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Abstract

The Translation-Libration-Screw-rotation (TLS) model of rigid-body harmonic displacements

introduced in crystallography by Schomaker & Trueblood (1968) is now a routine tool in

macromolecular studies and is a feature of most modern crystallographic structure refinement

packages. In this review we consider a number of simple examples that illustrate important

features of the TLS model. Based on these examples simplified formulae are given for several

special cases that may occur in structure modeling and refinement. The derivation of general TLS

formulae from basic principles is also provided. This manuscript describes the principles of TLS

modeling, as well as some select algorithmic details for practical application. An extensive list of

applications references as examples of TLS in macromolecular crystallography refinement is

provided.
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1. Introduction

A diffraction experiment produces data that represent a time- and space-averaged image of

the crystal structure: time-averaged because atoms are in continuous thermal motion around

mean positions, and space-averaged because there are often small differences between the

molecules expected to be the same: related by the crystal symmetry or equivalent molecules

in different unit cells. The dynamic displacements and the static spatial disorder lead to

vanishing high-resolution data and blurring of the Fourier maps representing electron or

nuclear diffracting density. Ignoring the displacements when modeling the diffraction

experiment would lead to atomic models that poorly describe the observed data. For this
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reason representation of the small displacements by isotropic or anisotropic harmonic

models has been a routine practice from the earliest days of crystallography (1).

Larger displacements can be described by anharmonic models (2–5 and references therein)

or by explicit parameterization of discrete atomic positions using alternative conformations

(locations). Alternative conformations represent partially present atoms – same atoms

occupying different positions across unit cells of the whole crystal. More generally,

ensemble models can be used (6–9) where many copies of the same model represent

structural variability. In what follows we will consider only small displacements for which

the harmonic approximation is valid.

Small atomic displacements can be viewed as a superposition of several contributions (3,

10–13), such as:

a. local atomic vibration,

b. local concerted motion such as libration around a bond, loop or domain movement,

c. whole molecule movement,

d. crystal lattice vibrations.

More detailed models can be envisioned, but in practice many of today’s structure

refinement programs decompose the total atomic displacement parameters, ADP, often also

referred to as B-factors, into components illustrated at Figure 1: local atomic vibrations,

concerted motions of atoms and lattice vibrations.

Each of these contributions can be described with different accuracy and using different

models.

The common displacement of the crystal as a whole (lattice vibrations) (12, 14, 15)

contributes equally to all atoms, and therefore it is possible to account for this effect directly

while performing overall anisotropic scaling of the model with respect to the diffraction

data.

Local atomic vibration can be described using an isotropic model that uses only one

parameter per atom. A more detailed and accurate anisotropic parameterization uses six

parameters but requires more experimental observations (higher resolution data sets) to be

justified.

Similarly to local vibrations, different models can be used to describe group atomic

displacement. For example, one can consider a special case of rigid-body motion that occurs

around a fixed axis (10, 16). An example of such motion could be an oscillation of a flexible

amino-acid side chain around Cα−Cβ bond vector. When a rigid group oscillates, the term

‘libration’ is used instead of ‘rotation’ or ‘oscillation’ as it has been introduced in

crystallography by Cruickshank (17). Such a libration can be described by a single

parameter if the vibration law is known, e.g. for a harmonic one assuming small atomic

displacements. More generally, any displacement of a rigid body may be considered as a

superposition of a rotation around a given axis and a translation (see, for example (18)).

Urzhumtsev et al. Page 2

Crystallogr Rev. Author manuscript; available in PMC 2014 September 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Eventually, these two motions may be correlated. Nowadays the Translation-Libration-

Screw-rotation (TLS) model of a rigid-body harmonic displacement (19) is the mostly

widely used while other alternatives to modeling harmonic rigid-group displacement and

refinement of corresponding parameters have been suggested previously (see for example

(20, 21)). Here T, L and S are the model parameters that describe translation, libration and

their correlation (screw-rotation), respectively. It has been demonstrated that the TLS model

may provide reasonable results even for larger-scale vibrations (see for example (21)).

The aims, scope and results of this review include:

• comprehensive derivation of TLS equations from basic principles, incrementally

going from simple special cases to more general ones;

• detailed analysis of TLS equations both for simple and general cases;

• discussion of some practical aspects relevant to TLS modeling.

We address these points, in spite of a very large amount of literature devoted to the TLS

modeling (for example 3, 5, 13, 16, 19, 22–30 and references therein), because it is difficult

to find corresponding derivations and formulae at a basic mathematical level permitting

crystallographers with a non-mathematical background to understand and easily reproduce

them. Apart from differences in notation and a few minor typographical errors found in the

publications mentioned above, our resulting formulae are no different from those in the

previous publications. However, such a comprehensive derivation allows a better

understanding of the phenomenon and a better parameterization of the problem using

parameters that have clear physical meaning and predictable range of values that they may

accept (Section 5.6). The latter is particularly important for numerical protocols that are used

to derive TLS matrices from experimental crystallographic data (TLS refinement). Moreover,

such detailed analyses are not only important from a didactic viewpoint but also have clear

applications in practice. In particular,

• we describe a step-by-step protocol for analysis of TLS matrices in terms of

corresponding rigid-body motions of molecules or domains (Section 8.3); ready to

program formulas and calculation schemes are provided;

• we consider a special case of TLS modeling to describe rigid-body libration around

a fixed axis (Section 7); an illustration of such motion is a libration of an amino-

acid residue side chain around corresponding bond; we believe that it is a better

alternative to a traditional grouped ADP refinement and allows for modeling local

anisotropy at a residue level of detail at medium to low resolution (Section 10)

while no macromolecular structure refinement programs account for this type of

motion at present;

• we propose a method to analyze TLS matrices in terms of ensemble of atomic

models where each individual ensemble model is consistent with the TLS

representation of concerted motion (Section 11).

Modeling atomic displacements is a complex subject. For example, TLS modeling requires

identification of the rigid groups. Describing total atomic displacement requires not only

accounting for TLS but also modeling other contributions (Figure 1). Refining various
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contributions to ADPs against experimental diffraction data is yet another topic. These

problems are important but can be treated separately from each other. Here we focus on TLS

modeling only and we refer only to the publications that we find most important or relevant

on the subject. Some additional references that are relevant but not specifically discussed

here are given in a complementary list at the end of the review.

There are a relatively large number of conventions and notations used in connection with

ADPs (see (31) for a comprehensive review). In what follows we consistently use U

assuming that the appropriate convention is used based on the context. We use capital letters

for matrices, bold letters for vectors and italic for scalar parameters.

2. Description of motion

2.1. Atomic displacement parameter (ADP)

A crystallographic atomic model represents averaged positions rn of atoms as well as the

uncertainties in these positions. These uncertainties result in blurring of atomic peaks in the

Fourier maps and they are described by atomic displacement parameters, ADP, in either

isotropic or anisotropic form. To simplify the analysis we suppose that all unit cells of the

crystal have exactly the same structure and all uncertainties in atomic positions arise from

harmonic atomic motion only. Nowhere, except for Section 9, will we discuss diffraction

from atoms. Rather, all procedures are purely geometric and for these reasons we consider

‘atoms’ as ‘point scatterers’ or simply as ‘geometric points’.

More formally, we suppose that there is a Cartesian coordinate system with the origin O and

the three orthonormal basis vectors i, j,k (the vectors are orthogonal to each other and are of

a unit length). A position of an atom n at a moment t is defined by the coordinates (xn, yn, zn)

of its averaged rn position in this coordinate system and by the coordinates (qnx (t),qny (t),qnz

(t)) of an instantaneous deviation qn (t) from rn. The electron density in each point rn + qn is

proportional to the probability pn (qn) of finding the atom at qn. This probability

distribution, pn(qn), is positive and can be represented in Gaussian form around its peak (i.e.

the most frequent position) and developed up to quadratic terms

(2.1)

Non-harmonic approximations are discussed for example in (2, 4, 5) and references therein.

Expression (2.1) can be put into a standard form using the matrix Un defined as (see for

example (32) and references therein)

(2.2)

In (2.2) the symbol 〈〉 means the time average and index n in Un means that each atom is

related to its matrix of displacements. Here, and in what follows, the vector of instantaneous
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deviation q is represented by a column vector of its coordinates  and τ signifies

transposition, . The matrix (2.2) is positive definite. With (2.2)

expression (2.1) becomes

(2.3)

(see for example (4)), where U−1 is the matrix inverse of U.

If a group of atoms moves together oscillating as a rigid body then the displacements qn of

these atoms are not independent but are expressed through some common parameters, and

the corresponding Un also can be expressed through several common parameters. A

description of an atomic group as a rigid body is only an approximation; this problem and

ways to take the next-level of detail into account have been discussed for example by (24,

33–38) and others.

It is worth noting that a physical phenomenon − the probability of atomic displacement qn in

the crystal − is invariant with respect to the mathematical description used to describe it.

This means that if we change the coordinate system, the coordinates of qn change, so the

matrix Un should change accordingly (Appendix A).

2.2. Rotation axes and their parameterization

To define a displacement of a rigid body with respect to its original position, one needs to

know a translation vector, a rotation axis and a rotation angle. An axis may be characterized

by a unit vector l = (lx, ly, lz) along it and by a point w = (wx, wy, wz) on the axis.

In order to define a position of the rotation axis parallel, for example, to the coordinate axis

k (Figure 2a), two parameters are sufficient. For example these may be Cartesian

coordinates of the point w = (wx,wy,0) at which this axis crosses the plane Oij. Alternatively,

these may be polar coordinates R and α of this point. Note that, by construction, Ow is

normal to k and therefore w is closest to the origin O among all points on the axis.

For an arbitrary axis l that passes through the origin O (Figure 2b) two parameters are

sufficient to define its direction. For example these may be two polar angles: the angle ψ

between l and the k axis and the angle φ between i and the projection of l onto the plane Oij.

To fully define an axis in an arbitrary position and not crossing the origin O (Figure 2c), two

parameters are required for its orientation, for example ψ and φ as above, and two more

parameters for its position (l unambiguously defines the plane normal to it and containing

the origin O; in this plane the two coordinates, Cartesian or polar, of the point w in which l
crosses the plane define its position). Obviously other points w may be chosen as discussed

later.
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Alternatively, the sufficiency of 4 parameters can be understood as following. Let w be a

point on the rotation axis l such that the vectors l and Ow are orthogonal; in other words w is

in the plane normal to l and crossing the origin (Figure 2d). Then three Euler angles are

sufficient to describe the orientation of Ow and l (for example a rotation of the basis vectors

so that rotated i coincides with w and rotated k coincides with l) and the fourth parameter is

the shift p of the l axis along the direction Ow.

2.3. Rotation: linear approximation

When considering a libration of a body around a given axis, a displacement of each point

may be expanded as a power series in the rotation angle δ. Eventually, high-order series may

be considered; see for example, (2, 3, 5) and references therein. Tickle & Moss (28) noted

that “The harmonic model is applicable only if the motion is purely translational, but

provided the libration amplitudes are not too large it is a good approximation”.

Cruickshank (39) gave a value of 8° (0.14 radians) for the oscillation amplitude as a limit of

this approximation.

In particular, working with small libration amplitudes means that a displacement towards the

rotation axis is of the next order of magnitude compared to the displacement in the direction

of the circle’s tangent. For example, when the body is rotated around the coordinate axis k
by an angle δ the point r with the coordinates (1,0,0) moves to the coordinates (cosδ, sinδ,

0). Replacing the exact displacement (cosδ-1, sinδ, 0) by its linear approximation v we

neglect all terms starting from δ2 in the Taylor series for cosine and sine, and the

approximate coordinates of the shift are

(2.4)

More generally, for small angles δ any point positioned at the distance R = 1 from the

rotation axis is displaced by a distance dz ≈ Rδ = δ (in radians). In these notes we use the

parameter dz (or d for rotation around an arbitrary axis) instead of δ to define the rotation

amplitude.

Similarly (still within a linear approximation) each point in general position rn = (xn,yn,zn) is

shifted in the direction normal to the rotation axis and normal to the vector rn itself (Figure

3). In this example both points A=(xn,0,0) and B=(xn,0,zn) are shifted by the vector (0, xndz,

0), and the point C=(0,yn,0) is shifted by (−yndz, 0, 0). A general-position point rn =

(xn,yn,zn) is shifted by

(2.5)

where × is a cross product.

For a rotation around an arbitrary axis l crossing the origin, a linear approximation vn to the

displacement qn of a point rn may be expressed similarly as

(2.6)
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The latter is often represented in an equivalent form

(2.7)

with the matrix

(2.8)

using Cartesian coordinates (xn, yn, zn) of the point rn in the coordinate system defined

above (Section 2.1). If l passes through a point w = (wx, wy, wz) and not through the origin O
(see for example Section 2.2), vector vn becomes

(2.9)

Here l × w is a constant vector, the same for all points of the oscillating rigid body; in

contrast dAnl is point-dependent as An is.

One can note that (2.9) presents a rotation around an axis in a general position as a rotation

around an axis at the origin followed by a translation −dl × w common for all points and

normal to the rotation axis. Conversely, a rotation around an axis at the origin (or at any

other point) followed by a translation normal to it can be always represented as a pure

rotation by the same angle as illustrated in Figure 4. The position of this rotation axis is

unique. Figure 4 was inspired by Figure 2 in the TLSView Manual (40).

2.4. Choice of the point on the axis

Obviously, the shift (2.9) is independent of the choice of the point on the rotation axis l. If

we substitute a point w by another point  on the same axis, this gives:

(2.10)

since w − w′ is collinear with l.

2.5. Non-linear effects

When developing the libration-based shift (2.4)–(2.5) into the Taylor series on the rotation

angle the (omitted) second-order term describes the displacement toward the rotation axis.

This term is responsible for two effects (helpful illustrations of both can be found in (41,

42)). The first one is the curvature of electron density for individual atoms that appears as

“banana-shaped contours” (27); some authors use the term “boomerang shape”. To the best

of our knowledge such effects have not been reported in practical macromolecular studies.

The second effect is a shrinking of an apparent bond length (Figure 3b), the distance

between the centers of two covalently linked atoms as we see them at the electron density

maps of a high enough resolution, in comparison with the actual bond length. This problem

was discussed in (16, 19, 36, 39, 43–46). Similarly, Scheringer (47) and Haestier et al. (48)
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discuss a modification of apparent bond angles. Cruickshank (39) and Haneef et al. (49)

estimated the bond-length correction as 0.010–0.015 Å. According to Howlin et al. (27)

these values may range up to 0.06 Å. Interestingly, Burns et al. (50) wrote that “… it has

become fairly common practice at the end of a molecular crystal structure determination to

analyze the anisotropic temperature parameters on the assumption that the molecule is

rigid. Often the purpose is no more than the correction of bond lengths…”. Such examples

can be found in (41, 42, 51–55).

We stress that this effect does not influence the atomic positions but, hypothetically, the

target restraint values for bond lengths and angles should be libration-corrected thus

becoming a function of the atomic displacement parameters.

In these notes we stay within a linear approximation (2.5–2.9).

3. Special case 1: rigid body translation

Translation is a special case of rigid body motion. For such a displacement all points of the

body are shifted by the same vector qn = u. For this particular motion we introduce a special

notation for the matrix Un (see formula 2.2), which is the same for all points of the group:

(3.1)

By definition, T is symmetric and therefore is defined by 6 elements, 3 at the diagonal and 3

off-diagonal.

Also by definition T is non-negative definite, therefore it has three non-negative eigenvalues

corresponding to three mutually orthogonal eigenvectors. In the basis composed of these

normalized eigenvectors it, jt, kt, matrix T becomes

(3.2)

with the eigenvalues at the diagonal. They are variances of the displacement along these

three new axes. Zero off-diagonal elements mean that these displacements are uncorrelated

with each other and that they can be used as three independent parameters describing the

amplitudes of motion along these axes. Note that for an isotropic translational displacement

the diagonal elements are all the same, , and therefore the matrix T is

diagonal in any basis.

Since both the basis (i, j,k) and the basis (it, jt, kt) are orthonormal, the transformation

between them may be only a rotation. The corresponding transformation matrix Rt (see

Appendix A) can be defined by three rotation angles (56). Together with 

this makes the total number of parameters equal to six.
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Coordinates (tx, ty, tz) of a shift u in the basis (it,jt,kt) are related to the coordinates (ux, uy,

uz) in the basis (i, j,k) by

(3.3)

(Appendix A) and the matrix T in the initial basis is

(3.4)

4. Special case 2: rotation axis parallel to k

4.1. Rotation around k axis

Now we consider a pure rotation of a rigid body with no translation component. For

simplicity, we start from a rotation by a small angle δ around the axis k. As shown in section

2.3, if dz is a random value for a shift of a point at a distance equal to 1 from k, its

probability distribution defines a corresponding shift qn ≈ vn = (−yndz, xndz, 0) of a point rn

= (xn, yn, zn)giving its matrix Un (2.2) as

(4.1)

This can be rewritten using matrix An (2.8)

(4.2)

4.2. Rotation around an axis parallel to k

When the rotation axis is parallel to k and passes through a point  different

from the origin, the corresponding shift (section 2.3) is

(4.3)

with

(4.4)

Here matrix Wk is introduced similarly to matrix An in (2.6)–(2.7), section 2.3. Similarly to

(4.2), expression (4.3) leads to
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(4.5)

Here

(4.6)

and

(4.7)

(4.8)

The first term in (4.5) is independent of the point and corresponds to an apparent translation

even when there was no translation in the initial description of the motion (see section 2.3

for similar examples).

5. Special case 3: rotation around k combined with translation

5.1. Examples

Let's now consider that in addition to the rotation around k (Section 4.1) the body is

undergoing a translation as described in Section 3, the total displacement of each point is the

superposition of these two kinds of displacements. We start from some simple examples in

order to illustrate the possible effects.

Let’s also suppose first that the random translational displacement is isotropic. When this is

a single source of displacement, the position of the point will be spherically distributed

around its central position rn = (xn, yn, zn) as shown in Figure 5a. This random distribution

of the point’s position is illustrated by ‘electron clouds’ where more frequent positions have

a darker color.

Let the same point have another source of displacement, a libration around a given axis, say

for simplicity axis k. Now the point moves along an arc in the plane normal to the axis (red

line in Figure 5b). In a linear approximation this arc can be considered to be a straight line

that connects centers of blue spheres (− yndz,xndz,0).

Now let these two sources of displacement coexist. In the simplest case translation and

libration are uncorrelated. This means that for any position generated by a libration an

additional spherically distributed displacement due to translational movement can be added.

In total, this generates the point positions distributed around the arc (Figure 5b).
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Correlation of libration and translation displacements means that the individual

displacements caused by these two sources are not independent of each other. Let us for the

moment switch from a probabilistic to a deterministic model with a single translational

component that is along the rotation axis. For example, the displacement along the axis may

be proportional to the displacement due to rotation so that they are defined through the same

random parameter dz: (0,0,szdz) and (− yndz,xndz,0), respectively; here sz is some scale factor

between them. The total displacements (− yndz, xndz, szdz) follow a line crossing the rotation

plane. It is easy to show that this line is in the plane normal to the vector rn (blue line in the

grey plane in Figures 5c,d). For larger rotational amplitude the displacement is no longer

approximately linear and instead follows a helix. This defines a new type of motion, a screw

rotation. Depending on the sign of sz, the helix may be right- or left-handed. If the

displacements are again random, the set of displacements form spherical clouds, similarly to

Figures 5a,b, centered now on this helix (Figures 5c,d).

Correlated libration and displacement in the direction normal to the rotation axis leads to a

totally different effect. Figure 6a represents the displacements (− yndz,xndz,0) of a point in

the rotation plane due to libration around k (red arrows). A random isotropic translational

displacement is illustrated by a grey ‘cloud’, as in Figure 5a. A superposition of rotation and

translation moves the cloud along the circle, or, in linear approximation, along a line normal

to the radius; the same as in Figure 5b. Figure 6b shows schematically the displacements in a

presence of a dominant translation component in the direction Ox (black arrows) instead of

libration; note a similarity of positions for points A and C. When both libration and

translational displacement in the direction Ox occur simultaneously and are highly

correlated they may be expressed through the same libration parameter dz. As for the

previous example, the corresponding shifts are (− yndz,xndz,0) and (sxdz,0,0) with some scale

factor sx, and the total instantaneous displacement (blue arrow in Figures 6d,f) of a point is

equal to (sxdz − yndz,xndz,0). This means that the point O = (0,0,0), which belongs to the

rotation axis, now moves from its position, and also there are new immobile points, those

with the coordinates (0,sx,z). In Figures 6d and 6f the point A is such an immobile point; for

smaller sx the apparent axis will be closer to O. The presence of immobile points means that

such a movement is a rotation with the same random parameter dz but around an apparent

axis parallel to k and shifted from the origin by the vector (0,sx,0). In the presence of

random isotropic translation motion, each point’s position is replaced by a cloud around it.

Since each rigid-body motion is a combination of rotation and translation, and each

translation can be decomposed along the instantaneous rotation axis and normal to it, the

examples above cover all possible combinations. Sections below analyze these situations in

a more formal and general way.

5.2. Screw axes along k

Let’s analyze a screw rotation around an axis k more formally. As discussed in the previous

Section, the corresponding displacement of a point (xn, yn, zn) is

(5.1)
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The component szdzk is the same for all points of the rigid body and it is a translation

component of the group. Accordingly (2.2) the matrix Un is

(5.2)

One may note a similarity between (5.2) and (4.5). The first term in (5.2) is independent of

the atomic coordinates and signifies the translation of the group. The second term is a

quadratic function of atomic coordinates (through matrix An) and corresponds to the group

rotation. Two last terms in (5.2) depend on atomic coordinates linearly and are due to the

screw component. Following (19) we associate these terms with the matrices T, L and S that

we define here as

(5.3)

(5.4)

(5.5)

Using matrices T, L and S we can rewrite (5.2) as

(5.6)

5.3. TLS representation

Now let’s generalize the examples from Sections 5.1 and 5.2. We keep the same notation

and use u for translational displacement (Section 3) and vn for the displacement due to

libration around axis k, always in a linear approximation (Section 2.3).

For an atom n with Cartesian coordinates (xn, yn, zn) the total displacement vector

(5.7)

has the coordinates

(5.8)
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where dz, as previously, defines the linear approximation (0,dz,0) to the displacement of the

point (1,0,0). Note that, as follows from Section 5.2, translation vector u may include the

screw component and therefore it can be correlated with the rotation.

Components of the matrix Un (2.2) in the same coordinate system (i, j, k):

(5.9)

Similarly to Section 5.2, we can use the form

(5.10)

similar to (5.6), where

(5.11)

(5.12)

(5.13)

and

(5.14)

In 5.10 through 5.14 matrices T, L, S are the same for all points of the rigid body while An is

expressed through the coordinates of the point.

Expressions 5.11 through 5.13 show the 10 parameters common for the rigid group: 6, 1 and

3 parameters associated with T, L, S, respectively. Together with the matrices An, they fully

define Un for all atoms in the rigid group.
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5.4. Un and the choice of origin

5.4.1. Theory—Obviously, matrices Un do not depend on the choice of the origin of the

coordinate system while matrices An do. The relation (5.10) means that T, L, S also depend

on the origin. We will demonstrate this dependency, which is important for further analysis.

In a new coordinate system with the origin shifted by vector p = (px, py, pz)

(5.15)

the new coordinates are xn − px, yn − py,zn − pz defining the matrix

(5.16)

(for convenience of further analysis, we define the shift vector in the opposite way to (28)).

Matrix P in (5.16) is the same for all points of the group. Accordingly to (5.10) matrix Un

becomes

(5.17)

(in the last equality we substituted  by PLτ  using the symmetry L = Lτ).

Comparison with (5.10) defines new matrices T′,L′,S′ as

(5.18)

Urzhumtsev et al. Page 14

Crystallogr Rev. Author manuscript; available in PMC 2014 September 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



since P is antisymmetric. It is important that the expressions (5.18) were obtained for the

matrices T, L, S with no use of their specific form (5.11–5.13). This means that (5.18) can be

applied also to T, L, S in a general case of motion.

A simple example illustrating (5.18) is represented below.

5.4.2. Example—Let’s suppose that a rigid group oscillates around the axis k. In this case

the only non-zero matrix is L (5.6) while T and S are zero. For the point M = (0,0,0) its

 giving zero matrix Un (as the point is on the rotation axis). Now let’s

choose another coordinate system shifting the origin by p = (1,0,0). The new coordinates of

the point M are (−1,0,0), its new matrix , and matrix

. New matrices are

The new matrix  for the point M is a zero matrix as it

should be.

5.5. Search for the apparent rotation axis

An example considered in Section 5.1 shows that a combination of a libration and a

translation in the direction normal to the axis may be described by a single motion, a

libration around an apparent axis. This simplifies the description of the motion. In this

section we show the corresponding results for a rotation around k. Applying (5.18) with

matrix P of a general form (5.16) to (5.11–5.13) gives

(5.19)

Urzhumtsev et al. Page 15

Crystallogr Rev. Author manuscript; available in PMC 2014 September 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(5.20)

(5.21)

(5.22)

(5.23)

Expression (5.20) shows the existence of a special origin

(5.24)

that reduces the matrix S to

(5.25)

This means that with the new origin there is no correlation between rotation and translation

displacements in the plane normal to the rotation axis (axis k in this example), i.e. that the

apparent rotation axis crosses the new origin (see Section 5.1; compare also (5.24) with

(4.4)). Logically, the result is independent of pz which is an origin shift along the rotation

axis.

With this choice of the origin, matrix T (5.23) becomes

(5.26)

Here all diagonal elements of (5.23) reach their minimum by p, as well as obviously the

trace of the matrix,  (19, 28, 57).
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5.6. Parameters with a physical meaning

Similarly to Section 3, one may define the elements of T through its eigenvalues

(uncorrelated translations)  and the rotation matrix Rt. One may also note

that due to relation (3.3)

(5.27)

where 〈txdz〉, 〈tydz〉, 〈tzdz〉 describe correlation of random displacements (tx, ty, tz),

uncorrelated with each other, with the displacement due to libration around the axis k, and

the matrix Rt is the same as before.

Moreover, one may introduce the correlations

(5.28)

as independent parameters instead of 〈uxdz〉, 〈uydz〉, 〈uzdz〉, resulting in another set of ten

parameters: , cx, cy, cz, and three mutually orthogonal directions of

uncorrelated translations described through Rt by three Euler angles. Such a choice has an

advantage that all corresponding parameters have a clear physical meaning and predictable

range of values.

6. Special case 4: three rotation axes parallel to ijk

6.1. Uncorrelated pure rotations

Now we will extend the analysis from Section 4.2. When a rotation axis is parallel to i or j
instead of k, the resulting matrix has always the form (4.5) in which Wk and kkτ (4.4 and

4.6) are replaced by

(6.1)

for rotations around i or by

(6.2)

for rotations around j, respectively.
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When three rotations around the axes parallel to i, j and k with the corresponding amplitudes

dx, dy, dz are applied simultaneously (see Figure 2 in Schomaker & Trueblood (19) for an

illustration) the resulting shift is the sum of the shifts caused by the respective rotations

(6.3)

For uncorrelated rotations, i.e. such that

(6.4)

a calculation similar to (4.3–4.8) gives the matrix Un in the form (5.10) with

(6.5)

(6.6)

(6.7)

6.2. Correlated (screw) rotations around the coordinate axes

Similarly to calculations in Section 5.2, one can derive that three simultaneous uncorrelated

rotations around the three coordinate axes with the amplitudes dx, dy, dz and screw

components sx,sy,sz give Un in the form (5.10) with the matrices T, L and S:

(6.8)

(6.9)

(6.10)
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One may observe certain complementarity between (6.8)–(6.10) and (6.5)–(6.7).

7. Rotation around an axis in a general position

7.1. Rotation around a fixed bond

A libration of an atomic group around a given axis plays a special role in macromolecular

modeling where dihedral angles are relatively flexible compared to bond angles and lengths.

This may be a libration of a residue side chain around such a bond (CαCβ bond in the

example shown in Figure 7a) or, in general, a libration of an atomic group or a domain

around a bond between two given atoms. Detailed studies of a rotation around a bond can be

found in (10, 11, 58, 59).

In this section we consider a rotation around the vector g between two fixed points G1 =

(G1x, G1y, G1z) and G2 = (G2x, G2y, G2z), thus g being fixed as well. In Figure 7a point G1

correspond to Cα and G2 corresponds to Cβ when the peptide group is fixed. It is trivial to

express a unit vector l = (lx,ly,lz) along the rotation axis through the coordinates of the two

chosen points:

(7.1)

(7.2)

The point w at the rotation axis can be taken for example as

(7.3)

In fact, as discussed before, 4 parameters and not 6 (coordinates of the two points) are

sufficient to define a rotation axis (Section 2.2).

The shift qn of a point (xn, yn, zn) is defined now as (see Section 2.3)

(7.4)

where

(7.5)

and, as previously, is a random parameter describing the amplitude of libration. If similarly

to (4.2) in (7.4) we use the single-term representation through Anw, the averaging of 

gives
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(7.6)

with

(7.7)

Here 〈d2〉 characterizes the random distribution of the libration angle (libration amplitude),

and this is the single random parameter to be adjusted with respect to the experimental data.

As mentioned above, six fixed parameters, 4 of them being independent, are used to define

matrices Ld.

In this case using the two-terms representation in (7.4) requires more computing than that

using Anw (7.5). Section 7.3 gives an alternative example when the two-term representation

is more appropriate.

7.2. Local coordinate system aligned with the bond

One may note that using matrix Anw (7.5) instead of An (7.4) in fact implies a ‘hidden’

change of the origin of the coordinate system, which simplifies subsequent calculations. We

may further simplify the situation choosing new basis vectors (il, jl,kl) such that the new

vector kl = l coincides with the rotation bond. To do so, for the previous example of a

libration abound fixed bond l we define the angle ψ between l and the initial axis k

(7.8)

and the angle φ between the initial axis i and the projection lxy = (lx,ly,0) of l into the plane

Oij :

(7.9)

(for illustration see Figure 2b). Now matrix

(7.10)

describes the transformation of the original coordinate system (Appendix A) with the basis

vectors (i, j,k) into an intermediate system with the basis vectors (il, jl,kl), in particular

(7.11)

and inversely
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(7.12)

The coordinates in the new system, with the origin shifted to G1 = (G1x, G1y, G1z), are

calculated from the original coordinates of a point as a

(7.13)

and matrix  (see (4.2)) is

(7.14)

resulting in (Appendix A)

(7.15)

7.3. Moving axis with a fixed direction

Now let’s suppose that the libration axis l (e.g. Cα and Cβ atoms in Figure 7) oscillates as a

whole such that it keeps its direction unchanged. In Figure 7a, this may be the group

NεCςNη1Nη2 for which the bond NεCς practically conserves its orientation when the whole

side chain librates around CαCβ (conformations A,B,C). Another case is a bond if it is much

longer than displacement of the corresponding atoms.

The displacement (7.4) with the definitions (7.5) becomes

(7.16)

where we introduce a new random vector, the same for all points of the rigid group

(7.17)

In contrast to Section 7.1, here the two-terms representation is preferable and the averaging

of  gives the sum
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(7.18)

always in the same form as (5.10) where the matrix An in the basis (i, j,k) is always (2.7) and

other matrices are

(7.19)

This demonstrates that ten random parameters are required to define Un: six independent

elements of the matrix T, libration amplitude 〈d2〉 in L, and three parameters 〈dûx〉,〈dûy〉,

〈dûz〉 for the correlations of the rotation and translation components of S. All other values

necessary to calculate Un (7.18) for all points are defined through the coordinates of G1 and

G2 (7.1–7.2) and the coordinates of atoms used to calculate An.

7.4. Axis with a fixed direction – modified coordinate systems

As above, we can switch to an equivalent set of parameters that have a clearer physical

interpretation. First, we diagonalize T as discussed in Section 3.1 and obtain the matrix Rt

that describes the transformation (3.3) from the common system (i, j,k) to another Cartesian

coordinate system (it,jt,kt) with the axes along the three principal axes of vibration (by its

construction, this new coordinate system has nothing to do with the geometry of the rigid

body but is defined by the nature of its movement). This leads to

(7.20)

and
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(7.21)

We can also consider the Cartesian coordinate system (il,jl,kl) where kl is aligned with the

rotation axis and the corresponding matrix Rl being (7.10). Then (7.21) can be represented as

(7.22)

with

(7.23)

Working with diagonalized matrices is more convenient and helps better understand the

parameters of the TLS model. We will see below in Section 7.6 that there exists a special

origin shift that also diagonalizes matrix S. Section 8.3 shows that in fact it is more

convenient to start from diagonalization of L and S and only then diagonalize T.

7.5. A libration axis that may change its direction

At the next level of generalization we suppose that the direction of the rotation axis can

vary. From now on let’s assume that the coordinates (lx,ly,lz) of the vector l be also random

values. This may correspond to a general case of a group motion and not necessarily to a

rotation around a covalent bond (see Figure 7b). If we introduce a new vector
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(7.24)

then matrices (7.19) in (7.18) become

(7.25)

(7.26)

(7.27)

Calculating explicitly the elements of Un through elements of the composite matrices (7.25–

7.27) and atomic coordinates gives (we use the symmetry of the L and T matrices)

(7.28)

Note the “+” sign at xnynLzx term in the fourth equation in comparison with 1.2.11.5 in (5);

this agrees with Table 1 in the TLSView Manual (40).

Apparently this general situation (7.25–7.27) is characterized by 21 parameters: 6 to

describe T, 6 to describe L, and 9 to describe an asymmetric matrix S. It has been pointed out

in the literature (5, 19) that the linear combinations (7.28) of the T, L, S elements use only

differences between Sxx,Syy,Szz and not the values themselves. Knowledge of two of these

differences defines the third one. This means that simultaneous increasing or decreasing

〈dxûx〉, 〈dyûy〉, 〈dzûz〉 by the same quantity does not change Un. Some consequences of this

are discussed below in Section 7.9.
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7.6. Libration around several consecutive bonds

Another practically important scenario is when there are several rotations occurring

simultaneously, as shown in Figure 7. Here atoms past Cβ onwards rotate around CαCβ,

atoms past Cγ rotate around CβCγ.

As an approximation we consider such two librations as totally independent. Then the

matrix Un for each point is a sum of the matrices Un,αβ and Un,βγ corresponding to these

librations. This means that if we consider the points Cα and Cβ as fixed, the point Cγ has a

contribution only from the first rotation, Un, = Un,αβ, and all other points of the side chain

have Un = Un,αβ + Un,βγ. In addition we may consider the average direction of the bond

CβCγ as fixed, i.e. that its variation contributes to the matrix Un much less than the rotation

around CβCγ. Then, following Section 7.1, two parameters, one per bond, are sufficient to

describe the motion of all points of the side chain. This consideration can be naturally

extended to the next bonds in the chain.

If the displacement of CβCγ cannot be ignored, matrices Un,βγ become of a general form

(Section 7.5). The same happens for Un,αβ when CαCβ has a translational or orientational

disorder. However, their sum is again a matrix of the same form (7.18) with (7.25–7.27)

being described by 20 parameters (Section 7.5), not 40. This can be understood from the fact

that the combination of several rigid-body motions is always equivalent to a translation with

an instantaneous rotation around a single axis. A formal analysis of several simultaneous

motions in a linear approximation (small time-scale) is given in Section 8. Obviously, on a

long time-scale the motion is different from a simple rotation but its study is outside the

scope of this review.

7.7. Symmetrization of S

We saw in Section 5.5 that for the special case of rotation around k there exists a choice of

the origin that makes S symmetric and that reduces the number of its independent elements

down to one. This origin corresponds to uncorrelated rotation and translation and is also

specific for the matrix T by minimizing its trace. Below we show that for a general case of S

there also exists a special origin which makes S symmetric (60) and that minimizes the trace

of T.

According to Section 5.4,

(7.29)

and

(7.30)

If with some choice of the origin matrix S′ is symmetric, the expression (7.30) is equal to 0

giving

(7.31)
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where D by construction is an antisymmetric matrix with diagonal elements equal to zero

and off-diagonal elements equal to

(7.32)

Here px, py, pz are unknown parameters and the right-hand expressions contain

corresponding elements of (7.27). The determinant of this system of linear equations, after

insertion of the values from (7.26), is equal to

(7.33)

and is non-negative by the Cauchy-Schwarz inequality. It is equal to zero only in the case of

full correlation of all three motions, which never occurs in practice. This means that the

system of equations (7.32) always has a unique solution. The corresponding point (px, py, pz)

is called the center of libration (19, 20, 25, 61), center of diffusion or center of reaction (28,

60).

While (7.29)–(7.33) give explicit ways to symmetrize S, it can be proven directly as follows.

Section (5.5) proves this when the rotation axis coincides with the axis k. Section 7.2 shows

how a rotation around any axis can be reduced to a rotation around k by a different choice of

the basis vectors. However, the symmetry property is conserved with the rotation of the

coordinate system (Appendix A). Moreover, symmetrization of S for the rotation axis k
minimizes the trace of T (Section 5.5), while the trace of a matrix is also invariant with the

coordinate system (Appendix A). Therefore, this proves that symmetrizing S by (7.29)–

(7.33) also minimizes the trace of the corresponding T, .

When symmetrizing the matrix S, the number of the independent elements in it is reduced

from 9 to 6. There is no contradiction since the three ‘disappearing’ parameters are now the

a priori unknown coordinates of the center of reaction.

7.8. T and L parameterization

As discussed in section 7.4, both symmetric matrices T and L can be diagonalized

(7.34)
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(7.35)

(see also (29) about the diagonalization of L). In contrast to Section 7.2, Rl defined in (7.10)

is no longer relevant and is substituted by Rd that is generated from the coordinates of the

eigenvectors of L, similarly to Rt (see Section 3). These eigenvectors describe three mutually

orthogonal axes around which the rigid body has uncorrelated librations with the parameters

dlx, dly,dlz, similarly to (6.6). So both T and L are each characterized by three mutually

orthogonal directions and by three displacements corresponding to these directions. Other

types of efficient parameterization have been suggested (57, 62, 63). In particular, the

parameterization suggested by Rae (62, 63) provides a straightforward way of imposing

constraints on the TLS parameters.

7.9. Parameterization of S

A non-symmetric matrix S is defined by its nine elements. However, only the differences

between its diagonal elements are used in (7.28). The relation

(7.36)

means that only 2 of these differences are sufficient to define Un unambiguously reducing

the total number of parameters to 20 = 6 + 6 + 8. Therefore the knowledge of Un cannot

unambiguously define the diagonal elements of S, and an arbitrary constant can be added to

all of them simultaneously. This constant cannot be too large since by definition the

resulting diagonal elements (7.27) should satisfy the Cauchy-Schwarz inequalities

(7.37)

A typical practice is to choose this constant such that it makes the trace of the S matrix equal

to 0:

(7.38)

The condition (7.38) can be justified by the following equality:
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(7.39)

The second term in (7.39) disappeared as a scalar product of two orthogonal vectors, l and l
× w. Therefore, condition (7.38) becomes

(7.40)

which is a requirement that among all possible decompositions of Un we choose the one

with no correlation between the translation and rotation. This is consistent with the remarks

by some authors that the difficulty of finding individual Sxx,Syy,Szz “arises from incomplete

knowledge about the correlation of atomic motions” (37); see also (25). It is also important

to note that although the correlated motion of a rigid body can be described by a TLS model,

the converse is not necessarily true. For example, such a motion may be anti-correlated and

thus non rigid-body.

8. General case

8.1. Several axes in a general position

Let’s suppose now that a rigid body participates in several simultaneous librations, K in

total, of different amplitudes (16). These librations are defined by axes lk, k = 1,K, by the

points wk at the corresponding axis, and by the elementary shifts dk, due to rotations

(Section 2.3). The axes are not necessarily mutually intersecting. The displacement vector v
due to rotations becomes (see (2.9))

(8.1)

Now, with d = ‖d̂‖ and l̂ = d̂ / d, both

(8.2)

And
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(8.3)

are random vectors depending on random variables dk and on the parameters of the axes.

The second term in (8.1) is common for all points and acts as an apparent (random)

translation of the rigid body (see Section 4.2). Expression (8.1) shows that a multiple-axes

rotation may be considered as a rotation around a single random rotation axis (Section 7.5),

which is in line with a previous remark that any rigid-body movement is a combination of a

rotation and a translation. The normalized vector l̂, ‖l̂‖ = 1, defines the rotation axis and d is

the parameter for the rotation angle as discussed in section 2.3.

8.2. General formulae

When a translational displacement is combined with rotations, the total displacement qn = u
+ vn of the atom n at a point rn is the sum of u and vn due to rigid body translation and

libration, respectively:

(8.4)

where random values are ûx, ûy, ûz, d̂
x, d̂

y, d̂
z. For atom n, the components of Un expressed in

the original Cartesian coordinate system (i, j,k) as (7.19) are

(8.5)

(8.6)

(8.7)

Equations (8.5) – (8.7) are very similar to (7.25)–(7.27).
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8.3. Analysis of the TLS matrices

Both examples discussed in previous sections and the demonstration in Section 8.2 show

that for all kinds of rigid-body oscillations, considered as a harmonic approximation, the set

of matrices Un for all atoms of the group can be expressed as a sum (5.10) of four terms,

where T, L and S are common for all atoms, while antisymmetric matrix An depends on

individual coordinates of the atom n. Matrices T and L are symmetric while S is not

necessary symmetric.

Given T, L and S matrices (that can be obtained as discussed in Section 9, for instance) one

can analyze the underlying rigid body motion. This can be done in several steps as

following. We remind the reader that rotation axes that do not necessarily pass through the

origin in addition to the rotation-translation correlation contribute to an apparent translation.

Therefore these contributions should be removed properly in order to define the pure

translation component.

Naturally, the procedure below corresponds to the previous TLS descriptions in particular to

those from the original article by Schomaker & Trueblood (19).

a. Origin shift. Shift the origin into the center of reaction px, py, pz (Section 7.6),

which is the solution of the system of linear equations (7.32). The new matrices T

′,L′,S′ in this new coordinate system are obtained according to (5.18). In this

coordinate system matrix S′ is symmetric, and the trace of T′ is as minimal as

possible; both these properties are maintained for further rotation of the coordinate

system (Appendix A). New atomic coordinates  are obtained by

subtracting (px, py, pz), . In fact here, and later, we do not need atomic

coordinates for the interpretation of T, L, and S; the transformation is done simply

for completeness.

b. Diagonalization of L. Find 3 non-negative eigenvalues of matrix L′ and three

mutually orthogonal eigenvectors; the rotation matrix Rd (7.35) is composed from

the coordinates of these eigenvectors. Choose a new coordinate system with the

new axes along the three eigenvectors; Rd is the transformation matrix to this

system. Recalculate the matrices  (7.35), 

and new atomic coordinates as  in this new system (Appendix

A). In the new coordinate system matrix L″ is diagonal with the elements

. The rotation axes are parallel to the new coordinate axes and pass

through the points  that will be defined next.

c.
Position of rotation axes. Obtain estimates  of the

rotation parameters around the three axes defined at the previous step (as follows

from (6.6)); calculate the positions of the rotation axes (6.7):
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(8.8)

d. Contribution of rotations to T due to axes displacement. Calculate contribution

(6.5) of the rotations to the translation of the group due to the displacement of the

axes

(8.9)

the residual translation matrix after removal of this contribution is

(8.10)

e. Minimization of correlation between translation and rotation. Calculate the trace

 of S″ and obtain a new S̃ (Section 7.8) with the minimal

correlation between translation and rotation (7.40)

(8.11)

f.

Contribution of screw motion to T. Obtain estimates  of

the screw parameters (6.9) – (6.10) following the rotation axes currently aligned

with the coordinate axes; remove the contribution of the screw motion from the

translation matrix (6.8):

(8.12)

The resulting matrix T̃ signifies the pure translation of the rigid group with the

contribution of other movements removed.

g. Three uncorrelated translations. Find 3 non-negative eigenvalues of matrix T̃ and

three mutually orthogonal eigenvectors (Section 3). The three eigenvectors give the

directions of the uncorrelated translations, and the corresponding eigenvalues are

mean square displacements along these axes. Note that these vectors are given in

the coordinate system with the axes parallel to the rotation axes and not in the

original one.
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9. Search for the optimal TLS decomposition

Displacement Un of a point belonging to a rigid group that undergoes a harmonic oscillation

can be expressed through three common (to all other points of the rigid group) matrices T, L

and S, and matrices An specific to each individual point (5.10). Sections 3–8 show how to

calculate the contribution UTLS,n, of a rigid group motion into atomic displacement

parameters Un of the corresponding atoms when the movement is known. An inverse

problem is not uncommon (13, 22, 29, 64, 65): given a set of matrices Ūn for a group of

atoms, find the approximate TLS matrices assuming that the group undergoes rigid-body

motion. This means that one wishes to find elements of all three matrices T, L and S such

that the corresponding Un calculated using formula (5.10) reproduces Ūn as well as possible.

The problem of decomposing the set of Ūn into TLS is non-trivial as in reality the matrices

Ūn contain contributions arising from things other than rigid-body movements, such as

individual atomic vibrations as well as errors. In addition a composition of rigid groups is a

priori unknown (13, 22, 29, 65).

To find an optimal solution of the problem, a least-squares residual

(9.1)

may be minimized with respect to twenty elements of TLS matrices (29). Since the elements

of UTLS,n, are linear functions of the elements of the TLS matrices and the target is a

quadratic function of elements of Un, a reasonable solution to the problem can be obtained

analytically by solving a system of linear equations.

The target (9.1) has a number of, at least potential, deficiencies; such as it may be sensitive

to errors in the parameters of atoms that are located farther away from the center of reaction

(since the elements of matrices An grow as the distance of the atom from the center of

reaction grows). Also it does not distinguish atom types (i.e. a proper modeling of Un for a

heavy atom may be more important considering its contribution to the electron density and

structure factors). Also the unweighted sum over all elements of the matrix Un is probably

nonoptimal since the contribution of more distant atoms to the shape of electron clouds is

more significant. Merritt (66) suggested a more sophisticated density-correlation-based

target expressed through anisotropic atomic displacement parameters

(9.2)

Fitting TLS matrices to a set of Ūn values, one should aim to include as much as possible of

common atomic movements into TLS leaving the remainder to individual atomic

movements. To start the procedure, one can try to assign all possible common motion to the

T matrix. When all atomic displacement factors are isotropic the search for the maximal T is

trivial: in this case the T matrix is diagonal with all three diagonal elements equal to the
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minimal value of isotropic displacement over all atoms of the group. A correlation of the

trace of the T matrix with individual isotropic atomic displacement complicates their

determination but reduces the number of TLS parameters by one. When the displacement

parameter is anisotropic for some of atoms of the group, the ‘maximal’ T can be found

following the algorithm described by Afonine & Urzhumtsev (67). Estimating a priori L and

S is less evident; by this reason initially their elements are assigned zero values unless they

are known from previous refinement cycles or from other considerations.

When defining nontrivial L and S, the choice of the origin becomes important. It is not

defined initially since it does not affect the matrices U. Typically, the origin is taken as

center of mass or center of geometry of a TLS group (the difference is to use or not use

atomic weight for averaging the atomic coordinates; usually this difference is insignificant)

as suggested by Rae (62) and used for example in the RESTRAIN program (68). Citing

Tickle & Moss (28), “…for a molecule constrained by intermolecular forces in a crystalline

environment, the center of gravity loses the special significance that it has for freely moving

rigid bodies.” The natural origin for this model is a center of reaction, and the idea that the

body is oscillating around some bond(s) suggests that it is rather at a periphery of the body

and not at its center. Unlike for the center of mass, the center of reaction is initially

unknown.

If a rotation axis is known in advance, one can initially choose any point on it as the origin

instead of the center of mass. In any case, it seems useful to find the coordinates of the

center of reaction from diagonalization of S (Section 7.6) when it becomes known and to

reassign the origin for further calculations (69).

10. TLS modeling and crystallographic structure refinement

Crystallographic structure refinement is an optimization problem involving parameterization

of a crystal and its content, choosing a target function that relates crystal model parameters

to measured diffraction data (intensities or amplitudes of structure factors and their phases,

if available) and a tool to optimize the target function with respect to model parameters in

order to obtain a model that describes best the diffraction data (70).

As pointed out in the Introduction, atomic displacements have diverse sources (Figure 1)

and therefore different models may be employed to account for each of them. Concerted

motion of rigid groups is accounted for by using the TLS model. CORELS (71) and

RESTRAIN (68) were the pioneering macromolecular structure refinement programs that

used TLS. A breakthrough was an FFT based refinement method (72) that made it possible

to use the TLS parameterization as a routine tool in other refinement programs, for example

REFMAC (13,73), BUSTER (74) and Phenix (75).

Modern refinement programs allow complex parameterization and refinement of atomic

displacement parameters such as combing a TLS model for rigid-body motions with

individual ADPs to model local atomic displacements, as it is implemented, for example, in

the phenix. refine program (70). A special TLS parameterization with a fixed axis to model

libration displacements for amino-acid side chains, as discussed in Section 7, is being

implemented in phenix. refine.
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Discussion of features of TLS refinement by each of these programs is outside the scope of

this manuscript, and readers are encouraged to read the papers cited in this section.

11. Interpretation of TLS matrices by ensemble of models

The T, L and S matrices statistically describe a rigid-body motion of a given group of points

(atoms) reflecting the frequency of their presence at different positions. Therefore one may

wish to generate explicit random models corresponding to this statistical description. To do

so one needs to decompose the set of matrices T, L, S into corresponding random motions,

then obtain the probability laws for these motions and finally generate corresponding atomic

coordinates.

As previous sections show, deriving corresponding uncorrelated motions from T, L and S is

not straightforward in the general case but may be simple in some other more trivial cases.

For example let the rigid group motion be a translational one with no rotation component

(Section 3). This means that all points have the same matrix U = T corresponding to the

given Cartesian coordinate system.

Matrix U defined above always has three real positive eigenvalues, λu ≥ λv ≥ λw > 0, and the

corresponding eigenvectors tu,tv,tw are mutually orthogonal (Section 3). In the new

coordinate system based on these eigenvectors the matrix U becomes diagonal which means

that the displacements along (new) coordinate axes are uncorrelated. The diagonal elements

λu,λv,λw define the mean shift in the corresponding directions. In the harmonic

approximation, the random shifts are distributed by corresponding Gaussian laws:

(11.1)

We may use a generator of random numbers to obtain particular values u0,v0,w0 accordingly

to these laws. The shift equal to t0 = u0tu + v0tv + w0tw can be added to each point of this

rigid group. Generating many sets of u0, v0, w0 will give a set of models reproducing the

given TLS description.

In the general case, the overall procedure is more complicated. First, one needs to define

motions applying the procedures (a–g) of Section 8.3 to T, L, S matrices. In particular, the

procedure shifts the origin to the center of reaction and suggests new base vectors for which

the matrix L becomes a diagonal one, L″. The set of Cartesian coordinates (xn, yn, zn) is

recalculated accordingly (Appendix A). Then the rotational displacements dx,dy,dz (Section

6) around determined screw axes, parallel to new base vectors, are defined randomly

accordingly to the distributions

(11.2)

These values correspond to the rotation angles, in radians, which makes it trivial to calculate

coordinates of the rotated atoms around the known axes. The translational displacements
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corresponding to the recalculated matrix T̃ are generated similarly to the example discussed

above and added to the positions of the rotated atoms. Finally, the back transformation to the

original coordinate system gives the displaced atomic group.

Repeating these steps as many times as necessary generates a set of models distributed

accordingly to the given T, L, S matrices.

12. Further reading

A list of relevant applications of TLS modeling in crystallographic studies can be found in

references (76–128).
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Appendix A

Changing the coordinate system

Let (x, y, z) be coordinates of a vector q in some coordinate system with the basis vectors (i,
j,k), and (x′, y′, z′) coordinates of the same vector in another coordinate system with the

basis vectors (i′, j′,k′). Let , and  be coordinates of the

vectors (i′, j′,k′) in the initial coordinate system (i,j,k). We define the basis transformation

matrix

(A1)

It is easy to see the rule

(A2)

relating the initial coordinates of the basis vectors (i, j,k) with their coordinates in the new

system. The same rule can be applied to any vector q:

(A3)
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Let (qx, qy, qz) and  be coordinates of a vector q in the coordinate systems with

the same basis vectors (i, j,k) and (i′, j′,k′) as above.

Let’s suppose a quadratic function of the coordinates

(A4)

which does not change with the basis. This means that, using (A3),

(A5)

Or

(A6)

The last relation is satisfied for U defined as (2.2).

With the property Q−1 = Qτ being true for any rotation matrix given in the orthonormal

coordinate system the transformations (A5–A6) become

(A7)

Note the property Q−1 (φ) = Qτ(φ) of the rotation matrices is not necessarily obeyed for non-

orthonormal coordinate systems.

In a given coordinate system with the basis vectors (i, j,k) a linear transformation of vectors

of the three-dimensional can be defined by a matrix

(A8)

in which columns are coordinates of the transformed basis vectors i, j,k, respectively. It is

easy to see that the coordinates (px, py, pz) of each transformed vector are related to the

coordinates (qx, qy, qz)of the initial vector by relation

(A9)

Note that here (A9) links coordinates of different vectors in the same coordinate system

while (A3) links coordinates of the same vector but in different coordinate system.
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When changing the coordinate system, the matrix of a linear operator is transformed

following the rule:

(A10)

For the matrices with the property (A7) or (A10)

(A11)

the trace is conserved when changing the coordinate system.

Another property used in the main text is that for such matrices the symmetry of the matrix

Uτ = U is conserved with the rotation of the coordinate system:

(A12)
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Figure 1.
Hierarchy of contributions to atomic displacement parameters and possible ways to model

these contributions (bottom row).
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Figure 2.
Schematic illustration of the definition of a rotation axis l. (a) Axis parallel to k; its position

is defined by 2 parameters, either by wx and wy, or by R and α. (b) Axis in an arbitrary

orientation crossing the origin; its orientation is defined by 2 angles. (c) Axis in a general

position; n is the vector parallel to l and crossing the origin; the plane normal to n and l is in

grey. Similar to (b), two parameters are sufficient to define the orientation of n and l; to
define the position of l two more parameters are required as in (a); they are coordinates of

the intersection w of l with the grey plane. (d) Normalized Ow and l are the rotated i and k;

p is the distance |Ow|.
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Figure 3.
(a) Schematic illustration of the instantaneous displacement v (red vectors) of a point r (blue

vectors) for a libration around the axis k. Each displacement vector is in the plane normal to

k and also normal to the corresponding vector r. (b) Schematic illustration of a point rn

librating around the axis k. The mean (apparent) position of the point (dashed arrow) is in

the middle of the circular segment OAB and is closer to the origin than the point itself.
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Figure 4.
Three examples of possible combinations of a rotation (blue arrow) followed by a translation

(red arrow) corresponding to the same transformation. The dashed lines show the vectors

from the rotation axis, always perpendicular to the plane of the page, to the object. Left

image: the axis crosses the origin. Middle image: the axis passes through the final position

of the object; corresponding translation is smaller than in the left image. Right image: the

same transformation performed as a pure rotation.
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Figure 5.
Libration around the axis k and a random translation parallel to the rotation axis. (a) For a

random isotropic translational displacement, the atomic position is spherically distributed

around the central position A; more frequent positions are shown as darker. (b) In the

presence of an additional libration, the spherical electron clouds are distributed along the arc

(red arrow) or, in a linear approximation, along a line in the rotation plane and normal to

OA. (c,d) When the displacement u (due to translation) along k is correlated with the

rotational displacement v, the line along which the clouds are distributed (blue arrow) is no

longer in the rotation plane, and its slope depends on the relation between the rotation and

translation shifts (parameter sz in text). The total displacement becomes a screw rotation.

See Section 5.1 for more detail.
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Figure 6.
Correlation of a libration around an axis k and a translation in the normal direction, i; the

projection normal to k is shown. (a) For a pure libration around O, in a linear approximation

all points (A,B,C,D in this case) move perpendicularly to the corresponding radius, shown

as red arrows. The presence of a random isotropic translation displacement is illustrated by

spherical clouds around each position. (b) For a pure translation in the direction i,
displacements of all points are the same, black arrows. Overall clouds for A and C are the

same as in (a). (c) An instantaneous displacement due to counter-clockwise libration (red
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arrow). Centers of electron clouds shift from their grey positions toward the blue ones. d) A

translation component (black arrow) added to libration (c) and highly correlated with it, e.g.

it is always equal to the displacement of the point C due to libration. The resulted

displacements are shown by blue arrows. Point A is immobile. (e,f) are similar to (c,d) and

show a clockwise instantaneous rotation around O and the corresponding translation.

Movements in (d) and (f) are rotations around an apparent axis normal to the plane and

crossing it in the point A. As for (a) and (b), the random isotropic translation is illustrated by

a grey cloud for the initial position and by a blue cloud for a shifted position. See section 5.1

for more details.
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Figure 7.
Schematic illustration of a libration around a bond. a) The peptide group of the arginine is

considered fixed. Angle δ is the parameter describing random oscillations around the bond

CαCβ. A shift of each atom is proportional to its distance to this rotation axis (conformations

A, B, C). The bond CαCβ is considered as a fixed rotation axis in Sections 7.1–7.2. If NεCς

and CαCβ are roughly parallel, the libration around CαCβ translates the bond NεCς rather

than changes its orientation (conformations A, B, C) (Sections 7.4–7.5). b) On the contrary,

the rotation around CβCγ changes the orientation of NεCς (conformations A and D) (Section

7.6).
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