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ABSTRACT: Accurate and affordable assessment of ligand−protein
affinity for structure-based virtual screening (SB-VS) is a standing
challenge. Hence, empirical postdocking filters making use of various
types of structure−activity information may prove useful. Here, we
introduce one such filter based upon three-dimensional structural
protein−ligand interaction fingerprints (SPLIF). SPLIF permits
quantitative assessment of whether a docking pose interacts with
the protein target similarly to a known ligand and rescues active
compounds penalized by poor initial docking scores. An extensive
benchmark study on 10 diverse data sets selected from the DUD-E
database has been performed in order to evaluate the absolute and
relative efficiency of this method. SPLIF demonstrated an overall
better performance than relevant standard methods.

■ INTRODUCTION

In structure-based virtual screening (SB-VS), each screened
compound is submitted to a two-step process. In the first step, a
compound is docked to the putative binding pocket of the
protein in a number of energetically acceptable binding modes
called poses.1 In the second step, the free energy of binding is
assessed for each pose by a scoring function.2 While there is
now a general consensus that most of the popular docking
algorithms perform fairly well in generating sound poses,
scoring functions most often fail to adequately evaluate the
binding affinity.3−9 As a result, even the optimiztic success rates
that are generally reported in SB-VS benchmark studies8,9

might often be insufficient for true ligand discovery when
screening large chemical libraries against a novel target with an
objective to experimentally test 50−100 virtual hits. Therefore,
all possible means must be employed to improve the odds of
obtaining a sizable number of confirmed actives from a small
set of designated virtual hits. Scoring approaches that can take
advantage of known ligand-bound protein structures (e.g.,
enzyme-bound substrates) are of special interest. In 2003, Deng
et al. introduced structural interaction fingerprints (SIFt),10

with an objective to represent and analyze three-dimensional
protein−ligand binding interactions by encoding them into a
one-dimensional binary string. Construction of SIFt is a two-
step process consisting of (i) identification of residues
interacting with the ligand and (ii) classification of ligand−
residue interactions into any of seven predetermined types
(e.g., whether the protein backbone or side-chain is involved,
residue acts as an H-bond donor or acceptor, etc.). Later,
similar techniques were proposed by Mpamhanga et al.,11

Peŕez-Nueno et al.,12 and Marcou and Rognan13 and

implemented in the MOE software suite.14 Although the
SIFt-like approaches proved to be useful postdocking analysis
techniques, they also have a number of intrinsic limitations. For
instance, inferring bond types from quite imperfect binding
poses, may lead to frequent bond-type detection mistakes.
Moreover, the bond-type categories (e.g., hydrogen bond,
polar, nonpolar, and contact10) used in interaction fingerprints
do not account for multiple interaction types, such as cation-π,
which would be labeled as merely a contact.
Here we introduce a new approach termed structural

protein−ligand interaction fingerprints (SPLIF) that also
exploits the general idea of quantifying and comparing
ligand−protein interactions but does it in a very different
way. Particularly, in SPLIF, three-dimensional structures of
interacting ligand and protein fragments are explicitly encoded
in the fingerprint. Consequently, all possible interaction types
that may occur between the fragments (e.g., π−π, CH−π, etc.)
are implicitly encoded into SPLIF. The reported fingerprints
are wrapped into a normalized quantitative score that expresses
the similarity between the interaction profile of a docking pose
and that of a reference protein−ligand complex.
In order to quantitatively assess the performance of this new

approach, we submitted it to a comparative test using it as a
postdocking score against a panel of 10 diverse protein targets.
The targets along with the sets of respective actives and decoys
were selected from the Database of Useful Decoys: Enhanced
(DUD-E).15 The purpose of this evaluation was to ascertain if
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SPLIF can outperform and/or bring complementary actives
compared to standard or analogous approaches.

■ MATERIALS AND METHODS
Targets, Ligand Data Sets, and Reference Ligands. The

Database of Useful Decoys: Enhanced (DUD-E), a standard test set
for virtual screening, was used to validate our fingerprint approach.
Ten diverse targets covering six protein classes were randomly selected
for this benchmark study (Table 1). The protein structures selected
were used as targets for docking of actives and decoys; the resulting
poses were processed for subsequent SPLIF generation. All available
cocrystallized ligands were retrieved from the Protein Data Bank and
used to generate reference SPLIF.
In order to assess the diversity of the actives and decoys, we

calculated pairwise Tanimoto similarities for all ligands used in this
study. The histograms in Figure S1 (see the Supporting Information)
show similarity probability distributions for each combination of
target/activity-category (active or decoy). In all histograms, mostly low
similarity values are well-populated, meaning that, similar to typical
virtual screening libraries, the sets are overall diverse but have clusters
of closely related compounds.
The SD files for all data sets including Gscore, SPLIF, 2D similarity

and PLIF scores can be obtained on request from the authors.
Docking. Ligands were docked into the active site of the target

protein using the Glide program16 in standard docking precision
(Glide SP). The binding region was defined by a 20 Å × 20 Å × 20 Å
box centered on the reference ligand selected from DUD-E. Default
settings were adopted for all the remaining parameters. The top 30
poses were generated for each ligand.
Structural Protein−Ligand Interaction Fingerprints (SPLIF).

Building the Reference Fingerprint. SPLIF-based rescoring consists of
calculating SPLIF for each docking pose and comparing it to that of a
reference (e.g., experimentally solved) ligand-protein complex. The
essential steps of the algorithm for building a reference SPLIF are
depicted in Figure 1. In the first step, a reference protein-bound ligand
is inspected for protein−ligand contacts. Two atoms are considered
being in a contact if the distance between them is within a specified
threshold (4.5 Å in this study). In the second step, for each ligand−
protein atom pair, the respective ligand and protein atoms are
expanded to circular fragments, i.e., fragments that include the atoms
in question and their successive neighborhoods up to a certain

distance. In Figure 1, the contacting ligand and protein atoms are
enclosed in small dotted circles and the respective circular fragments
are enclosed in larger concentric circles. Each type of circular fragment
is assigned an identifier. Here, we made use of Extended Connectivity
Fingerprints up to the first closest neighbor (ECFP2) as defined in the
Pipeline Pilot software.17 ECFP retains information about all atom/
bond types and uses one unique integer identifier to represent one
substructure (i.e., circular fragment). In the third step, 3D coordinates
are retrieved for all atoms involved in ligand and protein fragments.

The major difference of SPLIF from earlierSIFt-typefinger-
prints is that in SPLIF the interactions are encoded implicitly, as a
result of explicitly encoding ligand and protein fragments, whereas in
SIFt-like methods the interaction types need to be encoded explicitly,
by means of empirical rules. Consequently, most of current SIFt-like
implementations handle only a small number of interaction types. By
contrast, SPLIF implicitly accounts for all types of local interactions.
For example, two parallel aromatic fragments would imply a π−π
interaction; a cation fragment positioned on the axis perpendicular to
the aromatic plane of another fragment would imply a cation-π
interaction and so forth. For SIFt-like fingerprints, if these two types of
interaction are not encoded, they will certainly not be identified. While
SPLIF records any contacting fragments from the ligand and the
protein, meaning the two aromatic fragments and the cation and the
aromatic plane here. If the test ligand presents the same fragments, a

Table 1. Targets for SPLIF Benchmarking Collected from DUD-E

class target description PDB activesa decoysa
Gscore
cutoffb refs

kinase FAK1 focal adhesion
kinase 1

3bz3 100 (71) 5350 (2131) −6.0 9 (1mp8, 2etm, 2ijm, 3bz3, 4gu6, 4gu9, 4i4e, 4k8a, 4kab)

AKT1 serine/threonine-
protein kinase
AKT

3cqw 293 (199) 16450 (6131) −5.0 12 (3cqu, 3cqw, 3mv5, 3mvh, 3ocb, 3ow4, 3qkk, 3cql, 3qkm, 4ekk,
4ekl, 4gv1)

protease ACE angiotensin-
converting
enzyme

3bkl 282 (277) 16900 (16454) −2.5 13 (1o86, 1uze, 1uzf, 2c6n, 2oc2, 2xy9, 2xyd, 2ydm, 3bkk, 3bkl, 3l3n,
3nxq, 4bxk)

TRYB1 tryptase beta-1 2zec 148 (59) 7650 (1657) −6.0 5 (2f9p, 2f9n, 2zeb, 2zec, 4a6l)

HMDH HMG-CoA
reductase

3ccw 170 (170) 8750 (8456) −2.5 22 (1dq8, 1dq9, 1dqa, 1hw8, 1hw9, 1hwi, 1hwj, 1hwk, 1hwl, 2q1l,
2q6b, 2q6c, 2r4f, 3bgl, 3cct, 3ccw, 3ccz, 3cd0, 3cd5, 3cd7, 3cda, 3cdb)

GPCR ADRB1 Beta-1 adrenergic
receptor

2vt4 247 (240) 15842 (13932) −4.0 14 (2vt4, 2y00, 2y01, 2y02, 2y03, 2y04, 2ycw, 2ycx, 2ycy, 2ycz, 3zpq,
3zpr, 4ami, 4amj)

nuclear
receptor

MCR mineralocorticoid
receptor

2aa2 94 (66) 5150 (2481) −6.0 13 (2aa2, 1y9r, 1ya3, 2a3i, 2aa5, 2aa6, 2aa7, 2aax, 2ab2, 2abi, 2oax,
3vhu, 3vhv)

PRGR progesterone
receptor

3kba 293 (222) 15650 (12914) −5.0 17 (1a28, 1e3k, 1sqn, 1sr7, 1zuc, 2ovh, 2ovm, 2w8y, 3d90, 3g8o, 3hq5,
3kba, 3zr7, 3zra, 3zrb, 4a2j, 4apu)

ion
channel

GRIK1 glutamate receptor
ionotropic
kainate 1

1vso 101 (96) 6550 (5980) −2.5 17 (1txf, 1vso, 1ycj, 2f34, 2f35, 2f36, 2pbw, 2qs1, 2qs2, 2qs3, 2qs4,
2wky, 3gba, 3gbb, 3s2v, 4dld, 4e0x)

synthase PGH2 cyclooxygenase-2 3ln1 435 (374) 23150 (17948) −5.0 27 (1cvu, 1cx2, 1ddx, 1pxx, 3hs5, 3hs6, 3hs7, 3krk, 3ln0, 3ln1, 3mdl,
3nt1, 3ntb, 3ntg, 3olt, 3olu, 3pgh, 3q7d, 3qh0, 3qmq, 3rr3, 3tzi, 4cox,
4e1g, 4fm5, 4llz, 6cox)

aInitial numbers of actives and decoys from DUD-E with the numbers after the Gscore filter included in parentheses. bThe Gscore cutoffs are set to
allow all reference ligands to be retained (in hope to retain the most of actives in the test set as well).

Figure 1. Essential steps of building a reference SPLIF.
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match to the reference would be assigned by SPLIF, but not by SIFt-
like fingerprints.
Building Fingerprints for Docking Poses of Test Compounds. The

interaction fingerprints for the docking poses of a test compound (an
active or a decoy from DUD-E) are computed in a similar fashion to
that of the reference fingerprints.
SPLIF-Based Similarity. The calculation of a SPLIF-based similarity

score is depicted in Figure 2. In the first step, the ECFP identifiers of a

test SPLIF (i.e., the SPLIF of a docking pose to be scored) are
compared to ECFP identifiers of the reference fingerprint, which is
done to find matching circular fragments between the test ligand and
the reference ligand and results in a list of 2D-matching SPLIF-bits. In
the second step, 3D coordinates of the matching circular fragments
(2D-matching bits) are retrieved and root-mean-square deviations
(RMSDs) are calculated in order to assess the 3D overlay. The bits for
which RMSDs are within a specific threshold (set to 1 Å in this study)
are considered as (fully) matching. Next, all atom lists of all matching
bits are fused together and deduplicated to form two consolidated lists:
(i) unique matching ligand atoms (UMLA) and (ii) unique matching
protein atoms (UMPA). Finally, a SPLIF-based similarity score is
calculated as follows:

‐ =
N
N

N
N

SPLIF Sim UMLA

ULA

UMPA

UPA (1)

where NUMLA is the number of unique matching ligand atoms, i.e.,
atoms constituting the matching circular fragments of the docking
pose compared to the reference (on the ligand side); NULA is the
number of unique ligand atoms, i.e., atoms constituting all interacting
circular fragments of the docking pose (on the ligand side); NUMPA is
the number of unique matching protein atoms, i.e., atoms constituting
the matching circular fragments of the docking pose compared to the
reference (on the protein side); NUPA is the number of unique protein
atoms, i.e., atoms constituting all interacting circular fragments of the
docking pose (on the protein side).
Implementation. The whole workflow has been implemented in

Pipeline Pilot.17 The constituent algorithms were developed in
Pipeline Pilot Script. The current implementation allows processing
of ∼10 poses per second in screening mode.
Ligand-Based Similarity. Topological fingerprint similarity (ex-

pressed as the Tanimoto coefficient) of test vs reference ligands was
used as a benchmark showing how efficient VS might be without any
knowledge of the protein structure at all. The “Molecular Similarity”
component in Pipeline Pilot was used with default settings. Functional
Connectivity Fingerprints up to the second closest neighbor (FCFP4)
were selected to describe ligand structures. The atomic label in FCFP
may be one of the following: (1) hydrogen-bond acceptor; (2)
hydrogen-bond donor; (3) positively ionized or positively ionizable;
(4) negatively ionized or negatively ionizable; (5) aromatic; and (6)
halogen.
PLIF-Based Similarity. The PLIF (protein−ligand interaction

fingerprints) descriptors implemented in the MOE suite14 were used
as a benchmark with respect to interaction fingerprints. The
performance of PLIF would indicate how efficient the first-generation
interaction fingerprints might be. Interactions are classified as

hydrogen bonds, ionic interactions, and surface contacts according
to the residues. We applied it to virtual screening here and compared it
to our SPLIF approach. The PLIF descriptors for all protein-bound
ligands were generated with the default parameter set in MOE. The
PLIF similarity was expressed by means of the Tanimoto similarity
coefficient.

Performance Metrics. We made use of enrichment factors (EF)
and EF plots to quantitatively assess the performance of the VS scores
under study. The EF plot represents the enrichment for a specific top-
scoring percentile of the database as a function of the corresponding
percentile Px (in log10 scale):

=
+ +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

A
A D

A
A D

EF /s

s s

t

t t (2)

where As is the number of active ligands in the selected top scoring
percentile of the database; Ds is the number of decoys in the selected
top scoring percentile of the database; At is the total number of active
ligands in the whole database; and Dt is the total number of decoys in
the whole database. Enrichment factor indicates the ability of a virtual
screening score to increase the proportion of true positives in a
respective percentile relative to an average random selection. The
logarithmic scale for the X-axis is used to accentuate the contribution
of the lower percentiles to the plot.

■ RESULTS AND DISCUSSION
The generic benchmark workflow for each target included the
following steps: (i) collecting reference ligands from crystal
structures; (ii) Glide-based docking and scoring of all reference
ligands and test ligands (actives and decoys from DUD-E); (iii)
selecting test-ligand poses with plausible Gscore values (to
leave out the most awkward poses); (iv) generating SPLIF for
reference and test ligands, and calculate SPLIF-based similarity
scores; (iv) calculating alternative scores (ligand-based
similarity and first-generation interaction fingerprints PLIF);
and (iv) calculating performance metrics. The targets for the
benchmark study represented six protein classes including
kinases, proteases, synthases, GPCRs, nuclear receptors, and
ion channels (Table 1). In step iii, the Gscore cutoffs were set
on per-target basis (see Table 1) to let all reference ligands be
selected (in hope to retain most of the actives from the test set
as well). The Gscore filter removed substantial numbers of
decoys, while sacrificing a relatively small number of actives.
However, the enrichment produced by step iii alone was still
insufficient, which emphasized the importance of further
filtering. The enrichment plots for the 10 targets are shown
in Figure 3 and can be used for a quick visual assessment of the
VS scores employed. Ideal EF plots (rendered as black solid
lines) produced by hypothetic scores that would rank all actives
above the decoys are given for reference. As expected, the EFs
resulting from the scoring methods under study differed most
significantly at relatively small percentages of selected top
scoring compounds (<10% of At + Dt). As can be seen from the
plots, the enrichment curves are often entangled, meaning that
the relative performance of a method may depend on how
many top-scoring compound you choose to select as virtual
hits. The predominance of a single method over a broad range
of percentile cutoffs has been observed for five targets: ADRB1
and PGH2 (where SPLIF ranked first over the full range of
percentile cutoffs); FAK1 and ACE (where ligand-based
similarity ranked first); and TRYB1 (where PLIF ranked
first). Despite that the performance analysis over a broad
percentile range seems to be a frequent practice in VS
assessment, we consider that it needs to be complemented by a
quantitative analysis of enrichment for low-percentile selec-

Figure 2. Essential steps of SPLIF-scoring the docking poses.
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tions. Indeed, in real-world VS implementations, where millions
of compounds are docked to a target, it would be an
unaffordable luxury to consider hundreds of thousands of
compounds as potential hits. Therefore, in addition to the EF
plot analysis, we quantitatively compared the performance of
the scores at a 1-percentile cutoff, which was considered
realistic for a typical virtual screening campaign (i.e., 10 000
potential hits for a 1 000 000 compound collection). The
corresponding enrichment factors are listed in Table 2. SPLIF
ranked first for three targets (GRIK1, PGH2, and HMDH),
tied for first rank with one other score for three targets (MCR,
FAK1, and AKT1) and ranked/tied second for three more

targets (ADRB1, PRGR, and ACE). Overall, on the basis of the
per-target rankings, SPLIF is definitely the best performing
approach in this benchmarking test. The 2D similarity to the
reference ligand was the closest follower, which ranked first for
two targets and tied for first for two more. Gscore alone ranked
first for none of the targets (this result underlines the
importance of postscoring functions in SB-VS). Importantly,
SPLIF demonstrated a very robust performance on all 10
targets. This result is in a sharp contrast with the performance
of PLIF, SPLIF’s closest methodological analog, which failed
completely on two tested targets: PGH2, with EF = 0, and

Figure 3. EF plots for the performance of benchmarked scores in SB-VS against 10 DUD-E targets: [color legend (by method)] SPLIF red; ligand
similarity yellow; Glide-score green; PLIF blue; ideal black.
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PRGR, with EF = 1. For comparison, SPLIF ranked first for
PGH2 (with EF = 33) and second for PRGR (with EF = 36).
It is an interesting result that the least informed method, 2D

ligand similarity, was the second best performer in this study.
Here, by “least informed” we mean that, unlike other methods
on our panel, the ligand similarity does not make use of any
protein−structure information. This relative success of SPLIF
and ligand similarity, i.e., the two methods on the panel that
make explicit use of the chemical structure of known actives,
may merely reflect the fact that predicting affinity without a
prior knowledge of actives, e.g., by means of docking/scoring, is
still in need of substantial improvements. Because the ligand-
and the SPLIF-based similarity metrics in our study involve the
same type of structural descriptors, one might expect that these
two methods should perform with comparable sensitivities and
that SPLIF is expected to be more specific due to the 3D
information about the protein−ligand interactions embedded in
the reference SPLIF (see below a more detailed discussion on
the relative SPLIF performance).
We have also analyzed the reasons of the varying SPLIF

performance and, more specifically, of its poor performance on
TRYB1. A plausible explanation comes from the inspection of
the absolute SPLIF-score values. While we did not pay much
attention to how high/low the score values are when selecting
the top-percentile hits, they display a substantial intertarget
variation. For instance, Figure 4 shows the probability density
distributions of SPLIF-scores for the most successful SPLIF-

screening (HMDH), the least successful one (TRYB1) and the
overall distributions for actives and decoys (distributions for all
10 targets can be found in Supporting Information Figure S2).
It can be seen from the overall distributions in Figure 4 that a
SPLIF-score cutoff of ∼0.5 would allow for a very significant
prediction specificity (i.e., low false-positives rate), while lower
SPLIF-score values are highly populated by both actives and
decoys. Then, it is easy to see that higher SPLIF-score values
are significantly populated for HMDH and only marginally for
TRYB1. The latter observation simply means that there is a
large number of SPLIF-based analogs for HMDH-references
among the HMDH-actives and too few analogs for TRYB1-
references among TRYB1-actives. That is, in the case of
TRYB1, SPLIF underperformed simply because we lacked
“right” structural references. Unfortunately, like in the case of
most VS scores, this explanation does not offer any means of
predicting how SPLIF would perform on a given screening
collection against a new target. However, one might suggest
general principles of the relative SPLIF performance with
respect to other screening approaches. First, the sensitivity of
SPLIF is expected to be dictated by the reference ligands (and
their respective interactions with the target protein). And,
hence, it is restricted compared to docking-based approaches,
which potentially can perceive any active ligand in any
screening library. Therefore, as in the case of ligand-based
similarity, the SPLIF’s sensitivity would grow as the size and
diversity of the reference set grow (while its specificity would
remain unchanged). Our hypothesis about the SPLIF perform-
ance relative to ligand similarity was that SPLIF would be even
less sensitive, but more specific, which would result in higher
enrichment rates. While a quantitative testing of this hypothesis
may need a more substantial effort than the current study, the
data presented here corroborate it qualitatively by showing an
overall gain in enrichment rate when using SPLIF.
Another goal in this study was to assess how complementary

SPLIF is to the other benchmarked scores. To this end, for
each target we calculated the overlap between the true-positives
identified by SPLIF and each other benchmarked score (see
Table 2). The overlaps range from 0% to 83% with a median of
36%. The highest overlaps (83% and 72%) are with PLIF,
followed by the overlaps with Gscore (68%) and ligand-based
similarity (67%). Interestingly, and contrary to expectations, the
overlaps with PLIF are low (<50%) for most targets. The latter
observation means that the explicit encoding of the chemical
structure (which constitutes the novelty of SPLIF compared to
PLIF and other first-generation interaction fingerprints) does

Table 2. Performance Statistics for the Benchmarked Scores

EF (1-percentile) actives overlap (%)a

target SPLIF ligand similarity Gscore PLIF SPLIF rank ligand similarity Gscore PLIF

GRIK1 25b 17 18 18 1 25 13 46
PGH2 33 17 16 0 1 33 36 0
HMDH 51 50 25 47 1 66 33 72
MCR 18 12 9 18 1−2 67 25 50
FAK1 31 31 23 18 1−2 5 68 55
AKT1 14 14 8 10 1−2 56 26 37
ADRB1 18 17 4 19 2 36 5 46
PRGR 36 40 13 1 2 66 14 14
ACE 44 54 5 44 2−3 65 1 48
TRYB1 10 7 14 21 3 67 33 83

aFraction of the SPLIF true positives also selected by another score. bThe gray background indicates that the respective score ranked or tied first for
this target.

Figure 4. Probability density distributions for SPLIF-scores by
category (actives, decoys, HMDH-actives, TRYB1-actives).
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indeed result in better VS performance and complementary
actives. Overall, the data show that in terms of true positives
identified SPLIF is highly complementary to the other
benchmarked scores.
When it comes to a general assessment of whether a new

scoring method may be recommended for broad use, there are
three key questions to be answered: Does the new method
show any improvement compared to its close analogs and
popular standard tools? Does the new method show robust
performance across a broad range of targets? Does the new
method bring additional actives compared to similarly perform-
ing techniques? While the importance of the first question is
evident, the second and third questions are equally important
for the following reasons. It has been demonstrated in multiple
benchmark studies that the relative performance of any scoring
method varies with protein target and that in general it is
impossible to predict, which function would perform best on a
given target.9,18−21 A solution to address this uncertainty would
be to use a panel of scoring functions and merge the respective
hit lists using either AND or OR logic. However, this still
requires all methods on the panel to perform reasonably well.
Otherwise, a single strongly underperforming (as happened
twice to PLIF and twice to Gscore in this study) would
significantly undermine the overall performance. We believe
that the presented data on SPLIF performance supports an
affirmative response to all three questions. Indeed, although it
did not rank first for all protein targets, it did rank first more
frequently than any other benchmarked method, hence
showing a tangible improvement. Also, SPLIF did not rank
last for any of the targets and showed significant enrichment for
all of them. Finally, for 9 out of 10 targets SPLIF brought 30%
or more additional true positives compared to the method that
ranked higher or tied with SPLIF (or was one rank below when
SPLIF ranked first).

■ CONCLUSIONS
SPLIF is an interaction fingerprint that explicitly encodes
structural information and hence implicitly captures all types of
ligand−protein interactions (e.g., stacking, polarization, cation-
π, CH-π). Here, we demonstrated that SPLIF-based similarity
of ligand-protein interaction motifs is a valuable metric that
helps to improve the odds of finding true hits via structure-
based virtual screening. SPLIF-score showed a robust perform-
ance over a broad panel of diverse protein targets. The SPLIF-
based hit lists featured true positives, which (i) cannot be
obtained by a docking score alone, (ii) are not structurally
similar to reference ligands, and (iii) are complementary to the
hits that might be obtained using analogous interaction
fingerprints. We therefore recommend the use of SPLIF either
as a single rescoring technique to increase the probability of
success or as a complement to other scoring functions in order
to increase the chemical diversity of resulting hits.
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(18) Venkatraman, V.; Peŕez-Nueno, V. I.; Mavridis, L.; Ritchie, D.
W. Comprehensive Comparison of Ligand-Based Virtual Screening
Tools Against the DUD Data set Reveals Limitations of Current 3D
Methods. J. Chem. Inf. Model. 2010, 50 (12), 2079−2093.
(19) Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S.
Comparison of consensus scoring strategies for evaluating computa-
tional models of protein-ligand complexes. J. Chem. Inf. Model. 2006,
46, 380.
(20) Hawkins, P. C.; Skillman, A. G.; Nicholls, A. Comparison of
shape-matching and docking as virtual screening tools. J. Med. Chem.
2007, 50 (1), 74−82.
(21) McGaughey, G. B.; Sheridan, R. P.; Bayly, C. I.; Culberson, J. C.;
Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J. F.; Cornell, W.
D. Comparison of topological, shape, and docking methods in virtual
screening. J. Chem. Inf Model 2007, 47 (4), 1504−1519.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500319f | J. Chem. Inf. Model. 2014, 54, 2555−25612561


