012). We then analyzed the data in Mplus with (1) the correctly specified 

multiple-indicator linear LGC model that generated the data (i.e., the true population model 

shown in Figure 3), (2) the STMS model with non-invariant parameters, (3) the STMS 

model with weak factorial invariance (i.e., time-invariant trait and state residual factor 

loadings, but non-invariant intercepts, and (4) the STMS model with strong factorial 

invariance (i.e., time-invariant trait and state-residual factor loadings and invariant 

intercepts). In total, we conducted 3 (slope factor mean) × 3 (slope factor variance) × 4 

(sample size) × 4 (model type) × 1,000 (replications) = 144,000 analyses.
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We hypothesized that the data-generating LGC model would fit the data well and produce 

unbiased parameter estimates under all conditions, given that (1) it was the true model and 

(2) even the lowest sample size condition (N = 250) appeared large enough to produce 

dependable parameter estimates. We further hypothesized that the STMS model with non-

invariant parameters would fit the data reasonably well in terms of the chi-square test or at 

least in terms of criteria for approximate model fit that are commonly used in practice (Hu & 

Bentler, 1999; Schermelleh-Engel, Moosbrugger, & Müller, 2003). Even though the STMS 

model with non-invariant parameters was clearly different from the data-generating trait-

change model, we expected it to fit the data adequately, given that it allowed all factor 

loadings and intercepts to vary freely across time. As we showed in the analytic section, 

these parameters can capture not only mean changes but (to some extent) changes in the 

variances of the latent trait variables across time. In fact, leaving the intercepts free for all 

indicators implies a saturated mean structure.

For the STMS weak factorial invariance specification, we expected that this model would 

lead to more correct rejections (misfit), albeit not as many as a strong factorial invariance 

model. Finally, we hypothesized that the STMS model with strong factorial invariance 

would not fit the data well under any condition, given that it involves time-invariant factor 

loadings and intercepts and thus does not account for trait changes over time. Hence, the 

STMS model with invariant parameters (but not the STMS model with non-invariant 

parameters) was expected to clearly reveal the misspecification that arises from fitting a pure 

state-variability model to a trait-change process.

In each condition, we also examined parameter bias in the coefficients that are typically of 

interest in an LST analysis, namely the CO, OS, and Rel coefficients for all models relative 

to the true population models. This step should reveal the potentially dangerous 

consequences of accepting a pure state-variability model for data that were actually 

generated by a trait-change process. We expected the coefficients of consistency and 

occasion-specificity to be biased in the STMS models with either invariant and non-

invariant parameters, as both models are misspecified relative to the population model. 

Specifically, we hypothesized that STMS models with non-invariant or only weakly 

invariant parameters would erroneously attribute trait-change variance to occasion-specific 

variability and thus lead to a systematic underestimation of consistency and an 

overestimation of occasion-specificity.

Results

Model convergence and improper solutions—All models converged under all 

conditions. In terms of improper solutions (“Heywood cases”), not a single replication 

resulted in an improper residual covariance matrix (negative indicator residual variances). 

However, 1,575 analyses (1.1% of all analyses) yielded non-positive definite latent variable 

covariance matrices. All of these cases occurred in analyses of the true population model 

(i.e., the correctly specified case), implying that 4.4% of analyses for this model were 

improper. The vast majority (1,560 = 99%) of these cases were in the small slope factor 

variance condition, whereas the remaining 15 (1%) were in the medium slope factor 

variance condition. In addition, the frequency of non-positive definite latent variable 

Geiser et al. Page 18

Behav Res Methods. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



covariance matrices was negatively correlated with sample size (786 cases [49.9%] in the N 

= 250 condition; 510 [32.4%] in the N = 500 condition; 279 [17.7%] in the N = 1,000 

condition, and zero in the N = 5,000 condition).

Given that the true population value of the slope factor variance was close to zero in this 

condition, the straightforward explanation is that sampling error was more likely to yield 

slope factor variance estimates of zero (or even slightly below zero), compared to the other 

conditions, in which the population slope factor variance was farther away from zero. In the 

larger sample size conditions, the problem was less severe, because sampling error was 

reduced.

Model fit—We analyzed the absolute fit of all models in terms of (1) exact model fit and 

(2) approximate model fit as is commonly done in the literature (e.g., Hu & Bentler, 1999; 

Schermelleh-Engel et al., 2003). We categorized a model as not being rejected according to 

a test of exact model fit when the chi-square test was non-significant (p > .05) for the model. 

In terms of approximate fit, we examined the Root Mean Square Error of Approximation 

(RMSEA; Steiger, 1990), Comparative Fit Index (CFI; Bentler, 1990), and Standardized 

Root Mean Square Residual (SRMR; Schermelleh-Engel et al., 2003). To simplify the 

presentation, we defined a summary fit criterion according to which a model was seen as 

acceptable if jointly RMSEA ≤ .05, CFI ≥ .95, and SRMR ≤ .05. (Note that we still present 

the results for each individual fit index in Appendix D.) 6

The black bars in Figure 4A show the percentage of replications in each condition that had a 

non-significant chi-square test of model fit (p > .05) and thus would be seen as satisfying the 

criterion of exact model fit. The black bars in Figure 4B show the percentage of replications 

meeting the criterion for approximate fit. The true population model was consistently 

rejected only in about 5% of cases according to the chi-square test of model fit. This 

rejection rate is commensurate with an alpha error rate of 5%. Moreover, the population 

model met the approximate fit criteria in 100% of cases.

More interestingly, and as expected, the STMS model with non-invariant parameters also 

showed a good fit under a wide range of conditions. According to the chi-square test, the 

rejection rate for this model was only about 5% in the small slope-factor variance conditions 

when the sample size was N = 1,000 or below, and only about 10% in the N = 5,000 

condition. In the medium slope-factor variance condition, the rejection rate was still 

relatively low for the three smaller sample size conditions, but was 100% in the N = 5,000 

condition. In the largest slope-factor variance condition, the rejection rate was still below 

20% in the N = 250 condition and below 40% in the N = 500 condition. Importantly, the 

misspecified STMS model with non-invariant parameters met the criteria for acceptable 

approximate fit in almost 100% of cases across all conditions. In summary, researchers 

using exact fit statistics may retain this model in many instances, and researchers relying 

6We realize that cut-off criteria for approximate fit indices are to some extent arbitrary and that they should not be taken as “golden 
rules”, as has been pointed out in the literature (Chen, Curran, Bollen, Kirby, & Paxton, 2008; Marsh, Hau, & Wen, 2004). In the 
present paper, we are using a summary fit criterion mostly to simplify the presentation.
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exclusively on approximate fit indices would have retained this model under virtually all 

conditions studied in this simulation.

Figure 4 also illustrates that the rejection rate for this model did not vary across different 

levels of mean change. This is expected, given that the STMS model with non-invariant 

parameters does not place restrictions on the observed mean structure. Therefore, regardless 

of whether mean changes over time are small or large, the model can fit these changes by 

varying intercept parameters across time.

The STMS model with weak invariance showed an overall higher rejection rate compared to 

the non-invariant model. Especially with large samples and medium to high slope variance, 

the model was consistently rejected according to the chi-square test of exact fit. On the other 

hand, this model yielded a relatively high rate of acceptable chi-square p-values in the 

smaller sample size conditions (250 and 500) for small to medium slope mean and variance. 

Approximate fit criteria were almost completely insensitive to the misspecification in the 

smallest slope variance conditions and would have let to a high rate of incorrect model 

acceptance also in the medium slope variance condition. Only in the large slope variance 

conditions did approximate fit indices consistently reject the weak invariance model.

As expected, the STMS model with strong invariance (time-invariant loadings and 

intercepts) showed higher rejection rates than the weak and non-invariance models. The 

strong invariance model was consistently rejected by the χ2 test when slope-factor variance 

and mean were at least of moderate size. However, even the time-invariant model had χ2 

rejection rates below 20% in the small slope-factor variance condition when mean change 

was of small or medium size and the sample size was 500 or lower. Sample sizes ≥ 500 were 

needed to achieve a rejection rate > 50% in the moderate slope-factor variance/small mean 

change condition. Approximate fit was acceptable in many cases for small and moderate 

slope-factor variance, whereas for the large slope-factor variance conditions, and the 

medium slope variance conditions with large mean change, approximate fit criteria led to 

model rejection in most cases. Analyses of individual fit statistics (see Appendix D) 

revealed that this rejection was entirely driven by RMSEA and SRMR, whereas CFI was 

completely > 0.97 and thus showed no sensitivity to the misspecification. In line with 

Marsh, Hau, and Wen (2004), we found that the probability of correctly rejecting a 

misspecified model based on approximate fit indices decreased with increasing sample size. 

This relation was particularly obvious for the STMS models with weak and strong 

invariance.

Parameter bias—Figures 5 and 6 show the percent average parameter bias in the 

estimation of the consistency and occasion-specificity coefficients relative to the true 

population values, respectively. Note that the values represent aggregates across the three 

indicators within each occasion. Further note that in the population growth model, 

consistency is defined as the proportion of variance in the observed indicators that is 

accounted for by trait and trait change (Eid et al., 2012). The population model accurately 

reproduced both types of coefficients on average (i.e., average bias differed only marginally 

from zero in all conditions for the data-generating model). In contrast, both the STMS model 

with non-invariant parameters and the STMS model with invariant parameters showed bias 
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in the estimation of the consistency and occasion-specificity coefficients in the medium and 

large slope factor variance conditions. Contrary to our expectations, the bias in occasion-

specificity in the LST model with non-invariant parameters was highest for the first and the 

last time point. For both of these time points, occasion-specificity tended to be 

overestimated. Bias in occasion-specificity for the model was substantial and ranged from 

roughly 25% in the medium slope-factor variance condition to up to approximately 37% in 

the large slope-factor variance condition. As one would expect, biased estimates also 

occurred in the LST model with time-invariant parameters (because this model was clearly 

misspecified for the population data). Reliability estimates were largely unbiased for all 

three models under all conditions, so that we did not include a separate graph for reliability 

bias.

Discussion of Simulation Results

The purpose of the simulation study was to illustrate that, under a variety of conditions, an 

LST model with non-invariant parameters can provide a disturbingly good fit to data that 

actually involve a trait-change process (and not just state variability). A lack of statistical 

power can be excluded as an explanation for the remarkably good chi-square values for the 

LST model with non-invariant parameters, given that we included large sample sizes of N ≥ 

500. In practice, LST applications often involve sample sizes well below N = 500 or even N 

= 250 (Geiser & Lockhart, 2012). Hence, we may assume that the issues demonstrated here 

are even more problematic in many applied LST studies. Investigators using LST models 

with non-invariant parameters may not notice that there is actually a trait-change process in 

their data even when this effect is strong—as demonstrated by the remarkably good fit even 

in conditions that involved strong trait changes over time. This problem will be exacerbated 

to the extent that researchers ignore the mean structure in LST analyses. In these cases, even 

when factor loadings are specified as time-invariant, mean changes across time could still 

occur and would not result in a bad fit, given that an LST model with non-invariant 

intercepts has a saturated mean structure. As a consequence, investigators may not notice 

such changes based on model fit criteria.

Of note, even though LST models with time-invariant loadings and/or intercepts showed 

much higher rates of correct rejections than the LST model with non-invariant parameters, 

these models were not consistently rejected by approximate fit statistics unless individual 

differences in trait change over time were at least 5% of the initial trait factor variance and 

mean change was large. This demonstrates once again that researchers need to be cautious in 

accepting pure state-variability models when there may be actual trait changes. Particular 

problems may arise in this context from the use of approximate fit criteria in large samples, 

because of the negative relation between correct model rejection and sample size found for 

approximate fit indices. This counter-intuitive relation was discussed by Marsh et al. (2004) 

for SEMs in general and replicated for LST models in the present study. We also showed 

that the incorrect acceptance of a state-variability model for data actually generated by a 

trait-change process can result in biased coefficients of consistency and occasion-specificity, 

which are typically the main focus of applied LST studies.
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General Discussion

Researchers in psychology and other social sciences frequently ask the question of whether 

the longitudinal course of a construct is most appropriately described as state variability 

(i.e., short-term and typically reversible changes in individual’s true state scores that 

fluctuate around an invariant trait level) or trait change (i.e., long-term and typically 

irreversible modifications to individual’s trait scores). Whereas LST models are designed to 

model state-variability processes around an invariant trait LGC models are designed to 

model trait-change processes. In addition, in this manuscript we highlighted the value of 

hybrid models, which combine features of both, LST and LGC models (Tisak & Tisak, 

2000). In our discussion, we first summarize the key findings of this paper. Subsequently, 

we provide detailed procedural advice for researchers studying variability and change in 

longitudinal data.

Summary of Findings

Traditionally, methodologists and applied longitudinal researchers have regarded the MI 

issue as mainly a problem of avoiding “measurement bias”. In other words, researchers’ 

main focus in testing for MI in longitudinal data has usually been on whether the 

psychometric properties of measured variables and/or their meaning have changed over 

time. In this article, we demonstrated that testing MI is not only a question of measurement 

bias, but that it is also relevant for distinguishing state variability from trait change processes 

in longitudinal data. Specifically, we showed that LST models, which are designed to 

measure state-variability processes, can capture various forms of trait change if these models 

are specified with non-invariant measurement intercept and/or loading parameters. This is 

true even if no measurement bias is present.

Hence, not testing for MI in LST analyses can not only mask a potential measurement 

problem, but can also lead to difficulties in empirically distinguishing a state-variability 

from a trait-change process. Our simulation study illustrated this problem, showing that 

researchers fitting LST models with non-invariant parameters to data generated by a latent 

trait-change process may obtain a well-fitting solution and erroneously conclude that the 

process is best described as a pure state-variability process. In other words, by fitting an LST 

model with non-invariant parameters, a researcher may miss the fact that the longitudinal 

course of the construct under study actually involves trait changes instead of, or in addition 

to, state variability. In summary, measurement non-invariance poses problems in LST 

analyses whenever a key question is whether the longitudinal dynamics of a construct are 

best described by a state-variability (i.e., state-trait) process, a trait change process, or both.

Our paper should not be read as suggesting that LST models are problematic in general or 

that these models should not be used. On the contrary, we think that LST models are 

extremely valuable models for analyzing state-variability processes in psychological 

attributes and that longitudinal researchers should have these models in their tool boxes. Our 

concern here is that many applications of LST models to date have not considered issues of 

MI in the analysis of these models, probably because the meaning and consequences of non-

invariant measurement parameters in LST models were not clear to most researchers. As a 

consequence, many studies may have erroneously concluded that the process that they study 
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is a pure state-variability process. Hence, the issue is not that LST models are not useful; 

rather, the issue is that they should be properly applied. Below we provide four tips for the 

proper use of LST models.

Tip #1: Carefully Test for MI in LST Analyses

We recommend that researchers using LST models should establish at least strong factorial 

invariance in their LST models. For this purpose, the global model fit in terms of the chi-

square fit test of constrained models with equal intercepts (α) and equal loadings (λ) on the 

trait factor(s) should be examined. In addition, we recommend that researchers test 

constrained models against less constrained models that allow for time-varying intercepts or 

trait loadings. Given that such models are nested, they can be tested against each other 

directly using chi-square difference tests, provided the less restrictive model with non-

invariant parameters fits the data. If MI models do not fit the data well and/or if they fit the 

data worse than non-MI models, researchers should carefully consider the possibility that the 

process under investigation may be better described by a trait-change model (see “Tip 4” 

below). Another potential explanation for measurement non-invariance can be the so-called 

Socratic effect (e.g., Jagodzinski, Kühnel, & Schmidt, 1987), according to which individuals 

oftentimes need to get used to the measurement instrument. This effect may cause the 

measurement model to be different at Time 1 compared to the remaining time points, 

without trait change being present. Running analyses with and without the Time 1 data can 

help examining this possibility.

In addition, even when full MI does not hold, the assumption of partial MI may be tenable 

(e.g., Cheung & Rensvold, 1999). Partial MI means that the measurement parameters (e.g., 

factor loadings or intercepts) are time-invariant for some but not all observed variables. 

Strategies for testing partial MI statistically have been described in Byrne, Shavelson, and 

Muthen (1989) as well as Cheung and Rensvold (1999). In the context of LST models, 

partial MI could imply that some indicators measure a stable trait, whereas others measure a 

slightly different trait that changes across time. Under “Tip #4” we describe alternative 

models that may be considered in cases of partial or full measurement non-invariance.

Researchers may wonder whether loading invariance is equally important on the side of the 

latent state residual factors. Even though invariance of the state residual factor loadings (δ) 

is not critical for the proper interpretation of trait changes, such non-invariance may indicate 

a violation of a fundamental assumption made in LST theory (Steyer et al., 1992). LST 

theory assumes that the situations are drawn at random from a set of exchangeable situations 

at each time point. Changes in the latent state residual factor loadings may thus indicate that 

the situations were not exchangeable and that a standard LST model may not be the best 

model to use. Instead, a model that uses one situation as reference and contrasts the 

remaining situations against this reference may be more appropriate in these cases. Such a 

model was discussed by Schermelleh-Engel, Keith, Moosbrugger, and Hodapp (2004).

Tip #2: Include and Analyze the Mean Structure in LST Analyses

In line with the previous recommendations about testing loadings and intercepts for MI, 

researchers should routinely include the mean structure in their LST analyses, even when the 
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mean structure does not appear to be of substantive interest. Including the mean structure in 

an LST analysis allows researchers to test the assumption of strong MI. If the intercepts are 

not time-invariant, this may be a sign that mean changes have taken place over time, again 

providing evidence against a pure state-variability process.

The relevance of testing mean structures in LST models may be surprising to many 

researchers, given that LST models have often been presented and interpreted as pure 

covariance structure models, focusing on variance components and the estimation of 

consistency, occasion-specificity, and reliability coefficients. We may speculate that mean 

structures were deemed irrelevant to LST analyses by many researchers, as means are not 

needed for the computation of the above coefficients. Consequently, the time-invariance of 

intercepts has rarely been explicitly tested in LST applications. 7

Even though mean structures may not be of direct substantive interest in LST studies, 

including them into the analysis is critical. Without a mean structure, MI cannot be fully 

tested. If the mean structure is not included in the model, potential trait changes may be 

overlooked, because a model with free intercepts implies a saturated mean structure that 

cannot cause misfit in the model. We reiterate here that SEM computer programs may 

include (non-invariant) intercepts into the model by default. Researchers should be aware of 

the fact that this default specification can mask trait changes in an LST model. In Appendix 

C, we provide a sample Mplus script showing the correct mean structure specification in the 

STMS model.

Tip #3: Avoid Small Designs

Many previous applications of LST models used only two indicators (“test halves” or item 

parcels) measured on just two measurement occasions (we refer to such designs as 2 × 2 

designs). In many of these applications, item parcels were specifically created to be 

homogenous (i.e., tau-equivalent in the sense of CTT), and hence all factor loadings were 

fixed (typically to 1) at all time points. A model of tau-equivalence (or essential tau-

equivalence) implies time-invariant loadings (because all loadings are 1 at each time point), 

such that the issue of loading invariance does not require specific attention in these cases.

Although small designs are useful to demonstrate the minimal conditions under which LST 

models can be applied, these designs make it harder to test certain invariance assumptions 

and to detect trait changes over time. For example, in a 2 × 2 design, the constraint of equal 

state residual factor loadings at each time point is required for model identification and thus 

does not represent a testable constraint (unless the latent state residual factors are correlated 

with external variables). Furthermore, at least one trait factor loading must be set equal 

across time for identification reasons. Hence, 2 × 2 designs are particularly problematic 

because they make it more difficult for researchers to detect potential violations of MI. Such 

small designs also make it difficult to distinguish short-term fluctuations from actual trait 

changes, especially when the spacing of measurement occasions is closely adjacent in time. 

Moreover, the use of a small number of indicators (i.e., nearly underidentified models) in 

7Of the 52 LST articles identified in our review of the applied LST literature, only 6 explicitly included a mean structure and tested 
the equality of the intercepts as part of establishing MI (e.g., Baumgartner & Steenkamp, 2006; Alessandri, 2012).

Geiser et al. Page 24

Behav Res Methods. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



conjunction with small samples may result in low statistical power to detect violations of 

invariance assumptions and detect individual differences in trait changes (e.g., von Oerzen et 

al., 2008).

In summary, even though small designs are sufficient to estimate the CO, OS, and Rel 

coefficients and may be useful, researchers should generally avoid these kinds of designs if 

possible. We recommend that researchers include at least three indicators in their analyses 

and collect data for the same indicators on four or more time points (Ciesla et al., 2007). 

Such larger designs allow for more powerful tests of the assumption that the process under 

investigation is a pure state-variability (state-trait) process.

Tip #4: Consider and Test Alternative Models

Although LST models are useful for modeling the longitudinal course of a range of 

psychological constructs, researchers should always consider alternative models as well. In 

particular, we recommend that researchers compare the fit of LST models to the fit of 

hybrid models that allow for trait change in addition to state variability. Eid and Hoffman 

(1998), Eid et al. (2012), as well as Tisak and Tisak (2000) provided modeling frameworks 

for such hybrid cases. In Appendix C, we included a sample Mplus script showing the 

proper specification of the hybrid linear growth model presented in this paper. Different 

hybrid models were also discussed in detail by Bishop et al. (2013).

Testing alternative models that allow for a trait-change component is especially important 

when a researcher has found an LST model with strong factorial invariance to not fit well. In 

these cases, the researcher can first try to fit an alternative invariant LST model, in which 

some of the restrictive assumptions of the STMS model are relaxed to examine whether the 

lack of fit is related to method effects (indicators showing correlated residuals across time) 

rather than the presence of trait changes. For this purpose, we recommend that researchers 

fit an LST model with indicator-specific traits (see Figure 7A) if the STMS model is rejected 

by fit statistics. This model is also known as multitrait-multistate (MTMS) model, as it 

allows each indicator to have its own trait factor. The MTMS model relaxes the assumption 

of perfectly correlated trait variables ξit made in the STMS model, thus allowing for method 

effects (indicator-specificity) across time (an Mplus script for the proper specification of the 

MTMS model can be found in Appendix C; for a more detailed description of the model, see 

Geiser & Lockhart, 2012).

If also the MTMS model does not provide a reasonable fit to the data, it is likely that 

indicator-heterogeneity alone cannot explain the misfit of LST models to the data. Instead, 

trait-change may be present in addition to a state-variability process. In this case, the 

researcher should first assess whether some or all indicators show non-invariant parameters 

across time. The MTMS model can be extended to include growth factors for some or all 

indicators, depending on whether non-invariance is partial or concerns all indicators (see 

Figure 7B for a linear growth model with indicator-specific growth factors for all indicators; 

a sample Mplus script is available from Appendix C; for a more detailed description of 

indicator-specific LGC models, see Bishop et al., 2013). In addition to linear growth, 

researchers may try more complex growth or hybrid models that either specify more 
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complex forms of growth (e.g., quadratic) or estimate the form of growth freely from the 

data (e.g., Tisak & Tisak, 2000).

Conclusion

The previous literature in the field of LST modeling has not sufficiently emphasized the fact 

that testing MI is an important step in distinguishing state-variability from trait-change 

processes in longitudinal data. We urge researchers applying LST models to (1) include a 

mean structure in the analysis and (2) conduct and report explicit tests of MI for both the 

factor loadings and intercepts. Even when an LST model with time-invariant parameters fits 

our data, we cannot be absolutely certain that the process is best described as a pure state-

variability process in general. Too few indicators, time points, or participants may diminish 

power to detect misspecifications of such a model. Furthermore, a psychological process 

may be adequately described as a pure state-variability process across a certain period of the 

life span, but may be subject to actual trait changes during other periods of life. We hope 

that our guidelines will help improve longitudinal research by sharpening the conceptual and 

empirical distinction between state-variability and trait-change processes and by helping 

researchers to apply LST models appropriately.
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Appendix A

Formal Definition of the Multiple-Indicator LGC Model Used in the 

Simulation Study

The multiple-indicator linear LGC model used in the simulation study (see Figure 3) was 

first presented by Eid, Courvoisier, and Lischetzke (2012). Here, we show how this model 

can be formally defined based on concepts of LST theory to illustrate its mathematical 

relationship to the STMS model. For more details, see Bishop, Geiser, and Cole (2013). In 

the first step, we assume that all latent trait variables measured at the same time point t are 

congeneric:

(A1)

This is different from the assumption stated in Equation 3 for the STMS model in that we no 

longer postulate homogeneity of all latent trait variables ξit but only of those that are 

measured on the same time point t. In the second step, we define an intercept factor to be 

equal to the common latent trait factor measured at Time 1 (ξ1) and a slope factor to be 

equal to the latent difference variable (ξ2 − ξ1):

(A2)
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(A3)

In the third step, we make the assumption that change over time is linear by postulating the 

following relation:

(A4)

In the fourth step, we assume as in the STMS model that occasion-specific effects are 

homogeneous for all indicators measured at the same time point, so that they can be 

represented by common state residual factors (compare Equation 4):

(A5)

Inserting Equation A4 into Equation A1, we obtain

(A6)

Inserting Equations A5 and A6 into the basic LST measurement equation (Equation 5) 

yields

(29)

The STMS model is a special case of the model in Equation 29 that results if Var(ξ2 − ξ1) = 

E(ξ2 − ξ1) = 0.

Appendix B

Parameter Specification in the Simulation Study

In this appendix, we describe the parameter specification of the population model used in the 

simulation study.

Parameter Value

Indicator intercepts, αit Fixed to 0 for all indicators

Loadings on the latent intercept factor, λξ1 Fixed to 1 for all indicators

Loadings on the linear slope factor, λ(ξ2−ξ1) Fixed to 0 (time 1), 1 (time 2), 2 (time 3), 3 (time 4)

Loadings on the latent state residual factors, δit Fixed to 1 for all indicators

Indicator residual variances, Var(εit) Varied depending on the slope factor variance so that
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Parameter Value

reliability would equal .8 for all indicators at all time
points in all conditions

Variance of the intercept factor, Var(ξ1) 0.5

Mean of the intercept factor, E(ξ1) 0

Variance of the linear slope factor, Var (ξ2−ξ1) Three conditions: 0.005 (1% of the intercept factor
variance), 0.025 (5% of the intercept factor variance),
and 0.05 (10% of the intercept factor variance)

Mean of the linear slope factor, E(ξ2−ξ1) Varied depending on the slope factor variance
condition to obtain small (0.2), medium (0.5), and
large (0.8) mean differences in terms of Cohen’s d
measure, respectively; Cohen’s d was defined as
E(ξ2−ξ1)/[Var(ξ2−ξ1)0.5]

Covariance between intercept and linear slope factor,
Cov[ξ1, (ξ2−ξ1)]

Fixed to 0

Latent state residual factor variances, Var(ζt) Always 0.3 at time 1. Remaining values were varied
depending on the slope factor variance condition, so
that occasion-specificity would equal .3 for all
indicators at all time points in all conditions

Covariances among latent state residual factors and
between latent state residual factors and all other
factors

Fixed to 0
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Appendix C

Mplus Scripts for the Proper Specification of the STMS and Linear Growth 

Models With Time-Invariant Factor Loadings and Intercepts

STMS Model With Time-Invariant Parameters
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Linear LGC Model With Time-Invariant Parameters
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MTMS Model With Time-Invariant Parameters
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Multiple-Indicator Linear LGC Model With Indicator-Specific Intercept and Slope Factors
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Appendix D

Simulation Results for Individual Fit Statistics

Table D1
Mean χ2 and SD for Each Cell of the Simulation Design

Slope variance Cohen’s d Sample size Model df χ2 mean χ2 SD

1% Small 250 Population 70 71.31 11.85

1% Small 250 STMS Non-Invariant 42 43.22 9.16

1% Small 250 STMS Weak Invariance 60 62.21 11.23

1% Small 250 STMS Strong Invariance 66 68.37 11.66

1% Small 500 Population 70 70.55 11.85

1% Small 500 STMS Non-Invariant 42 42.60 9.20

1% Small 500 STMS Weak Invariance 60 62.10 11.25

1% Small 500 STMS Strong Invariance 66 68.60 11.85

1% Small 1000 Population 70 70.30 11.37

1% Small 1000 STMS Non-Invariant 42 42.91 9.16

1% Small 1000 STMS Weak Invariance 60 63.77 11.12

1% Small 1000 STMS Strong Invariance 66 70.48 11.86

1% Small 5000 Population 70 69.85 11.67

1% Small 5000 STMS Non-Invariant 42 45.79 10.14

1% Small 5000 STMS Weak Invariance 60 78.42 13.96

1% Small 5000 STMS Strong Invariance 66 87.56 14.77

1% Medium 250 Population 70 71.31 11.85

1% Medium 250 STMS Non-Invariant 42 43.22 9.16

1% Medium 250 STMS Weak Invariance 60 64.59 11.76

1% Medium 250 STMS Strong Invariance 66 71.59 12.20

1% Medium 500 Population 70 70.55 11.85

1% Medium 500 STMS Non-Invariant 42 42.60 9.20

1% Medium 500 STMS Weak Invariance 60 66.98 12.15

1% Medium 500 STMS Strong Invariance 66 75.11 12.98

1% Medium 1000 Population 70 70.30 11.37

1% Medium 1000 STMS Non-Invariant 42 42.91 9.16

1% Medium 1000 STMS Weak Invariance 60 73.60 12.89

1% Medium 1000 STMS Strong Invariance 66 83.63 14.02

1% Medium 5000 Population 70 69.85 11.67

1% Medium 5000 STMS Non-Invariant 42 45.79 10.14

1% Medium 5000 STMS Weak Invariance 60 127.21 20.08

1% Medium 5000 STMS Strong Invariance 66 153.33 22.24

1% Large 250 Population 70 71.31 11.85

1% Large 250 STMS Non-Invariant 42 43.22 9.16

1% Large 250 STMS Weak Invariance 60 69.03 12.60

1% Large 250 STMS Strong Invariance 66 77.55 13.13

1% Large 500 Population 70 70.55 11.85
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Slope variance Cohen’s d Sample size Model df χ2 mean χ2 SD

1% Large 500 STMS Non-Invariant 42 42.60 9.20

1% Large 500 STMS Weak Invariance 60 75.97 13.61

1% Large 500 STMS Strong Invariance 66 87.13 14.75

1% Large 1000 Population 70 70.30 11.37

1% Large 1000 STMS Non-Invariant 42 42.91 9.16

1% Large 1000 STMS Weak Invariance 60 91.66 15.56

1% Large 1000 STMS Strong Invariance 66 107.78 17.18

1% Large 5000 Population 70 69.85 11.67

1% Large 5000 STMS Non-Invariant 42 45.79 10.14

1% Large 5000 STMS Weak Invariance 60 217.20 27.91

1% Large 5000 STMS Strong Invariance 66 274.15 31.43

5% Small 250 Population 70 71.29 11.82

5% Small 250 STMS Non-Invariant 42 45.62 9.62

5% Small 250 STMS Weak Invariance 60 70.23 12.77

5% Small 250 STMS Strong Invariance 66 76.82 13.18

5% Small 500 Population 70 70.54 11.85

5% Small 500 STMS Non-Invariant 42 47.38 10.21

5% Small 500 STMS Weak Invariance 60 77.99 13.81

5% Small 500 STMS Strong Invariance 66 85.30 14.41

5% Small 1000 Population 70 70.29 11.35

5% Small 1000 STMS Non-Invariant 42 52.37 11.10

5% Small 1000 STMS Weak Invariance 60 95.31 15.87

5% Small 1000 STMS Strong Invariance 66 103.70 16.58

5% Small 5000 Population 70 69.84 11.67

5% Small 5000 STMS Non-Invariant 42 93.41 17.20

5% Small 5000 STMS Weak Invariance 60 237.01 29.55

5% Small 5000 STMS Strong Invariance 66 254.69 30.64

5% Medium 250 Population 70 71.29 11.82

5% Medium 250 STMS Non-Invariant 42 45.62 9.62

5% Medium 250 STMS Weak Invariance 60 79.79 14.49

5% Medium 250 STMS Strong Invariance 66 89.35 15.12

5% Medium 500 Population 70 70.54 11.85

5% Medium 500 STMS Non-Invariant 42 47.38 10.21

5% Medium 500 STMS Weak Invariance 60 97.35 16.54

5% Medium 500 STMS Strong Invariance 66 110.55 17.73

5% Medium 1000 Population 70 70.29 11.35

5% Medium 1000 STMS Non-Invariant 42 52.37 11.10

5% Medium 1000 STMS Weak Invariance 60 134.24 20.50

5% Medium 1000 STMS Strong Invariance 66 154.48 22.17

5% Medium 5000 Population 70 69.84 11.67

5% Medium 5000 STMS Non-Invariant 42 93.41 17.20

5% Medium 5000 STMS Weak Invariance 60 430.90 41.61
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Slope variance Cohen’s d Sample size Model df χ2 mean χ2 SD

5% Medium 5000 STMS Strong Invariance 66 508.42 45.35

5% Large 250 Population 70 71.29 11.82

5% Large 250 STMS Non-Invariant 42 45.62 9.62

5% Large 250 STMS Weak Invariance 60 97.20 16.94

5% Large 250 STMS Strong Invariance 66 111.92 17.87

5% Large 500 Population 70 70.54 11.85

5% Large 500 STMS Non-Invariant 42 47.38 10.21

5% Large 500 STMS Weak Invariance 60 132.41 20.39

5% Large 500 STMS Strong Invariance 66 155.85 22.17

5% Large 1000 Population 70 70.29 11.35

5% Large 1000 STMS Non-Invariant 42 52.37 11.10

5% Large 1000 STMS Weak Invariance 60 204.52 26.63

5% Large 1000 STMS Strong Invariance 66 245.29 29.17

5% Large 5000 Population 70 69.84 11.67

5% Large 5000 STMS Non-Invariant 42 93.41 17.20

5% Large 5000 STMS Weak Invariance 60 781.71 56.57

5% Large 5000 STMS Strong Invariance 66 962.37 62.52

10% Small 250 Population 70 71.27 11.79

10% Small 250 STMS Non-Invariant 42 49.15 10.32

10% Small 250 STMS Weak Invariance 60 82.61 14.86

10% Small 250 STMS Strong Invariance 66 89.50 15.25

10% Small 500 Population 70 70.53 11.85

10% Small 500 STMS Non-Invariant 42 54.51 11.53

10% Small 500 STMS Weak Invariance 60 102.68 17.15

10% Small 500 STMS Strong Invariance 66 110.56 17.69

10% Small 1000 Population 70 70.28 11.33

10% Small 1000 STMS Non-Invariant 42 66.63 13.45

10% Small 1000 STMS Weak Invariance 60 144.53 21.40

10% Small 1000 STMS Strong Invariance 66 154.11 22.03

10% Small 5000 Population 70 69.83 11.67

10% Small 5000 STMS Non-Invariant 42 164.91 24.23

10% Small 5000 STMS Weak Invariance 60 483.82 44.41

10% Small 5000 STMS Strong Invariance 66 507.48 45.55

10% Medium 250 Population 70 71.27 11.79

10% Medium 250 STMS Non-Invariant 42 49.15 10.32

10% Medium 250 STMS Weak Invariance 60 98.16 17.28

10% Medium 250 STMS Strong Invariance 66 109.47 17.99

10% Medium 500 Population 70 70.53 11.85

10% Medium 500 STMS Non-Invariant 42 54.51 11.53

10% Medium 500 STMS Weak Invariance 60 134.09 20.74

10% Medium 500 STMS Strong Invariance 66 150.74 22.02

10% Medium 1000 Population 70 70.28 11.33
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Slope variance Cohen’s d Sample size Model df χ2 mean χ2 SD

10% Medium 1000 STMS Non-Invariant 42 66.63 13.45

10% Medium 1000 STMS Weak Invariance 60 207.67 27.10

10% Medium 1000 STMS Strong Invariance 66 234.84 28.87

10% Medium 5000 Population 70 69.83 11.67

10% Medium 5000 STMS Non-Invariant 42 164.91 24.23

10% Medium 5000 STMS Weak Invariance 60 798.49 58.39

10% Medium 5000 STMS Strong Invariance 66 910.72 62.57

10% Large 250 Population 70 71.27 11.79

10% Large 250 STMS Non-Invariant 42 49.15 10.32

10% Large 250 STMS Weak Invariance 60 126.05 20.48

10% Large 250 STMS Strong Invariance 66 144.74 21.55

10% Large 500 Population 70 70.53 11.85

10% Large 500 STMS Non-Invariant 42 54.51 11.53

10% Large 500 STMS Weak Invariance 60 190.15 25.60

10% Large 500 STMS Strong Invariance 66 221.48 27.49

10% Large 1000 Population 70 70.28 11.33

10% Large 1000 STMS Non-Invariant 42 66.63 13.45

10% Large 1000 STMS Weak Invariance 60 320.05 34.46

10% Large 1000 STMS Strong Invariance 66 376.59 37.18

10% Large 5000 Population 70 69.83 11.67

10% Large 5000 STMS Non-Invariant 42 164.91 24.23

10% Large 5000 STMS Weak Invariance 60 1359.59 75.82

10% Large 5000 STMS Strong Invariance 66 1619.11 82.36

In Figures D1-D3, we summarize the results for RMSEA, CFI, and SRMR.
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Figure 1. 
Illustration of different types of longitudinal processes for three hypothetical individuals. 

Solid lines show the trait scores. Dotted lines show systematic situation-specific deviations 

of the latent state scores from the trait scores (state variability). A: Pure state-variability 

process. B: Pure trait-change process. C: Hybrid case including both a state-variability and a 

trait-change process.
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Figure 2. 
Path diagrams illustrating the STMS model for a measurement design with three indicators 

and four time points. Yit denotes the ith observed variable (indicator) measured at time t. ξ: 

common latent trait factor. ζt: latent state residual factor. αit: constant measurement 

intercept. λit: latent trait factor loading. δit: latent state residual factor loading. The triangle 

denotes a constant of 1 that represents the mean structure in the model. The intercepts for the 

first indicator are set to zero (α1 = 0) for identification and not explicitly shown in the 

figure. Loadings without a label are fixed to 1. A: Specification with non-invariant intercepts 

and factor loadings. B: Recommended specification with time-invariant intercepts and factor 

loadings.
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Figure 3. 
Path diagram illustrating a multiple indicator linear LGC model for four time points with 

time-invariant parameters. The triangle represents a constant of 1 that symbolizes the mean 

structure in the model. The intercepts for the first indicator are set to zero (α1 = 0) for 

identification and not explicitly shown in the figure. Loadings without a label are fixed to 1.
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Figure 4. 
Proportion of replications meeting goodness-of-fit criteria for each of the 4 (analysis 

models) × 36 (simulation conditions) = 144 cells of the simulation study. A: Exact fit. B: 

Approximate fit.
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Figure 5. 
Average bias in the coefficients of consistency for the three four used in the simulation 

study.
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Figure 6. 
Average bias in the coefficients of occasion-specificity for the four models used in the 

simulation study.
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Figure 7. 
Models with indicator-specific trait and trait change factors to account for method effects. 

A: Multitrait-multistate (MTMS) model. B: Multiple-indicator linear LGC model with 

indicator-specific intercept and slope factors. All intercepts are fixed to zero and not 

explicitly shown in the figure. Loadings without a label are fixed to 1.
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Figure D1. 
Mean RMSEA (middle of the box) and 90% confidence limits (upper and lower limits of the 

box) across the simulation conditions.

Geiser et al. Page 49

Behav Res Methods. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure D2. 
Mean CFI (middle of the box) and SD (upper and lower limits of the box) across the 

simulation conditions.
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Figure D3. 
Mean SRMR (middle of the box) and SD (upper and lower limits of the box) across the 

simulation conditions.
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