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Abstract

Background—Postprandial triglyceridemia predicts cardiovascular events. Niacin might lower

postprandial triglycerides (TG) by restricting free fatty acid (FFA). Immediate-release niacin

reduced postprandial TGs, but extended-release niacin failed to do so when dosed the night before

a fat challenge.

Aims—1) Determine whether extended-release niacin dosed before a fat challenge suppresses

postprandial TG. 2) Determine whether postprandial TG is related to FFA restriction.

Methods—Double-blinded, placebo-controlled, random-order crossover experiment, where

healthy volunteers took 2 g extended-release niacin or placebo 1 hour before heavy cream. We
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sampled blood over 12 hours, and report TG and FFA as means±SD for incremental area under the

curve (iAUC) and nadir.

Results—Combining 43 fat challenges from 22 subjects, postprandial TG iAUC was +312±200

on placebo vs +199±200 mg/dL*h on extended-release niacin (33% drop, p= 0.02). The

incremental nadir for FFA was −0.07±0.15 on placebo vs −0.27±0.13 mmol/L on extended-release

niacin (p<0.0001), and FFA iAUC fell from +2.9±1.5 to +1.5±1.5 mmol/L*h on extended-release

niacin (20% drop, p=0.0015). The TG iAUC was strongly related to the post-dose drop in FFA (r=

+0.58, p=0.0007).

Conclusions—Given right before a fat meal, even a single dose of extended-release niacin

suppresses postprandial triglyceridemia. This establishes that postprandial TG suppression is an

acute pharmacodynamic effect of extended-release niacin, probably the result of marked FFA

restriction. Further study is warranted to determine whether mealtime dosing would augment the

clinical efficacy of extended-release niacin therapy.
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Hypertriglyceridemia is associated with premature coronary heart disease.(1;2) Although

triglycerides (TGs) peak after meals, they are measured fasting for convenience. Non-fasting

TGs predict coronary heart disease events better than fasting TGs, consistent with the

atherogenic potential of alimentary TG-rich lipoproteins (TRLs) and cholesterol-rich

remnants.(3–6) Moreover, postprandial triglyceridemia predicts endothelial dysfunction and

early atherosclerosis.(7;8) Statins and fibrates suppress postprandial TG (ppTG), perhaps

enhancing cardiovascular benefits.(9;10)

Immediate-release niacin suppresses ppTGs.(11–14) Though it takes several days to lower

cholesterol,(15) immediate-release niacin suppresses ppTGs within hours of the first dose,

indicating this is an acute pharmacodynamic response.(16) Surprisingly, extended-release

niacin had no such benefit.(17) This disparity is relevant because extended-release niacin

dominates clinical use, even though only immediate-release niacin prevented hard

cardiovascular outcomes.(18;19) If suppression of postprandial TRLs retards

atherosclerosis, extended-release niacin may prove less atheroprotective than immediate-

release niacin. Adding impact, recent cardiovascular outcome studies of niacin+statin

exclusively utilized extended-release niacin.(20;21) Clinical dosing differs strikingly by

formulation: immediate-release niacin thrice daily with meals vs extended-release niacin

once daily at bedtime--ie, before the major/only daily fast. Since TGs peak post-meal, one

would expect dosing pre-fast to undermine efficacy if an acute dosing effect suppresses

ppTG.(16). We suspect extended-release niacin misses an opportunity for efficacy because

its short-lived TG-suppressive effects occur after bedtime, dissipating before breakfast.

Conversely, we hypothesized that dosing extended-release niacin before a meal would

suppress ppTG.
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Methods

Objectives

1. Determine whether extended-release niacin before a fat challenge suppresses

postprandial triglyceridemia.

2. Determine whether restricted supply of FFA or its metabolite hydroxybutyrate

(HBA) predicts postprandial TG suppression.

Design

Double-blinded, random-order, crossover experiment of a single 2 g dose of extended-

release niacin or placebo in niacin-naïve subjects lacking all elements of Metabolic

Syndrome (cf. Supplemental Figure 1).

Protocol

Subjects presented after a 12-hour overnight fast and took 2 g extended-release niacin (Kos

Pharmaceuticals, Miami, FL) or matching placebo (hour 0). After 1 hour, they drank heavy

cream 50 g/m2 surface area within 20min, per the oral fat tolerance test (OFTT) of Cabezas

et al.. (22). We sampled blood from an antecubital intravenous catheter hourly for 12 h.

Subjects crossed to alternative treatment after ≥1 week. Some also provided 12 hours of

fasting samples as a physiologic reference.

Laboratory Analysis

Within 30 min of collection into chilled EDTA tubes, we separated plasma from whole

blood in a 4°C centrifuge, storing at −70°C until assaying runs by subject for TGs, FFA, and

hydroxybutyrate (HBA)enzymatically on a Hitachi912 autoanalyzer (Roche Diagnostic

Systems Inc, Indianapolis, IN) using Sigma reagents (Sigma-Aldrich, St. Louis, MO). The

respective intra-assay and interassay coefficients of variation for TGs were 1.5% and 1.8%,

for FFA 0.75% and 0.75%, and for HBA hydroxybutyrate 10% and 5%.

Statistics

We calculated area under the curve (AUC) over 12h using the trapezoidal rule, baseline by

averaging −20, −10, and 0 minute samples, and incremental AUC (iAUC) as AUC-

(baselineX12h). Though the recommended sample size for ppTG studies is at least 10

subjects,(23) our power calculations suggested a need of 22 subjects based on related

literature(22)(24–26) Assuming baseline TG AUC of 2482 mg/dL*h, we needed 21 subjects

for 80% power to detect a 615 mg/dL*h (25%) drop with a standard deviation (SD) of 691

mg/dL*h for the study’s significance threshold: a two-tailed alpha at <0.05. We performed

all analyses in Stata® v10.0 (StataCorp), comparing iAUC by mixed-effects regression,

adjusting for sex, African-American (Black) status, and body mass index (BMI). Typically,

Blacks have lower fasting(27) and ppTGs,(28) so we tested for race interaction. We report

mean, SD, and 95% confidence intervals (CI).
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Results

Participants

Since 22 subjects received both OFTTs, we analyzed 44 OFTT studies (Supplemental Figure

1/Table 1).

Extended-release niacin suppresses postprandial triglycerides

On placebo, ppTG increased +82±35mg/dL, peaking at 150±49 mg/dL after 5.6±2.5h, and

normalizing by 9 h (Figure 1A). This bell-shaped curve is typical of ppTG, whose ascending

phase indicates TRL accumulation, and descending phase TRL clearance.(23) On extended-

release niacin, ppTG increased +72±41 mg/dL, peaking at 143±49 mg/dL after 4.8±2.4h,

and normalizing by 9h. During the accumulation phase the rise in TGs was super-imposable.

In contrast, extended-release niacin decreased ppTG levels during the post-peak clearance

phase, significantly at 5h and 7h (both p<0.01 vs placebo). On placebo, TG iAUC was

+312±200 vs +199±200 mg/dL*h on extended-release niacin (p=0.02), a median drop of 82

mg/dL (−33%) from the OFTT alone (Figure 2, Table 1).

On extended-release niacin we found significant interactions by race. During TRL

accumulation Blacks reach peak TG faster. Post-peak, during the TRL clearance phase,

extended-release niacin failed to suppress TG among Blacks (interaction p= 0.01, Figure 1).

Strikingly, the median percent change in TG iAUC was −47% on extended-release niacin

(interquartile range [IQR] −123 to −14%) among non-Blacks vs +4% (IQR − 14 to +15%)

among Blacks. Thus, the 33% drop in TG iAUC pooling races obscures a marked disparity,

falsely implying a benefit in Blacks and underestimating benefit in others. Accordingly, we

recommend that outcomes be considered separately since interaction is present. The TG

iAUC among non-Blacks was +270±196 on placebo vs +54±194 mg/dL*h on niacin

(p=0.0005, median drop 160 mg/dL*h), driven by a drop during the TRL clearance phase

from 5–7h. In contrast, TG iAUC among Blacks was +363±193 on placebo and 364±193

mg/dL*h on niacin (+26mg/dL*h, p=1). Moreover niacin failed to reduce ppTG from

placebo at any time, and even exceeded placebo at 3h (p<0.05).

Effect of niacin on postprandial free fatty acids and hydroxybutyrate

On placebo, postprandial FFA increased 0.561±0.480 mmol/L peaking at 7.3±2.7h. The

FFA did not normalize since even fasting raises FFA (Figure 1B). In non-Blacks

postprandial FFA did not differ from the fasting reference. In Blacks, postprandial FFA

exceeded fasting levels at hours 4 through 7 (all p<0.05). On niacin, the classic anti-lipolytic

effect was seen, as FFA dropped 0.274±0.134 to an absolute nadir of 0.108±0.109 mmol/L

at 3.9±4.0h post-niacin. At hour 1 the nadir dropped below baseline irrespective of race

(p<0.01), and at hour 2 remained lower in Blacks (p<0.05, Figure 1B). Among non-Blacks

post-nadir FFA tracked with postprandial and fasting FFA except for a few drops after hour

7. Among Blacks, postprandial FFA exceeded fasting FFA at 4–6h (all p<0.03) as well

postprandial FFA for non-Blacks (all p<0.05). This suggests FFA rebound in Blacks

prevented niacin from suppressing ppTG. Irrespective of race, on placebo FFA-iAUC was

+2.93±1.48 vs +1.49±1.48 mmol/L*h on -release niacin over 12h (p=0.0015), a drop of 0.59

mmol/L*h (-20%, Table 1).
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Since only hepatocytes convert FFA to HBA, plasma HBA reflects hepatic FFA exposure

and corroborates FFA substrate availability for hepatic TG assembly. Postprandial HBA

resembled FFA, with a nadir of 63.4.±50.1 on placebo and abruptly dropping to 32.5±50.1

μmol/L on niacin (p=0.006). Like FFA, among Blacks HBA rebounded between 4–8h, but

gradually peaked at 12h in others (Supplemental Figure 2). Irrespective of race, on placebo

HBA-iAUC was +3931±2472 vs +3329±2427 μmol/L*h on niacin (p=0.032), a drop of 548

μmol/L*h (−20%, Table 1).

Restricted fatty acids predict suppressed postprandial triglyceride

Since the liver depends on adipose for FFA to make TG, niacin-induced FFA restriction

could limit hepatic TG assembly by substrate limitation. Accordingly, changes in FFA or

HBA predicted subsequent changes in TG-iAUC (Figure 3, Supplemental Table 2). As

expected, regression often revealed a stronger relationship than Spearman’s correlation

coefficient, since the former adjusted for race (Supplemental Table). TG-iAUC was strongly

predicted by the incremental nadirs of FFA (r=+0.58, p=0.0007) and HBA (r=+0.52,

p=0.0011) suggesting abruptly restricting FFA or HBA drives subsequent TG suppression.

Time to HBA nadir inversely correlated with TG-iAUC (r= −0.55, p=0.05), implying

prolonged restriction of hepatic FFA supply predicts greater ppTG suppression. The FFA-

iAUC strongly correlated with TG-iAUC (r=+0.49). In summary, restricted FFA supply

predicts suppressed ppTG.

Discussion

We are the first to demonstrate that extended-release niacin suppresses postprandial

triglyceridemia. Frequent sampling revealed acutely-dosed extended-release niacin

suppresses TGs during the post-peak TRL clearance phase only, like immediate-release

niacin.(11;12) Our pooled 33% reduction in TG-iAUC by 2g extended-release niacin

resembles reductions on chronic immediate-release niacin (Supplemental Table 3).(12–14)

Others found immediate-release niacin thrice daily with meals suppressed diurnal/ppTGs

(9am–9pm), as well as nocturnal/post-absorptive TGs (10pm–9am), and 24h AUC.(12) We

show that extended-release niacin also suppresses diurnal/ppTGs for 12h, provided niacin is

given pre-meal; however, the full 24h effect remains unknown. Irrespective of formulation,

niacin reduces TG-AUC 21–41%.(12–14) Statins suppress ppTG 2–33%(29) and fibrates

33–55%,(30) suggesting 2–3g niacin has intermediate potency. Additive effects are reported

with statin+gemfibrozil (31) and statin+immediate-release niacin.(14). Since postprandial

TRLs are considered atherogenic, we believe further study of combination therapy is

warranted.

Our results vary from Plaisance et al., whose bedtime dosing of <1500mg extended-release

niacin for 6 weeks failed to suppress ppTGs the next day, adversely distinguishing extended-

release niacin from immediate-release niacin.(17) Our results may differ for several reasons.

Perhaps their Metabolic Syndrome subjects took medications interfering with ppTG

suppression not used by our healthier cohort. They employed chronic niacin therapy;

conceivably, the first-exposure ppTG response is greater than long-term response (ie,

tachyphylaxis). If so, our suppression might not translate to chronic therapy. Contrariwise,
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immediate-release niacin chronically suppresses ppTG. Moreover, TG suppression grows

more potent at the end of the first week vs first exposure to immediate-release niacin.(15)

Perhaps they enrolled more Blacks or other non-responders. Differences in OFTT might

explain disparate results; however their carbohydrate-enriched OFTT should amplify/

prolong FFA and HBA restriction by insulin’s anti-lipolytic effect, hence deepening TG-

suppression and not accounting for the discrepancy.

The simplest explanation may be that niacin’s ability to suppress ppTG depends on acute

post-dose pharmacodynamics. Accordingly, we speculate bedtime dosing squanders an

opportunity, and suggest comparing bedtime to pre-prandial extended-release niacin to test

this. Further study is justified because counter-physiologic dosing could diminish extended-

release niacin’s efficacy as an atheroprotective therapy, as nocturnally-dosed extended-

release niacin fails to suppress atherogenic postprandial remnant lipoproteins. A recent study

found that cardiovascular benefits of ≤3g mealtime immediate-release niacin did not

materialize when ≤2g bedtime extended-release niacin was compared to placebo, with

aggressive statin titration and/or addition of ezetimibe therapy in both groups.(20)

Disappointing cardiovascular effects of bedtime extended-release niacin may involve failure

to suppress atherogenic TRLs/remnants during the postprandial phase that dominates the

24h period. By completely dissociating acute from chronic effects, we challenge the notion

that niacin suppresses postprandial triglyceridemia by merely lowering baseline/fasting TG.

(17)

Froberg proposed 3 candidate mechanisms for niacin-induced ppTG suppression: 1)

accelerating chylomicron (CM) or very low density lipoprotein (VLDL) catabolism (eg, by

enhancing lipoprotein lipase [LPL] activity); 2) retarding intestinal CM production; or 3)

retarding VLDL production (eg, FFA restriction).(12) The third is best supported, and we

offer an expanded mechanistic hypothesis (cf. Supplemental Figure 3). A dose of niacin

rapidly suppresses hormone sensitive lipase (HSL),(32) by stimulating adipocyte GPR109A.

(33–35) Thus, niacin restricts restricts lipolysis of stored TG to FFA, prompting a

precipitous drop in adipose-derived plasma FFA within minutes,(36)restricting FFA delivery

to the liver, largely via the portal vein.(16;32;33) Since the liver depends on adipose-derived

FFA for TG synthesis, restricted FFA supply suppresses TG synthesis, halting VLDL

production as early as 1 hour post-dose.(37) With a half-life of 1–2 hours,(37) arrested

VLDL production takes several hours to shrink the VLDL- and total-TG pools, consistent

with observed TG suppression 4 hours post-dose.(16) Niacin-induced -FFA restriction is

thought to initiate VLDL and plasma TG suppression.(38;39). Sustained suppression during

plasma FFA rebound suggests additional mechanisms perpetuate the initial halt in VLDL

production,(37;40–42) or that restored production simply lags plasma FFA rebound.

Regardless of how niacin suppresses VLDL-TG production, the resulting post-dose

reduction in the VLDL-TG pool could be exploited clinically to reduce postprandial CM TG

by simply taking extended-release niacin at mealtime. Catabolism of CM/VLDL-TG is rate-

limited by LPL, facilitating dissolution of TG to FFA. Since CM and VLDL compete for

LPL, post-dose restriction of VLDL-TG leaves more LPL available for CM-TG catabolism,

facilitating ppTG clearance. Moreover, FFA inhibits LPL activity;(43) hence, restricted FFA

disinhibits LPL activity, another way mealtime niacin might accelerate TRL catabolism.
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Accordingly, in our study restricted FFA preceded ppTG suppression during the clearance

phase of the curve 5 to 7 hours post-niacin, with robust correlations between rapid FFA

restriction (r=+0.58) and/or HBA (r=+0.52) and subsequent ppTG suppression, which to our

knowledge are novel. Though FFA restriction has long been invoked to explain TG

suppression by virtue of biological plausibility, strong correlations in our study advance the

case for a causal relationship.

Plasma FFA may not reflect the totality of hepatic exposure to FFA by under-representing

portal FFA delivery to the liver.(44) Since hepatocytes convert FFA to HBA, plasma HBA

may thereby provide a more specific marker for hepatic (ie, portal) FFA flux than peripheral

vein FFA.(44) Thus, HBA provides an important and novel corroboration of the concept that

restricted FFA mediates ppTG suppression.

The major clinical implication is that the recommended dosing strategy for extended-release

niacin undermines its efficacy, especially since our results accord with studies of peri-

prandial immediate-release niacin whereas the study of pre-fast extended-release niacin had

no effect on ppTG. We propose that dosing extended-release niacin at bedtime undermines

efficacy by 1) ensuring the rapid drop in FFA is long gone by the time of the next day’s

meal, an opportunity cost, and 2) risking timing breakfast during the FFA rebound, an active

interference with benefit. Indeed, bedtime dosing raises fasting FFA well into the next

morning, reflecting nocturnal FFA rebound which may promote VLDL production, thereby

undermining TG suppression.(45–47) Alternatively, pre-meal dosing of extended-release

niacin could fully exploit a postprandial benefit, and even forestall nocturnal FFA rebound,

deepening fasting TG suppression. A theoretical benefit has been used to justify bedtime

dosing of extended-release niacin (48) since Type IV triglyceridemics exposed to a high-

carbohydrate meal and niacin infusion had diminished nocturnal FFA rebound and TGs.

(49)A more practical reason to initiate extended-release niacin at bedtime is to time the

disagreeable dermal response with sleep.(50) We propose that after developing tolerance to

the latter, bedtime dosing is neither obligatory nor advantageous. Indeed, results of Plaisance

and our group imply nocturnal dosing undermines a potentially atheroprotective benefit of

the extended-release formulation. If switching the timing conferred additional 24h efficacy,

perhaps extended-release niacin would achieve similar fasting and postprandial efficacy as

immediate-release niacin, a proposition worthy of additional study.

The Black population has lower fasting TGs and ppTGs.(28) This may reflect increased LPL

activity and superior TRL clearance. Unexpectedly, fasting and ppTGs did not vary by race

on OFTT+placebo in our study. Perhaps the expected racial differences depend on variations

in metabolic defects, so selecting fit subjects abrogated differences. Strikingly, on extended-

release niacin in Blacks, FFA rebound quickly followed FFA restriction, suggesting FFA

rebound prevented niacin from accelerating TRL clearance. (47) To our knowledge this is

the first study demonstrating significant inefficacy of extended-release niacin in Blacks, but

does not speak to inefficacy of long-term therapy or for fasting lipoproteins.

Our study is subject to several limitations. We limited niacin to a single exposure in drug-

naive subjects to separate acute pharmacodynamic from chronic therapy effects, thus better

representing pharmacodynamic effects at the expense of generalizability to chronic therapy.
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We limited intra-individual variability by enrolling healthy individuals at the expense of

generalizability to dyslipidemia. We selected an OFTT with minimal insulin effects.(51)

Though this minimizes confounding by a second anti-lipolytic, it limits generalizability to

mixed meals. Strengths include randomized, double-blinded, placebo-controlled design,

larger sample size than prior studies,(11–14;17) high-resolution sampling, and robust

participation of Blacks, which allowed us to detect interaction by race.

Conclusions

We found a single exposure to extended-release niacin suppressed postprandial

triglyceridemia in drug-naïve subjects, in contrast to a report where bedtime extended-

release niacin failed to suppress postprandial triglyceridemia at breakfast. This indicates

niacin suppresses postprandial triglyceridemia by an acute pharmacodynamic effect,

probably by restricted FFA supply limiting VLDL and accelerating chylomicron catabolism.

Clinically, this challenges the conventional wisdom of dosing extended-release niacin before

a prolonged fast, which may undermine lipid if not atherosclerosis benefits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect niacin on postprandial triglycerides
Panel A: Time course of postprandial triglycerides.

Panel B: Time course of postprandial free fatty acids.

Filled shapes denote a significant comparison to OFTT+Placebo at same hour.

SEM=standard error of the mean, OFTT=oral fat tolerance test, NA=niacin
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Figure 2. Effect of niacin on triglyceride incremental area under the curve
Whiskers delimit 10th and 90th percentiles, enclosed region the interquartile range (IQR),

horizontal line the median, notches the 95% confidence interval and mean. Diagonal lines

depict change in each individual. Percent change is the median of individuals’ change.
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Figure 3.
Relationship between postprandial fatty acids and postprandial triglycerides

iAUC= incremental area under curve, iNadir = incremental nadir. We transformed TG iAUC

to reduce heteroskedasticity and skew.
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Table 1

Postprandial lipid changes

Effect of Niacin on Selected Outcomes

Oral Fat Tolerance Test 2g ER Niacin + OFTT Fasting Alone Fasting vs Niacin+OFTT

Plasma Triglyceride Total Area Under the Curve (0 to 12 hour) (mg/dL*h) in Non-African Americans

 Mean (95% CI) 1102.0 (921.0,1283.0) 917.6 (732.6,1102.5) 914.7 (688.1,1141.4) p = 0.6638

 p vs OFTT Ref p = 0.0099 p = 0.02

 Median Delta (IQR) −94.5 mg/dL*h (−469.5,+11.0) −286.9 mg/dL*h (−369.4,−187.3)

 Median %Change (IQR) −11.6% (−30.3,+1.8%) −28.4% (−31.5, −16.5%)

Plasma Triglyceride Total Area Under the Curve (0 to 12 hour) (mg/dL*h) in African Americans (Interaction p = 0.0488)

 Mean (95% CI) 1125.1 (935.0,1315.3) 1145.4 (955.2,1335.5) 856.8 (640.5,1073.0) p = 0.045

 p vs OFTT Ref p = .8 p = 0.031

 Median Delta (IQR) +50.3 mg/dL*h (−153.5,+117.5) −149.9 mg/dL*h (−254.9, −66.0)

 Median %Change (IQR) +4.0% (−13.7,+14.8%) −11.0% (−19.9, −9.7%)

Plasma Triglyceride Incremental Area Under the Curve (0 to 12 hour) (mg/dL*h) in Non-African Americans

 Mean (95% CI) +270.0 (+159.3,+380.7) +53.7 (−61.1,+168.5) −111.1 (−269.8,+47.5) p = 0.0353

 p vs OFTT Ref p = 0.0005 p < 0.0001

 Median Delta (IQR) −160.0 mg/dL*h (−414.5, −16.0) −133.4 mg/dL*h (−798.9, −123.2)

 Median %Change (IQR) −47.3% (−123.0, −13.9%) −76.7% (−142.3, −36.5%)

Plasma Triglyceride Incremental Area Under the Curve (0 to 12 hour) (mg/dL*h) in African Americans (Interaction p = 0.0174)

 Mean (95% CI) +362.8 (+243.2,+482.5) +363.5 (+243.8,+483.1) +14.2 (−127.6,+156.0) p = 0.0002

 p vs OFTT Ref p = 1 p < 0.0001

 Median Delta (IQR) +26.0 mg/dL*h (−152.5,+62.5) −326.9 mg/dL*h (−329.4, −286.0)

 Median %Change (IQR) +6.4% (−33.1,+16.9%) −79.0% (−97.4, −73.2%)

Plasma Free Fatty Acids Area Under the Curve (0 to 12 hour) (mmol/L*h) Pooled Across Race (Interaction p = 0.9037)

 Mean (95% CI) 7.326 (6.749,7.904) 6.014 (5.428,6.600) 6.638 (6.038,7.238) p = 0.0296

 p vs OFTT Ref p < 0.0001 p = 0.059

 Median Delta (IQR) −1.615 mmol/L*h (−2.075,
−0.515)

−0.815 mmol/L*h (−1.466,
−0.005)

 Median %Change (IQR) −23.7% (−30.3, −5.6%) −14.0% (−22.7, −0.1%)

Plasma Free Fatty Acids Incremental Area Under the Curve (0 to 12 hour) (mmol/L*h) Pooled Across Race (Interaction p = 0.5578)

 Mean (95% CI) +2.930 (+2.311,+3.550) +1.492 (+0.857,+2.126) +2.474 (+1.807,+3.141) p = 0.1762

 p vs OFTT Ref p = 0.0015 p = 0.09

 Median Delta (IQR) −0.585 mmol/L*h (−3.235,+0.040) −0.340 mmol/L*h (−2.355,+1.079)

 Median %Change (IQR) −20.0% (−80.3,+3.1%) −9.3% (−40.8,+32.5%)

Plasma Hydroxybutyrate Area Under the Curve (0 to 12 hour) (umol/L*h) Pooled Across Race (Interaction p = 0.4994)

 Mean (95% CI) 3930.7 (2898.0,4963.5) 3328.9 (2291.0,4366.8) 2643.3 (1606.1,3680.4) p = 0.2305

 p vs OFTT Ref p = 0.032 p = 0.0027

 Median Delta (IQR) −547.5 umol/L*h (−982.0,+92.5) −1438.5 umol/L*h (−1938.5,
−1069.8)
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Effect of Niacin on Selected Outcomes

Oral Fat Tolerance Test 2g ER Niacin + OFTT Fasting Alone Fasting vs Niacin+OFTT

 Median %Change (IQR) −19.9% (−36.1,+5.0%) −62.8% (−72.1, −29.6%)

Plasma Hydroxybutyrate Incremental Area Under the Curve (0 to 12 hour) (umol/L*h) Pooled Across Race (Interaction p = 0.5785)

 Mean (95% CI) +3094.4 (+1999.3,+4189.4) +2530.9 (+1492.0,+3569.9) +1829.7 (+875.5,+2784.0) p = 0.0921

 p vs OFTT Ref p = 0.07 p < 0.0001

 Median Delta (IQR) −790.0 umol/L*h (−1370.0,
−105.5)

−1154.6 umol/L*h (−1573.4,
−817.8)

 Median %Change (IQR) −37.6% (−65.0, −11.2%) −67.5% (−79.5, −24.4%)

OFTT=oral fat tolerance test

Note that a negative incremental area under the curve is the same as –(incremental area over the curve) and represents a decrease from baseline.
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