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ABSTRACT

Predicting a tumour’s response to radiotherapy prior to the start of treatment could enhance clinical care management

by enabling the personalization of treatment plans based on predicted outcome. In recent years, there has been

accumulating evidence relating tumour texture to patient survival and response to treatment. Tumour texture could be

measured from medical images that provide a non-invasive method of capturing intratumoural heterogeneity and hence

could potentially enable a prior assessment of a patient’s predicted response to treatment. In this article, work presented

in the literature regarding texture analysis in radiotherapy in relation to survival and outcome is discussed. Challenges

facing integrating texture analysis in radiotherapy planning are highlighted and recommendations for future directions in

research are suggested.

Radiotherapy has seen rapid development in the past few
decades with delineation of target volumes becoming more
precise, owing to improvements in medical imaging mo-
dalities.1 In the field of radiation oncology, medical images
are used to diagnose, stage, plan and assess the response of
tumours to treatment.1 Today, using CT to guide radio-
therapy planning is considered to be the standard of care.
In addition to its high image resolution (approximately
1mm), radiotherapy treatment planning systems rely on
Hounsfield units obtained from CT for dose calculation.
Yet, CT-based radiotherapy planning relies on qualitative
information from CT images, where quantitative meas-
urements are usually confined to determining tumour size
in three dimensions. Even though tumours have been
shown to be biologically heterogeneous,2 radiotherapy
planning is still often based on TNM staging. The TNM
system is used to stage cancer: a letter and a number are
assigned to each letter in the TNM system, where T stands
for the tumour, referring to its size; N stands for node and
represents the status of lymph node involvement; and M is
for metastasis, providing information on whether the cancer
has spread to other parts of the body.3 Given the increased
evidence of intratumoural heterogeneity and the observed

diversity of patients’ response to treatment, the field of
oncology has been striving for personalized treatment
based on prognostic information of a tumour’s response to
treatment.

In recent years, nuclear medicine imaging, especially pos-
itron emission tomography (PET) has been increasingly
utilized in the field of oncology as a source of quantitative
measurements regarding tumour biology. Fluorine-18 flu-
deoxyglucose (18F-FDG) PET imaging has probably made
a greater contribution to radiotherapy planning with regard
to assessing response to treatment than have other func-
tional imaging modalities such as functional MRI (fMRI).
The wide availability, high sensitivity and the relatively
well-established protocols and quantification methods of
18F-FDG PET have led to its subsequent popularity in the
field of oncology.4 Even though several studies have
reported 18F-FDG PET to be a predictor for a tumour’s
response to treatment,5–14 the standardized uptake value
(SUV) remains semi-quantitative, challenged by changes
in tumour volume and elapsed time, which affects the
kinetics of the uptake and subsequently the distribution
of the tracer.15,16
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Limitations in existing imaging modalities and the concept that
radiological images hold more information than is being utilized
has led to increased interest in the field of radiomics. Radiomics
refers to quantitative feature extraction from radiological images
and their use to generate meaningful data.17 In cancer therapy,
assessing tumour heterogeneity in relation to survival by extracting
textural features has emerged in the past few years as a poten-
tially useful tool. Algorithms have been proposed in the litera-
ture to increase the predictive power of existing imaging
modalities by extracting tumour textural features based on in-
tensity values. Even though the proposed methodologies are still
in their early stages of development, suffering from expected
shortcomings and faced with various challenges, the presented
results are promising. The benefits of employing a post-processing
algorithm on routinely acquired patient images to predict re-
sponse to treatment, if established to be valid, would be nu-
merous. Predicting tumours’ response to therapy could lead to
less aggressive treatments for patients expected to respond well,
thus reducing side effects, and adapting a more rigorous treat-
ment course for patients expected to respond poorly. The pro-
posed texture analysis approaches in radiotherapy presented in
the literature are explored in this article highlighting areas of
significance, challenges and potential applications.

TEXTURE ANALYSIS
Texture of an image can be generally defined as the spatial
variation in pixel intensity levels. Texture can be assessed using
statistical methods (histogram and grey-level dependence matri-
ces), model-based methods, such as fractal models, or transform-
based methods, such as the Fourier and the wavelet transform.18

In medical imaging, statistical-based texture analysis has made the
most significant contribution in predicting response for patients
receiving radiotherapy. Fractal analysis has been employed to as-
sess response to chemotherapy, but its significance to response to
radiotherapy has not been reported in the literature.19,20

Intensity histograms are a representation of the distribution of
pixel intensities in an image, and they are considered first-order
statistical methods where global features such as mean and
standard deviation (SD) can be extracted. Second-order statistics
textural features are extracted by the analysis of grey-level co-
occurrence matrices (GLCM).18,21 GLCM represents the joint
probability density function P(i, j; u, d) of the number of times
an intensity level i and an intensity level j occur in a certain
direction with u5 0°, 45°, 90° or 135° at specified distance d.22

Where px is the probability matrix obtained from summing the
rows in p(i, j); py is the probability matrix from summing the
columns in p(i, j); and mx, my, sx and sy are means and SD of px
and py.

Textural parameters extracted from neighbourhood grey-tone
(intensity) difference matrices (NGTDM) are considered higher
order parameters, which are based on the relation between
a pixel and the neighbouring pixels. Run length matrices
(RLNM) are considered higher order statistical methods, where
RLNM consist the number of consecutive pixels that have the
same intensity level and which occur in a specified direction.23

GLCM, NGTDM and RLNM are grey-level dependence matrices
that could be generated in four directions of u as seen in Figure 1.

In texture analysis, the order of the extracted feature refers to the
relationship between the pixels of the extracted features. First-
order statistics are extracted from the average of pixel intensities,
and second-order statistical features are measured based on the
relationship between two pixels, where the higher order statis-
tical features are based on the relationship between more than
two pixels as illustrated in Figure 2. Therefore, first-order sta-
tistical methods do not convey spatial information, whereas the
second and higher order statistical methods maintain spatial
information. Table 1 summarizes statistical textural features that
can be extracted.18,22–24

Textural features such as mean, variance, entropy, energy, con-
trast and coarseness are well understood with regard to the in-
formation that they provide of an image’s textural properties and
have been heavily used to quantify image texture in the litera-
ture. Yet, the information extracted about image texture prop-
erties from other features, such as sum entropy, sum variance
and information measures of correlation are not clear with
regard to the clinical aspect. However, these features are pre-
sented in Table 1, as they could prove to be clinically important
in the future and to provide the complete set of statistical texture
measures.

Table 1 presents a full set of the textural features that could be
measured from first-order, second-order and third-order sta-
tistics. N is the number of grey levels in an image, and i is the
intensity level of a pixel. For the first-order statistics, p(i) is the
probability that an intensity level i occurs in an image. Entropy
extracted from first-order statistics is denoted as H, where en-
tropy measured from second-order statistics based on the joint
probability P(i, j; u, d) and is denoted as HXY. Entropy may also
be measured from the probability matrix obtained from sum-
ming the rows in p(i, j) (denoted by px), and it is denoted as HX
in Equation (18). Entropy measured from the probability
matrix from summing the columns in p(i,j) is denoted HY
as seen in Equation (18). In Equation (10), mx, my, sx and sy

are means and SD of px and py, where py ðiÞ5 +
N

i51

Pði; jÞ and

pxðiÞ5+
N

j51

Pði; jÞ and px1 yðkÞ5 +
N

i51

+
N

j51

pði; jÞ, where k5 i1 j.

For higher order statistics, s(i) is the NGTDM; Gh is the highest
intensity value in the region of interest (ROI); and n is the
number of pixels in ROI.

To date, textural analysis in the medical field has been used
for tissue classification,25 such as lung pathologies,26,27 breast
lesions,28 head and neck tumours29 and glioneural tumours.30

Furthermore, NGTDM-based textural analysis was suggested by
Yu et al29 for automatic delineation of target volumes in head
and neck tumours for radiotherapy planning. In recent years,
statistical-based texture analysis has been suggested to have
prognostic value in radiotherapy. Several textural features could
be extracted from grey-level dependence matrices and NGTDM,
yet based on reviewed literature, contrast, energy, entropy and
homogeneity have shown the most significant results in relation
to patients’ survival.
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TEXTURE ANALYSIS IN CT
The initial implementation of texture analysis to predict patient
survival was suggested by Ganeshan et al31 in 2007. The authors
suggested band-pass filtering of CT images using the Laplacian
of gaussian (LoG) to detect features at different anatomical
scales. Extracting texture parameters from CT images using
a filtration–histogram method was recommended by the
authors, given their uncomplex and rotationally invariant nature
despite their spatial insensitivity. The authors performed texture
analysis on CT images using in-house software, which has now
became commercially available by the name of TexRAD (Tex-
RAD Ltd, Cambridge, UK), and a number of studies using this
software have been published.32–39 The group suggested the use
of five LoG filters ranging from fine to coarse textures (filter
widths: fine5 4 image pixels and coarse5 12 image pixels) and
quantifying tumour heterogeneity by measuring the mean, SD,
skewness, mean value of positive pixels (MPP), uniformity and
entropy from the CT slice with the largest cross section of the
tumour. The group reported uniformity, which is inversely
proportional to entropy, to show the most significant results in
predicting patient survival.

A recent publication using TexRAD investigated whether first-
order textural features extracted from staging PET/CT images,
for 56 patients with non-small-cell lung carcinoma (NSCLC),
were related to patient survival.40 By quantifying the entropy of
an image, which represents the pixel distribution in the image,
tumour heterogeneity was assessed. To correlate the heteroge-
neity of the tumours to patient survival, Kaplan–Meier (KM)
curves were generated. Patients were assigned to groups of low
and high entropy based on the optimum threshold value
obtained from a feasibility study including the same number of

patients. The entropy value that showed most optimum in
predicting survival was a normalized value taken from medium
filter/coarse filter entropy values. The authors reported tumour
normalized entropy to be the only parameter significantly re-
lated (p5 0.027) to survival for patients in the curative-intent
group, while tumour entropy, stage and permeability showed
significant association with survival for the palliative patients
group with p5 0.042, p5 0.020 and p5 0.003, respectively.
Although the published articles have shown some correlation
between survival and global textural parameters, they have not
explained the significance of choosing the optimum filter width
and how that relates to anatomical feature extraction. Moreover,
TexRad-based studies have not validated the uniformity thresh-
old values used for generating KM curves. In addition, the pro-
posed methodology by the TexRAD group based on using the
tumour’s image slice with the largest cross section is not a volu-
metric analysis, which leads to loss of spatial information and
consequently affects textural information.

Correlation of patients’ survival to second-order textural
parameters extracted from CT data was investigated by Vaidya
et al41 in 2012. The study included 27 patients diagnosed with
NSCLC confined to the thorax, where baseline 18FDG PET and
the corresponding CTwere analysed. The end points were set to
be local recurrence with at least 6 months follow-up. To account
for patient breathing artefacts, an algorithm based on the inverse
filtering process was applied to acquired images. Textural fea-
tures extracted from PET/CT data included energy, contrast,
entropy and local homogeneity from co-occurrence matrices
calculated for the three-dimensional (3D) volume of the tu-
mour. Textural features extracted from CT images showed some
correlation with locoregional failure, yet none of the features

Figure 1. The two-dimensional displacement in generating grey-level dependence matrices is shown in (a). (b) Represents a sample

image showing all the four different directions from which the grey-level dependence matrices could be generated. The general

form for constructing a grey dependence matrix is illustrated in (c).

Review article: Texture analysis in imaging as an outcome predictor and potential tool BJR

3 of 11 birpublications.org/bjr Br J Radiol;87:20140369

http://birpublications.org/bjr


reached significance. The deblurring method was applied to PET
images not CT images, so whether motion artefacts affected the
power of extracted features was not determined. The authors
reported extracted textural features from PET images to have the
lowest correlation with locoregional failure when compared with
intensity–volume histogram (IVH) and gross tumour volume
(GTV) and SUV measurements. The deblurring of PET images
showed little improvement on the correlation coefficient r (from
0.114 to 0.180 and p-value from 0.28 to 0.17) for local homo-
geneity. Textural features showed a stronger correlation with
local control rather than with locoregional failure, whereas IVH
showed the opposite trend as reported by the authors.41

Textural features were reported by Mattonen et al42,43 to predict
recurrence for patients with early stage NSCLC who underwent
stereotactic ablative radiotherapy. The authors reported that SD
[reported as the variation of Hounsfield units within the
ground-glass opacity (GGO) regions, which are regions where
the normal lung parenchyma density is increased with visible
vessels] is able to significantly discriminate (p5 0.0078) between
patients with radiation-induced injury and patients with re-
currence in a follow-up CT scan acquired at 9 months with an
error of 26%.42 The authors explored the ability of second-order
textural features to predict recurrence by generating GLCM from
GGO for follow-up CT scans taken at 6 months for a group of 22
patients. The texture features calculated from the two-
dimensional (2D) averaged GLCM were energy, entropy, cor-
relation, inverse difference moment, inertia (contrast), cluster
shade and cluster prominence. Cluster prominence and cluster
shade are measures of pixel pair grouping quantifying the
symmetry (skewness in GLCM) of grey levels in an image. The
authors reported energy, entropy and inertia to be significantly
different between groups with radiation-induced injury and re-
currence, with p50.036, p50.034 and p50.036, respectively.
Respiration, comorbidities and any scanning factors that would
affect CT density were not considered.43 Given that injury to
lung tissue, such as radiation fibrosis and pneumonitis, post-
radiotherapy resembles tumour recurrence on CT images, a
more analytical quantitative approach to predict recurrence is
needed.

The recent publications on relating textural features extracted
from CT images to patient survival are promising, yet need
extensive validation. Factors affecting extracted textural features,
such as reconstruction algorithms, scanning parameters, organ
motion, number of pixels/voxels in a tumour needed to generate
statistically significant textural information and whether volu-
metric analysis is superior to 2D analysis, are yet to be in-
vestigated. Moreover, published studies are retrospective where
prospective studies are needed.

TEXTURE ANALYSIS IN POSITRON
EMISSION TOMOGRAPHY
In 2009, El Naqa et al44 investigated building a prognostic multi-
metric model of relevant features of pre-chemoradiotherapy
18F-FDG PET accumulation in tumours. The study included 14
patients diagnosed with cervical cancer and 9 patients diagnosed
with head and neck cancer. The median follow-up was 30
months. The end point for cervical cancer was disease persis-
tence, and the end point was overall survival for head and neck
cancer. Extraction of textural features followed two approaches.
The first was based on the intensity histogram method termed
IVH, where a single curve was generated that summarized the
intensity information from the 3D functional volume for the
ROI. In this study, the authors measured textural features and
generated IVH for both clinical tumour volume (CTV) and
GTV, where CTV was delineated by an expert oncologist in-
cluding visible tumour and margins for subclinical invasion.
GTV was delineated as the region within the CTV having 40% of
maximum SUV for cervical cancer, and for head and neck, GTV
was delineated by registering the simulation CT scan with the
PET scan and then was manually delineated by the physician,
given that the 40% maximum SUV is considered unreliable for
head and neck tumours. The second approach was based on
extracting shape features (eccentricity, Euler number, solidity
and extent) and GLCM textural features (contrast, energy, ho-
mogeneity and entropy) from the GTV. The authors reported
that textural features have higher predictive power than does
SUV measurement, with energy showing the greatest signifi-
cance with correlation coefficient r520.42 and area under the
curve (AUC)5 0.72 for cervical cancer. For patients with head

Figure 2. (a) An example of pixel pair relationship in generating grey-level co-occurrence matrices where (b) represents the pixel

relationship in neighbourhood grey-tone (intensity) difference matrices and run length matrices.
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Table 1. Summary of statistical texture features

Order of
extracted feature

Definition Texture feature Equation

First-order global
Based on average
pixel value. Intensity
histogram analysis

Mean (m): average intensity values in
an image

+N
i ipðiÞ (1)

Variance (s2): the spread or variation
around the mean

+N
i ði2mÞ2pðiÞ (2)

Skewness: symmetry of intensity
values in an image. Skewness is zero if
the histogram is symmetrical

s2 3+N
i ði2mÞ3pðiÞ (3)

Kurtosis: indication of histogram
flatness

s2 4+N
i ði2mÞ4pðiÞ2 3 (4)

Energy: measures uniformity of
intensity values

+N
i ½pðiÞ�2 (5)

Entropy (HXY): represents
irregularity of intensity value
distribution

2+N
i pðiÞlog½pðiÞ� (6)

Second-order local
Based on grey-level
dependence matrices

Angular second moment (energy or
uniformity): measures homogeneity
of intensity value distribution in
an image

+N
i;j½pði; jÞ�2 (7)

Contrast: measures amount of local
variation in intensity values

+N
i;jji2 jj2pði; jÞ (8)

Homogeneity (inverse difference
moment): measures the homogeneity
of the intensity values of the pixel
pair

+N
i;jpði; jÞ=12 ði2 jÞ2 (9)

Correlation: measures the linear
dependencies of intensity values
in an image

+N
i;jði; jÞpði; jÞ2mxmy=sxsy (10)

Entropy: measure of randomness
of intensity values in
an image

2+N
i;jpði; jÞlog½pði; jÞ� (11)

Sum of squares (variance) +N
i;jði2mÞ2pði; jÞ (12)

Sum average +2N
i52ipx1 yðiÞ (13)

Sum entropy 2 +2N
i52px1 yðiÞlog½px1 yðiÞ� (14)

Sum variance +2N
i52ði2 sum entropyÞ2px1 yðiÞ (15)

Difference variance Variance of px1 y (16)

Difference entropy 2 +N2 1
i50 px2 yðiÞlog½px2 yðiÞ� (17)

Information measures of
correlation

HXY2HXY1

maxðHX;HYÞ (18)

f12 exp½2 2:0ðHXY22HXYÞ�g2 (19)
where HXY52 +N

i51pði; jÞlog½pði; jÞ�
and HX and HY are entropies of px and py
HXY152 +N

i51pði; jÞlog½pxðiÞpyðjÞ� (20)
HXY252 +N

i51pxðiÞpyðjÞ log½pxðiÞpyðjÞ� (21)

Maximal correlation coefficient
(second largest eigenvalue of Q)1/2 (22)
where Qði; jÞ5+kpði; kÞpðj; kÞ=pxðiÞpyðkÞ (23)

(Continued)
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and neck cancer, shape parameters showed the highest predictive
power with tumour volume having the highest significance
(r520.6 and AUC50.85). The SUV measurement was reported
to have the lowest predictive value and the texture features of
contrast and local homogeneity showed relatively good predicting
power (r520.519; AUC5 0.8 and r5 0.519; AUC50.825, re-
spectively). The IVH for the tumour volume having at least 90% of

maximum intensity value was reported to provide the best uni-
variate prediction for survival overall, where r520.78 and
AUC5 0.95.44

Furthermore, GLCM-based texture analysis of 18F-FDG PET
data has been reported to provide significant and superior
results to SUV measurements in predicting complete response

Table 1. (Continued)

Order of
extracted feature

Definition Texture feature Equation

Higher order
Based on neighbourhood
grey-tone difference
matrices

Local

Complexity: measures amount of
information (primitives) in texture

+Gh

i;j ððji2 jjÞ=fn2½pðiÞ1 pðjÞ�gÞ
3 ½pðiÞsðiÞ1 pðjÞsðjÞ� ð24Þ

where s(i) is the neighbourhood grey-tone
(intensity) difference matrices; Gh is the highest
intensity value in the ROI; and n is the number
of pixels in ROI

Busyness: measures the rate
of change in intensity values

+Gh

i pðiÞsðiÞ=+Gh

i;j jipðiÞ2 jpðjÞj (25)

Contrast: measures the variation
of intensity values in an image

½1=NðN2 1Þ+Gh

i;j pðiÞpðjÞði2 jÞ2�

3
h
1=n+Gh

i sðiÞ
i
ð26Þ

Coarseness: measures
the density of edges in
an image

�
«1+Gh

i
sðiÞ
n

�2 1

(27)

« is a small number, so the dominator value will
not be zero

Texture strength: measures
how definable (distinguishable)
primitive texture is

f+Gh

i;j ½pðiÞ1 pðjÞ�½i2 j�2g=½«1+Gh

i sðiÞ� (28)

Regional

Short-run emphasis: measures
the run length distribution
emphasizing short runs by
dividing by the square of run
length value

+N
j51+

N
i51pði; jÞ=j2=+

N
j51+

N
i51pði; jÞ (29)

Long-run emphasis: measures
the run length distribution
emphasizing long runs by
multiplying by the square of
run length value

+N
j51+

N
i51j

2pði; jÞ=+N
j51+

N
i51pði; jÞ (30)

Grey-level non-uniformity:
represents the similarity of
intensity values in an image

+N
i51½+

N
j51 pði; jÞ� 2=+

N
j51+

N
i51pði; jÞ (31)

Run length non-uniformity:
measure the run length similarity

+N
j51½+

N
i51pði; jÞ�2=+

N
j51+

N
i51pði; jÞ (32)

Run percentage: ratio of total
number of runs to the total
number of possible runs
measuring the homogeneity of
runs. For images with most linear
structure, the value of run
percentage is lowest

+N
i;jpði; jÞ=P (33)

ROI, region of interest.
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(CR), partial response (PR) and non-response (NR) to therapy,
for patients diagnosed with oesophageal carcinoma as reported
by Tixier et al45 in 2011. The study included 41 patients, where
SUV measurements were compared with global, regional and
local PET textural features. The authors reported both global
features and SUV measurements to be sufficient predictors of
CR but could not distinguish NR from PR. Regional entropy was
reported to be the most significant predictor in identifying and
distinguishing NR, CR and PR. The images of the tumour were
quantized by resampling the intensity values to the 16-, 32-, 64-
or 128-set of discrete values to reduce noise and to normalize the
intensities across the image. The authors assessed the variation
in quantizing GLCM to discrete number of values and found no
significant difference (p, 0.05).45

The reproducibility of PET textural analysis was evaluated by
Tixier et al45,46 comparing two baseline 18F-FDG PET scans
taken 2–7 days apart for 16 patients diagnosed with oesophageal
cancer. Results showed the mean percentage difference (%DIFF)
between the two studies to be 4.7%6 19.5% and 5.5%6 21.2%
for SUV mean and SUV maximum, respectively, confirming
previous studies. Local heterogeneity parameters showed a better
reproducibility with mean %DIFF of 22%6 5.4% for entropy
and 1.8%611.5% for homogeneity, where other textural param-
eters showed lower reproducibility ranging from 40.9% for lower
limit to 62.7% for upper limit.45,46

Extraction of higher order textural features from NGTDM was
investigated by Cook et al47 using 48 baseline 18F-FDG PET
scans for patients with NSCLC treated with definitive chemo-
radiotherapy. The response was assessed 12 weeks after treat-
ment on CT using the response evaluation criteria in solid
tumours. Coarseness, contrast, busyness and complexity were
extracted from NGTDM and compared with SUV measure-
ments (mean, maximum and peak), metabolic tumour volume
(MTV) and total lesional glycolysis (TLG) as predictors of re-
sponse. The authors reported none of the SUV parameters nor
TLG and MTV to be a significant predictor of responders and
non-responders. Coarseness, contrast and busyness measure-
ments were significantly different between responders and non-
responders with an AUC of 0.80, 0.82 and 0.72, respectively.
Nevertheless, the authors did not report whether any of the
texture parameters could distinguish or predict PR and CR.47

Even though recent publications have shown a correlation be-
tween heterogeneity measurements and tissue response, the
accuracy and precision of PET textural analysis is yet to be ex-
plored. Limitations owing to spatial resolution, noise, motion
artefacts, image acquisition parameters and reconstruction
methods are expected to lead to a degradation of the extracted
textural features and should be addressed. A recent review on
texture analysis in PET by Cook et al48 focussing on technical
factors and clinical application of radiomics in PET, supports
this conclusion.

TEXTURE ANALYSIS IN MRI
Assessing tumour heterogeneity by utilizing dynamic contrast
enhanced (DCE)-MRI in defining tumour functional risk vol-
ume (FRV) to predict treatment outcome in cervical cancer was

investigated by Mayr et al49 in 2012. FRV is defined as a region of
low-contrast uptake, where the signal intensity is ,2.1 when
compared with that of the image before contrast injection. The
authors presented a heterogeneity characterization approach
that consisted generating relative signal intensity (RSI) dis-
tributions based on the perfusion levels of individual voxels that
were then tabulated in an RSI histogram. The study included
102 patients diagnosed with cervical cancer stage IB2-IVA based
on the International Federation of Gynaecology and Obstetrics
staging system of cervical cancer. The total FRV was derived
from perfusion heterogeneity assessment prior to chemo-
radiotherapy and during treatment in Weeks 2–2.5 and 4–5. The
FRV2 was measured at 2–2.5 weeks during the chemo-
radiotherapy treatment course, while the FRV3 was measured at
4–5 weeks during the chemoradiotherapy treatment course.
FRVs were associated with disease-specific survival end points
and primary tumour control. Patients’ median follow-up was
reported to be 6.8 years. The results reported by the authors
suggest FRV to be a significant early predictor of outcome in the
long term. Pre-treatment FRV was least predictive, where the
power of prediction increased from 24.3% to 42.5% for FRV2

and 45.2% for FRV3 in discriminating 6-year actuarial tumour
control rate and recurrences of primary tumour.49,50 GLCM-
based texture analysis in DCE-MRI51 was reported to be suc-
cessful in discriminating responders and non-responders for 89
patients diagnosed with locally advanced breast cancer and re-
ceiving neoadjuvant chemotherapy, its predictive value for
patients undergoing radiotherapy is yet to be determined.
Nevertheless, from 14 extracted features, only contrast, differ-
ence variance and difference entropy reached significance.51

CHALLENGES IN TEXTURE-BASED
RADIOTHERAPY PLANNING
Whilst a customized radiotherapy plan based on prediction of
tumour response to treatment is an attractive idea, texture analysis
is hindered by multiple challenges. Uncertainties in patient
positioning, organ motion, interobserver variability, image
acquisition parameters, reconstruction algorithms and tex-
ture extraction methods affect the extracted textural features, and
all must be investigated and addressed. Yet, the major question
is the biological origin of image texture.

To date, the biological basis of textural analysis remains not fully
understood. In vivo studies relating the apparent heterogeneity
of tumours extracted from medical images to biological phe-
nomena have not been attempted yet. Ganeshan et al38

attempted to investigate an association of CT textural analysis
with angiogenesis and hypoxia using pimonidazole staining and
hypoxia marker glucose transporter protein (GLUT)-1 on sur-
gically removed lesions. The analysis showed a correlation be-
tween the SD and the MPP in the ROI and pimonidazole
staining. Uniformity of the distribution of positive grey-level
pixel values showed an inverse association with GLUT-1,
whereas MPP showed an inverse association with CD34 ex-
pression (this represents angiogenesis) in both contrast and non-
contrast CT.38 The study was based on measurements taken
outside the human body on surgically removed lesions (ex vivo)
and comprised a small cohort; hence a strong relationship could
not be inferred.
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Although the heterogeneous uptake of 18F-FDG in tumours was
reported to correlate with histopathology of untreated xeno-
grafted squamous cell carcinoma in a study conducted on
mice,52 the heterogeneous 18F-FDG uptake can be caused by
many factors as reported by van Velden et al.53 Image noise and
partial volume effect are major confounding factors in PET that
lead to apparent heterogeneity in the tumour and necessitate
correction before texture analysis can be performed. The authors
recommended applying Van Cittert deconvolution, where the
image is smoothed with a gaussian filter that represents the
scanner point spread function, the resulting smoothed image is
then subtracted from the original one and the ratio between the
two images is added to a copy of the original image. The process
is repeated in a loop until the filtered image is equivalent to the
original image leading to a sharper PET image.53–56 The sug-
gested method showed significant improvement (Student’s
t-test, p, 0.05) on area under the normalized cumulative
SUV–volume histogram curve. Yet, for the area under the non-
normalized cumulative SUV-volume histogram, improvement
did not reach significance. Furthermore, a recent study by
Brooks and Grigsby57 investigated the effect that a small size ROI
has on the quantification of metabolic heterogeneity in PET. The
authors investigated this hypothesis by creating a set of shapeless
tumour test PET images where the intensity of the voxels were
randomly assigned based on a known intensity distribution of
PET images obtained from cervical tumour 18F-FDG images.
The test images set included 25 images per tumour volume.
Local entropy was measured from a generated GLCM from each
test image and then plotted against tumour volume. The authors
reported an increase in entropy value as a function of tumour
volume up to 45 cm3 of the tumour volume. A flatness in en-
tropy value was reported on tumour volume .45 cm3. The
authors concluded that a volume of 45 cm3 (700 voxels) is
needed to adequately sample the distribution of intensity and
measure heterogeneity within a 95% confidence level.57 The
latter implications leave the reliability of 18F-FDG-based texture
analysis in doubt.

RESPIRATORY MOTION
Although a study by Vaidya et al41 reported no significant dif-
ference in p-values in associating textural features extracted from
motion-corrected PET and non-corrected PET images to tu-
mour local failure, respiratory motion leads to image blurring,
inaccurate representation of tumour volume and potentially
mislocalization of lesions especially for tumours located in the
thorax. A recent publication by Aristophanous et al58 in-
vestigated target delineation in lung tumours on four-
dimensional (4D) and 3D PET images. The authors reported
the mean difference between tumour volume in 3D PET and
tumour volume in 4D PET for lesions located in the lower lobe
and lower mediastinum to be 50%, while the upper lobe dif-
ference was 10%. In addition, the lesions exhibiting motion
.3mm showed a larger difference (approximately 54%) than
those lesions moving ,3mm (%DIFF 14%). The authors
concluded that the benefit of 4D PET volume definition is de-
pendent on tumour location and the range of motion.58 While
recently available PET/CT scanners have respiratory gating, there
is not a currently established method for 4D MRI in radio-
therapy. Many methods have been proposed in the literature for

investigating the feasibility of 4D-MRI,59–62 yet none has been
clinically implemented. Overall, studies focusing on tumour
motion are challenged by the lack of ground truth, where target
delineation is subject to intra-observer variability. Furthermore,
changes in patients’ breathing patterns and irregular breathing
are complicating factors, as well as patients’ movement between
consecutive scans. The magnitude of the effect of tumour mo-
tion on textural analysis is yet to be investigated since change in
the apparent tumour volume would lead to a change in mea-
sured texture, especially when the extent of motion is similar in
scale to studied textural features.

TUMOUR DELINEATION
Tumour delineation critically influences treatment outcome but
whether it affects the power of extracted textural features is still
under debate. According to Ng et al,63 a large cross-sectional
area of the tumour is sufficiently representative and provides
comparable results to whole tumour analysis when applying
histogram–filtration methods to predict survival. Yet, other
studies in using texture analysis in tissue classification have
reported volumetric texture analysis to be superior to 2D anal-
ysis owing to loss of spatial information.64–66 Whether the
precision of spatial information is needed in predicting survival
and response is still to be explored further since most of the
studies in the literature have adopted one methodology without
comparison of other methods. On the other hand, it has been
reported by Mattonen et al43 that delineation of GGO in follow-
up CT scans using expansion and contraction of 1–2mm of the
GGO had minimal effect on extracted textural features, leading
to the assumption of lower impact of delineation variability in
predicting recurrence.43 Furthermore, a study by Leijenaar et al67

in 2013 investigating the effect of interobserver variability on
extracted textural features from 18F-FDG PET reported 91% of
the extracted textural features to have high stability using intra-
class correlation coefficient (ICC). Medium stability was seen in
8% of the features, while low stability was reported in 1% of the
features. The study included 23 patients with NSCLC, whose
tumours were manually delineated by 5 independent observers on
each fused PET-CT scan. The extracted textural features included
first-order, second-order and higher order statistics summing to
44 textural features in total. The authors suggested ICC$ 0.8 to
represent high stability, whereas 0.8, ICC$ 0.5 is medium
stability and ICC, 0.5 is low stability. The authors did not
justify the threshold values used for high, medium and low
ICC range and whether the variation has an effect on the
utilization of these textural features as potential biomarkers.67

Nevertheless, intra-observer variability in target delineation
should be minimized, and semi-automated and fully automated
segmentation approaches have been suggested in the literature.
Many of the research studies have been published investigating
multiple PET and MRI segmentation methods, such as cluster-
ing, active contours and thresholding.68 On the other hand,
multimodality image segmentation methods were suggested by
El Naqa et al69 and Chowdhury et al.70 The authors presented
frameworks to link structures of interest across different im-
aging modalities to aid in target delineation for radiotherapy
planning. Based on the published literature, the proposed
methods suffer from shortcomings and rely heavily on image
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quality, thus a recommendation cannot be easily reached.
Yet, image segmentation is crucial in radiotherapy planning and
should be implemented while considering the achievable accuracy
level and the technical feasibility. Manual delineation of tumours
is still considered the gold standard in radiotherapy planning.

Textural analysis is based on intensity values in the image, which
is implicated by multiple technical factors owing to discrepancy
between scanners, scanning protocols, reconstruction algorithm,
noise and image post-processing, which will all affect extracted
textural features. The robustness of texture analysis against the
previously mentioned factors is yet to be explored.

FUTURE DIRECTION FOR TEXTURE ANALYSIS
IN RADIOTHERAPY
Essentially, there is a need for more advanced quantitative image
analysis methods in the field of radiotherapy. Initial results re-
lating tumour texture to treatment outcome and patients’ sur-
vival in radiotherapy are promising. Predicting tumour response
prior to radiotherapy could potentially allow assigning of
patients to high- and low-risk groups, where high-risk groups
may be targeted with more aggressive treatment courses. In
addition, predicting recurrence earlier from follow-up scans
would be valuable for planning medical intervention as early as
possible. Although a standardization of textural analysis in
predicting survival is desirable, the methods explored in the
literature did not explore all available possibilities to establish
optimum standards in implementing texture analysis where
confounding factors are addressed. Furthermore, the number of
textural features that could be extracted from radiological
images is numerous, yet, some were only investigated in the
literature and even fewer showed an association or correlation
with patient survival or response to treatment. The significance
of these textural features should be investigated, and the casual
relationship between these features and outcome prediction/
survival should be understood.

Despite the fact that texture analysis based on intensity histo-
grams reported promising results, it remains a global, spatially
insensitive, simplistic approach for rather a complex question
where global features are extracted. GLCM-based textural
features reported the most significant results, yet quantizing

GLCM to reduce its complexity leads to loss of spatial in-
formation. Two techniques that could be further explored
are principal component analysis, which will reduce di-
mensionality and reduce computational cost, and wavelet
transform, which iteratively decomposes the 2D image based
on frequency and directionality of the signal into multiple
components.18 A combination of multi-approach texture analysis
could be beneficial in overcoming the inherited shortcomings of
available methods. Ideally, a certain standardization of texture
analysis with regard to image quality and quantization methods
is needed.

From the available literature, it is postulated that CT texture
analysis will be the leading imaging modality in texture analysis
given its superior resolution and its good integration into the
field of radiotherapy compared with PET. Moreover, the poor
resolution of PET, high noise, and tracer uptake and quantifi-
cation challenges underpowers the extracted features and could
lead to pseudotexture. MRI-based texture analysis seems an at-
tractive idea owing to its superior soft tissue contrast, yet there
are many challenging aspects to overcome. Target delineation
based on fMRI is still not fully explored where published re-
search studies investigating quantification of MRI functional
parameters and target delineation are relatively scarce compared
with that of CT imaging. In addition, the standardization of
fMRI quantification is still not well established. fMRI is still not
widely available and not as fully integrated into radiotherapy
planning as CT and PET.

CONCLUSION
In conclusion, there is growing evidence of a correlation be-
tween tumour texture and treatment outcome providing the
potential of tailored radiotherapy based on a tumour’s predicted
response. Medical images contain more information than is
currently being utilized. Hence, texture analysis could enrich
and complement existing methodologies, but this needs further
validation. Texture analysis techniques should be developed
aiming to quantify the heterogeneity of the tumours free from
confounding factors. To date, only a few textural features
showed significance in predicting outcome or patients’ survival.
However, the causal relationship is not fully understood and in
need of further investigation.
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