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Objective: To quantify the effect of field of view (FOV)

and angle of rotation on radiation dose in dental cone

beam CT (CBCT) and to define a preliminary volume–

dose model.

Methods: Organ and effective doses were estimated

using 148 thermoluminescent dosemeters placed in an

anthropomorphic phantom. Dose measurements were

undertaken on a 3D Accuitomo 170 dental CBCT unit

(J. Morita, Kyoto, Japan) using six FOVs as well as full-

rotation (360°) and half-rotation (180°) protocols.

Results: For the 360° rotation protocols, effective dose

ranged between 54mSv (43 4 cm, upper canine) and

303mSv (173 12 cm, maxillofacial). An empirical re-

lationship between FOV dimension and effective dose

was derived. The use of a 180° rotation resulted in an

average dose reduction of 45% compared with a 360°

rotation. Eye lens doses ranged between 95 and

6861mGy.

Conclusion: Significant dose reduction can be achieved

by reducing the FOV size, particularly the FOV height, of

CBCT examinations to the actual region of interest. In

some cases, a 180° rotation can be preferred, as it has the

added value of reducing the scan time. Eye lens doses

should be reduced by decreasing the height of the FOV

rather than using inferior FOV positioning, as the latter

would increase the effective dose considerably.

Advances in knowledge: The effect of the FOV and

rotation angle on the effective dose in dental CBCT was

quantified. The dominant effect of FOV height was

demonstrated. A preliminary model has been proposed,

which could be used to predict effective dose as

a function of FOV size and position.

Cone beam CT (CBCT) is an imaging modality using
a cone- or pyramid-shaped X-ray beam and a two-
dimensional (2D) detector array. It is used in various
fields of medicine and was introduced into dentistry in
1996. CBCT produces three-dimensional (3D) information
on the facial skeleton and teeth and is being used in many
of the dental subspecialties, such as implant dentistry,
endodontics, orthodontics and maxillofacial surgery.1

Whilst radiation doses in dental CBCT are generally lower
than those of multislice CT (MSCT) head examinations, they
are higher than those of conventional 2D radiographic tech-
niques (intraoral, panoramic and cephalometric radiography);

in both cases, there is some degree of overlap.2–26 One study
has shown that low-dose MSCT protocols are acceptable for
maxillofacial surgery and oral implant planning.27 There-
fore, it is crucial to investigate all possible strategies for dose
reduction in CBCT imaging to ensure that the basic prin-
ciples of justification and optimization of patient dose are
adhered to.28

The field of view (FOV) and its position relative to the
radiosensitive organs are key factors determining the ra-
diation dose to the patient.2–18 In addition, some CBCT
scanners expose using a full 360° rotation, whilst others use
rotation angles between 180° and 220°. Although the
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relationship between FOV, organ doses and effective dose has not
yet been quantified, a larger FOV will capture more tissue in the
primary X-ray beam and increase the scattered radiation dose to the
surrounding tissues. A volume–dose model, which predicts patient
dose based on the size and position of the FOV, could be a helpful
tool in the context of justification and optimization, as it allows for
a straightforward comparison between different FOV options.

The aim of this study was to quantify the effect of FOVand angle
of rotation on radiation dose in dental CBCT and to define
a preliminary volume–dose model.

METHODS AND MATERIALS
Phantom
The Alderson Radiation Therapy (ART) phantom (Radiology
Support Devices, Long Beach, CA) representing an average adult
male (height, 175 cm; weight, 73.5 kg) was used in this study. The
phantom consists of a polymer mould simulating bone, embedded
in a soft tissue equivalent material. It is sectioned into 2.5-cm thick
slices, which have a grid of holes for inserting dosemeters. For this
study, 11 slices were used, comprising the head and neck region
down to the sternoclavicular joint level. The bottom slice was
included to ensure that scattered radiation, which covers a rela-
tively wide distance in CBCT, could be fully measured. The holes
used for dosimetry in this study were filled up using pins with a
3.233.230.9 recess at the top end, allowing for the placement of
dosemeter chips. Unused holes were filled up using blank pins.

Equipment
The 3D Accuitomo 170 CBCTunit (J. Morita, Kyoto, Japan) was
used in this study. The settings available on this unit are given in
Table 1. Dose measurements were performed for selected dental
protocols (Table 2) using standard clinical exposure parameters for
an adult male, i.e. 90 kVp, 5mA, 17.5 s (87.5mAs), full rotation
(360°). The ratio of the reconstructed volume (i.e. geometrical
volume) between the largest and smallest FOV is approximately
54:1. For the clinically most common FOVs, additional measure-
ments were obtained using a half rotation (180°, 45mAs) (Table 2)
with the tube rotating posteriorly around the patient (Figure 1).

For the measurements using a 180° rotation, the FOV position of
the corresponding 360° measurement was reproduced exactly us-
ing the scout view.

To measure the radiation dose for each exposure, thermolumi-
nescent dosemeter (TLD) chips of the type TLD-100 (LiF:Mg,
Ti) were used. To convert the TLD read-out signal (in coulombs)
to absorbed dose (in gray), the two-step calibration procedure
from Loubele et al4 was followed. Firstly, for each measurement,
20 calibration TLDs were irradiated using a Harshaw TLD™
Model 6600 Plus reader (ThermoFisher Scientific Inc., Waltham,
MA) containing a strontium-90 (90Sr) source with a fixed dose
rate. Calibration and phantom TLDs were exposed and read out
with identical time intervals, ensuring that they were subject to
the same amount of signal fading. This first calibration step
allowed for the conversion of the phantom TLD read-out values
to a generic units (gU) dose. Secondly, a gU-to-gray conversion
factor for diagnostic X-rays was determined by calibrating the
90Sr source using the SCANORA® 3D (Soredex, Tuusula, Fin-
land) CBCT at 85 kVp. This second, one-time calibration was
performed by using a head-sized cylindrical water phantom,
a set of reference TLDs and a small-volume (0.6 cm3) ion
chamber (Farmer FC65-G; IBA Dosimetry, Schwarzenbruck,
Germany). The ion chamber was calibrated in an RQR5 di-
agnostic beam. The total uncertainty from the TLD measure-
ment system has been estimated at 3–4% for the TLD type,
reader and calibration procedure used in this study.4

Estimation of absorbed dose, effective dose and eye
lens dose
As CBCT exposures can show sharp dose gradients in the
horizontal and vertical planes,29 it is essential to estimate the
absorbed dose for each organ by spreading out an adequate
number of TLDs throughout it. Therefore, 148 TLDs were
placed in the recesses between the ART phantom’s slices or at
the phantom’s surface; their distribution is shown in Table 3.
An additional 10 TLDs were used to estimate the background
dose, which was subtracted from the measured values. Organs in
the head and neck region that are included in the effective dose
calculation are bone surface, brain, oesophagus, red bone marrow,
salivary glands, skin, thyroid and remainder tissues. For the
remainder tissues, the extrathoracic region, lymphatic nodes,
muscle and oral mucosa were included. The dose to the eye lens
was also measured as there is increasing evidence for its high
sensitivity for non-stochastic effects at relatively low doses.30

The absorbed dose to each organ or tissue (T) was calculated in
different ways, depending on the anatomical distribution of the
tissue in question. For the brain, salivary glands, thyroid, oral
mucosa and extrathoracic region, all of which are found solely in
the head and neck region, the absorbed dose could be calculated
as the average value for all TLDs used for these organs. For the
other tissues, the fraction of the tissue that was covered by the
head and neck portion of the ART phantom was estimated. For
muscle and lymphatic nodes, an overall fraction of 5% was
applied to the average value of all TLDs; for the oesophagus,
a fraction of 10% was used.9 For bone surface, red bone marrow
and skin, organ fractions were determined based on the esti-
mated fractions of these tissues in each slice of the ART

Table 1. Technical specifications of the 3D Accuitomo 170
CBCT (J. Morita, Kyoto, Japan)

Specification Value

Voltage 60–90 kVp

Tube current
1–8mA (high-dose mode)

1–10mA (standard-dose mode)

Exposure time
(360°/180°)

10.5 s/5.4 s (high-speed mode)

17.5 s/9.0 s (standard-dose mode)

30.8 s/15.8 s (high-dose mode)

Exposure type Continuous

Field of view size (cm)
43 4, 63 6, 83 8, 103 5, 103 10,
143 5, 143 10, 173 5 and 173 12

Source-to-isocentre
distance

740–840mm
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phantom,31 summing up the contribution of each slice to the
total absorbed dose using the equation:

DT 5

ð
fiDTi (1)

where fi is the fraction of tissue T in slice i, and DTi is the average
absorbed dose of tissue T in slice i.

As the TLDs were calibrated in water, and given the different
dose–energy relationships for different tissues, a tissue/water
correction was applied for bone surface, brain, eye lens, lym-
phatic nodes, muscle, red bone marrow, skin and thyroid. For
these tissues, the mass energy absorption coefficients from
Publication 44 of the International Commission on Radiation
Units and Measurements (ICRU) were selected for a beam en-
ergy of 50 keV (Table 4).32 This corresponds to the mean beam
energy of the 3D Accuitomo 170 at 90 kVp, which was de-
termined using full Monte Carlo simulation by Zhang et al.33

For other organs (i.e. extrathoracic region, oesophagus, oral
mucosa and salivary glands), no specific coefficients were
available in ICRU Publication 44.32 Considering that the cor-
rection factors for most soft-tissue organs in Table 4 are close to
1, no correction was applied for these four organs.

The calculation of the contribution of each organ of interest to
the effective dose was performed in two steps. Firstly, the
equivalent dose (or radiation weighted dose) to a given organ
was determined by multiplying the absorbed dose to that organ
by the relevant radiation weighting factor (wR); wR expresses the
relative biological damage for different types of radiation. Next,
equivalent organ doses were multiplied by the tissue weighting
factors wT, which expresses the relative radiation-induced det-
riment to an organ or tissue. As wR for X-rays is one, the
absorbed dose and equivalent dose are numerically equal. The
values of wT from Publication 103 of the International Com-
mission on Radiological Protection (ICRP) were applied.34

These are 0.01 for skin, bone surface, brain and salivary glands;
0.04 for thyroid and oesophagus; and 0.12 for red bone marrow
and remainder tissues. Only the remainder tissues in the head
and neck region were considered, i.e. extrathoracic region,
lymphatic nodes, muscle and oral mucosa; a dose of 0mGy was
assumed for all other remainder tissues. The effective dose was
then calculated as the sum of all organ/tissue contributions.

RESULTS
Table 5 and Figure 2 show the absorbed organ and effective
doses for the selected exposure protocols. Effective doses ranged
between 54mSv (43 4 cm, upper canine) and 303mSv
(173 12 cm, maxillofacial) for full-rotation protocols and be-
tween 27 and 169mSv for half-rotation protocols. The largest
absorbed dose was received by the salivary glands, showing
a ten-fold range between the lowest and highest absorbed dose
(573–5737mGy). The remainder tissues, salivary glands, red
bone marrow and thyroid contributed 90% of the effective dose
on average.

An attempt was made to derive an empirical relationship be-
tween scanned volume and effective dose, which could be used
as a predictive model. The reconstructed volume was defined in
two ways. Firstly, as a volume parameter (diameter3 height2),
and secondly, as a geometric volume (p3 radius23 height);
diameter and radius refer to the circular dimensions of the FOV
along the x- and y-axes (i.e. axial plane), and height refers to the

Figure 1. Tube movement during half rotation (180°).

Table 2. Selected dental protocols

Field of view size Position Full rotation (360°)a Half rotation (180°)b

43 4 cm
Upper canine Yes Yes

Lower molar Yes No

63 6 cm
Upper frontal Yes Yes

Lower molar Yes Yes

83 8 cm Both jawsc Yes Yes

103 10 cm Both jawsc Yes No

143 5 cm
Upper jaw Yes No

Lower jaw Yes No

173 12 cm Maxillofacial (both jaws and maxillary sinus) Yes Yes

a

90kVp, 87.5mAs (5mA, 17.5 s).
b

90kVp, 45mAs (5mA, 9 s).
c

Simultaneous exposure of upper and lower dentoalveolar regions.

Full paper: Effect of FOV and rotation on dose in dental CBCT BJR

3 of 9 birpublications.org/bjr Br J Radiol;87:20130654

http://birpublications.org/bjr


length of the FOV along the z-axis (i.e. craniocaudal axis). Using
a logarithmic fit, the correlation between the effective dose and
FOV dimensions was greater for the volume parameter
(R25 0.97) than that for the geometric volume (R25 0.89)
(Figure 3). The use of a quadratic weighting for height for the
volume parameter is supported by Table 5, as the effective dose
for the 103 10-cm FOV was 46% higher than the average ef-
fective dose for the 143 5-cm FOV, although the geometric
volumes are similar (i.e. 785 and 770 cm3). The equation of the
logarithmic fit using the volume parameter was:

ENORM50:76 ln
�
D3H2

�
2 2:34 (2)

where ENORM is the tube current exposure time product (mAs)-
normalized effective dose (mSv/mAs), and D and H the diameter
and height (cm) of the FOV.

Table 3. Distribution of thermoluminescent dosemeters (TLDs)
in Alderson Radiation Therapy phantom (Radiology Support
Devices, Long Beach, CA)

Phantom
level

Number
of TLDs

Organsa

0–1 13 BRN

1–2 19 BRN

2–3 22 BRN

3–4 18 BRN, EYE, EXT

4–5 20 SAL, MUC, EXT, LYM

5–6 19 SAL, MUC, EXT, LYM

6–7 17 SAL, MUC, OES, EXT, LYM

7–8 10 SAL, MUC, OES, EXT, LYM

8–9 8 THY, OES, EXT, LYM

9–10 2 THY, LYM

BRN, brain; EXT, extrathoracic region; EYE, eye lens; LYM, lymphatic
nodes; MUC, oral mucosa; OES, oesophagus; SAL, salivary glands;
THY, thyroid.
Phantom levels refer to the slices between which the TLDs were
attached.
a

Skin, bone surface, red bone marrow and muscle were measured at
every level except 9–10.

Table 4. Correction factors for beam energy

Tissue Correction factor

Bone surface 5.57

Brain 1.04

Eye lens 0.94

Lymphatic nodes 1.03

Muscle 1.03

Red bone marrow 0.91

Skin 0.96

Thyroid 1.15
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As Equation (2) does not take the position of small-height
(,8 cm) FOVs into account, a correction factor was calculated
relative to the average value of upper jaw (UJ) and lower jaw
(LJ) positions. In this study, UJ and LJ positioning was avail-
able only for the 43 4, 63 6 and 143 5 cm FOV. The relative
difference between doses for UJ and LJ positioning was the
largest for the 43 4-cm FOV and the smallest for the 143 5-cm
FOV. Although the data are limited, there is a clear relationship
between dose and FOV (Figure 4). As with the volume–dose
model, a logarithmic fit with quadratic weighting for the FOV
height was used to quantify the volume dependency of this
correction factor. The equations shown in Figure 4 can be re-
written as:

CFPOS 5 1 6 ½0:12ln�D3H2
�
2 0:80

�
(3)

where CFPOS is the correction factor for FOV position, D and H
the diameter and height of the FOV and 6 being positive for
maxillary positioning and negative for mandibular positioning.
Although Equation (3) does not have a true horizontal asymp-
tote (i.e. the two curves in Figure 4 do not converge to y5 1), it
provides a reasonable estimation of the volume dependency of
this correction factor for “realistic” FOV sizes.

The correction factor can be implemented into Equation (2)
through basic multiplication, resulting in the following final model:

ENORM5CFPOS 3
�
0:76 ln

�
D3H2

�
2 2:34

�
(4)

Comparing 360° and 180° protocols, the average decrease in
effective dose was 45% for a half rotation, ranging between 43%
for the 63 6-cm LJ FOVand 50% for the 43 4-cm UJ FOV. The
average decrease in absorbed organ dose owing to half rotation
ranged between 32% (salivary glands and brain) and 52%
(remainder tissues).

Table 5 shows the absorbed doses for the eye lens, which ranged
between 95mGy (43 4 cm, upper canine, half rotation) and
6861mGy (173 12 cm, maxillofacial, full rotation). All values
are plotted in Figure 5. When compared with the 173 12-cm
FOV, and with the exception of the 103 10-cm FOV, the av-
erage reduction in absorbed dose to the eye lens was 93%. The
average reduction in eye lens dose between full and half rotation
was 56%.

The effect of FOVon dose reduction has also been considered in
other studies. Table 6 shows the effect for a 63 6 and a 43 4 cm

Figure 2. Effective dose (mSv) for selected dental protocols. BJ, both jaws; CBCT, cone beam CT; LJ, lower jaw; LM, lower molar;

MF, maxillofacial; UC, upper canine; UF, upper frontal; UJ, upper jaw.

Figure 3. Relationship between normalized effective dose and volume for 360° protocols. For the 434cm, 636cm and 1435cm

protocols, values for upper jaw and lower jaw positioning were averaged.
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FOV. Table 7 shows the effect for a maxillofacial FOV (i.e. 173 12
or 163 13 cm) and a full-mandible FOV (143 5, 163 4 or
163 6 cm).

DISCUSSION
In this study, the effect of FOV on organ and effective doses in
dental CBCT has been quantified for full-rotation (360°) and half-
rotation (180°) scanning, and a volume–dose model has been
proposed to predict the effective dose (normalized for mAs) as
a function of FOV size and FOV position [Equation (4)].

While there have been several published studies showing the
effect of FOVon dose, most were limited in the number of FOV
options available.2–18 Although different methodologies may
have been used, most studies show a reasonable consistency in
the relative dose reduction obtained. Table 7 shows that the use
of a 163 4-cm FOV covering the mandible compared with
a maxillofacial FOV leads to a considerably greater dose re-
duction (64–69%) than with the use of a 143 5- or 163 6-cm
FOV (26–46%), thus confirming the dominant effect of FOV
height. In this study, a 32% dose reduction was seen for the
mandibular position of the 143 5-cm FOV compared with
a 173 12-cm FOV. A wide-scale study on 14 dental CBCT
models by Pauwels et al2 demonstrated the overall effect of FOV
size and position on organ and effective dose. Loubele et al4

showed an average reduction of 54% in effective dose for
a mandibular MSCT scan (height, 6.0–7.2 cm) compared with
a full-head MSCT scan (22.5–22.6 cm). In their paediatric
phantom study, Theodorakou et al18 showed dose reductions of
53% (10-year old) and 40% (adolescent/female) for a mandibular
FOV compared with a maxillofacial FOV. It is worth noting that
Theodorakou et al18 included the 3D Accuitomo 170 CBCT
scanner in their study, using the 173 12-, 1435- and 43 4-cm
FOVs. However, because of the smaller size of the paediatric
phantoms, the effects of changes in FOV size are not directly
comparable with the present results. Librizzi et al7 evaluated the
effect of FOV size on dose for temporomandibular joint (TMJ)
examinations. Although a dose reduction up to 40% was seen, only
large FOV sizes between 15315 cm and 30330 cm were used.
Lukat et al25 measured a dose reduction of ten-fold or more for
dual TMJ acquisitions using a small FOV (5.033.7 cm) compared
with a single large-FOV (22.9322.9 cm) exposure, although this
reduction does not reflect the pure effect of FOV reduction because
the small- and large-FOV measurements were acquired using two
different CBCT models with varying exposure parameters.

Although the increase in effective dose owing to the use of
a larger FOV is self-evident, the exact relation between FOV and
effective dose consists of interplaying factors, i.e. FOV height,
diameter and position. Based on the current findings, it can be

Figure 4. Relationship between correction factors for field of view (FOV) position and volume. Correction factors were calculated as

the ratio between the effective dose for upper and lower jaw positioning and the average dose for that FOV.

Figure 5. Absorbed dose to eye lens (mGy) for selected dental protocols. BJ, both jaws; CBCT, cone beam CT; LJ, lower jaw; LM,

lower molar; MF, maxillofacial; UC, upper canine; UF, upper frontal; UJ, upper jaw.
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considered that the effective dose will be mainly defined by the
height of the FOV and its position. When looking at the results
in more detail, it is important to take the relative location of the
different organs to the FOV into account. This is clearly shown
when comparing mandibular and maxillary positioning of
a small-height FOV, or a full head with a single jaw scan.
Compared with maxillary scans, mandibular scans result in in-
creased scattered dose to the thyroid. Although mandibular
scans decrease the dose to the parotid salivary glands, this is
compensated by an increased dose to the submandibular and
sublingual salivary glands. Comparing a mandibular scan with
a maxillofacial scan, a large increase in effective dose can be
expected because of the direct exposure of the parotid salivary
glands along with an overall increase in direct and scattered
exposure to whole-body organs (e.g. bone surface, red bone
marrow) and head and neck organs (e.g. oral mucosa, extra-
thoracic region). Increasing the height of the FOV beyond
a maxillofacial coverage (e.g. .12 cm) will only lead to a mar-
ginal increase in effective dose due to the increase in direct
exposure to the brain, skin and bone.

This study evaluated the effect of FOV on effective dose and
proposed a preliminary volume–dose model that could be used
by clinicians and manufacturers to estimate and compare ef-
fective doses for different exposure protocols. In addition, this
type of model could be adapted to correlate dose indices such as
dose–area product or CT dose index to effective dose and aid the
determination of diagnostic reference levels.29 There are a few
limitations to the logarithmic fit proposed in this study and its
potential use as a predictive model for effective dose in dental
CBCT. Firstly, the number of FOVs available for the 3D
Accuitomo 170 is limited; the maximum FOV height (12 cm) is

smaller than that of certain other CBCT models. Secondly, the
correction factor for the position of the FOV was based on only
three data points (i.e. 43 4, 63 6, 143 5 cm), which limits the
applicability of an equation. A logarithmic relation was con-
sidered as the most rational choice for this correction factor, but
more data points are needed to verify its behaviour. Finally, the
relation between FOV size and effective dose may differ between
CBCT scanners. In particular, the use of different beam spectra,
determined by the kVp value and filtration, leads to varying
amounts of beam hardening and scatter. To validate and refine
the currently proposed logarithmic volume–dose model, Monte
Carlo simulations could be of use, as they would allow selecting
and varying exposure parameters beyond the limited set of
options available on an actual CBCT device.16,24,26,33

Another dose optimization strategy that was assessed in this study
is the reduction of the rotation arc, which has the added value of
reducing the acquisition time. For the same FOV size and position,
a 180° rotation showed a dose reduction of ,50%, averaging at
45% when compared with a 360° rotation. On average, the ef-
fective dose per mAs increased by 6.7% for 180° protocols com-
pared with corresponding 360° protocols. There is a two-fold
explanation for this. First of all, the mAs of the 180° protocol are
not exactly half that of the 360° protocol but slightly higher
(51.4%). Furthermore, the dose reduction from a 180° rotation is
affected by many factors, such as the rotation of the tube (i.e.
posterior in this study), FOV size and FOV position. For the
43 4-cm FOV, the effective dose per mAs was lower for the 180°
protocol than that for the 360° protocol. For all other FOV sizes
and positions, the effective dose per mAs was slightly higher for
the 180° protocol. In a CBCT simulation study by Morant et al,16

a reduction in effective dose of 40% was calculated for 180°
protocols with the tube moving at the posterior side of the head,
with an average increase in effective dose per mAs for 180° pro-
tocols of 9.5% (based on rounded values). A simulation study by
Zhang et al26 investigated the effect of varying initial positions of
the tube for 180° rotations, showing small variations similar to the
findings by Morant et al16 and those of this study. Further in-
vestigation is needed to confirm the effect of the starting angle of
180° protocols for a wide range of scanning parameters.

Because of the increasing attention and evidence for de-
terministic effects (i.e. cataract) to the eye lens at low doses, it
was included in this study as well. In a recent statement by the
ICRP, the threshold for deterministic effects to the eye lens was

Table 6. Effect of a reduced field of view (FOV) on effective
dose (636 to 434cm)

Reference FOV position Dose reduction (%)a

Current study Anterior maxilla 52

Hirsch et al6 Anterior maxilla 54

Current study Lower molar 32

Okano et al3 Lower molar 51

a

Relative reduction of the tube current exposure time product-normalized
effective dose of a 434-cm FOV compared with a 636-cm FOV.

Table 7. Effect of a reduced field of view (FOV) on effective dose (maxillofacial to full mandible)

Reference FOV1 (cm) FOV2 (cm) Dose reduction (%)a

Current study 173 12 143 5 32

Davies et al5 163 13 163 6 26

Roberts et al12 163 13 163 6 33

Schilling and Geibel15 163 13 163 4 67

Pauwels et al2 163 13 163 6 46

Morant et al16 163 13 163 6 42

a

Relative reduction of the tube current exposure time product-normalized effective dose of FOV2 compared with FOV1.
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reduced to 0.5 Gy based on increasing evidence of radiation-
induced tissue reactions of the eye lens.30 Although doses in
this study are well below this threshold dose, the ability to
decrease eye lens doses through FOV reduction should be kept
in mind. An important remark is that the FOV should not be
positioned inferiorly to achieve reduction of the eye lens dose,
as this could correspond with a severe increase of the thyroid
dose. The only acceptable method of dose reduction for the
eye lens would be a reduction of the FOV size or any general
reduction in exposure (mAs, beam energy).

In conclusion, significant dose reduction can be achieved by
reducing the FOV size, particularly the FOV height, of CBCT

examinations to the actual region of interest. The proposed
volume–dose model can be further refined using additional
experimental measurements complemented by Monte Carlo
simulations. In addition to FOV reduction, a 180° rotation can
be used to further optimize patient dose, as it has the added
value of reducing the acquisition time.
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