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Introduction

Monoclonal antibodies (mAbs) have become an increas-
ingly important class of therapeutic agents for a variety of 
diseases. To date, more than 20 molecules from this class of 
compounds have been approved for use by the US. Food and 
Drug Administration (FDA), with more than 500 antibod-
ies in various stages of development.1,2 Pharmacokinetic (PK) 
assessment, which supports optimal dosing regimen selection 
in patients, is a critical component of the clinical development 
of these molecules.

Knowledge of the biology and physiology of mAb disposi-
tion has grown tremendously in recent years. MAbs generally 

possess a high degree of target selectivity, with many exhibiting 
nonlinear distribution and elimination, influenced by binding 
to their target.3,4 At low mAb concentrations (relative to tar-
get), this target-mediated disposition predominates, whereas 
at high mAb concentrations, target binding is often saturated 
and linear elimination is observed. In the absence of high target 
expression relative to mAb concentrations in serum, mAbs may 
exhibit linear elimination with typical characteristics such as a 
long-terminal elimination half-life (15–21 d).3 The half-life of 
mAbs generally approximates that of endogenous human IgGs, 
with elimination mainly due to catabolism mediated by the 
reticuloendothelial system and recycling through the neonatal 
Fc receptor (FcRn) receptor.4,5
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The objectives of this retrospective analysis were (1) to characterize the population pharmacokinetics (popPK) of four 
different monoclonal antibodies (mAbs) in a combined analysis of individual data collected during first-in-human (FIH) 
studies and (2) to provide a scientific rationale for prospective design of FIH studies with mAbs. The data set was com-
posed of 171 subjects contributing a total of 2716 mAb serum concentrations, following intravenous (IV) and subcutane-
ous (SC) doses. mAb PK was described by an open 2-compartment model with first-order elimination from the central 
compartment and a depot compartment with first-order absorption. Parameter values obtained from the popPK model 
were further used to generate optimal sampling times for a single dose study. A robust fit to the combined data from 
four mAbs was obtained using the 2-compartment model. Population parameter estimates for systemic clearance and 
central volume of distribution were 0.20 L/day and 3.6 L with intersubject variability of 31% and 34%, respectively. The 
random residual error was 14%. Differences (> 2-fold) in PK parameters were not apparent across mAbs. rich designs (22 
samples/subject), minimal designs for popPK (5 samples/subject), and optimal designs for non-compartmental analysis 
(NCA) and popPK (10 samples/subject) were examined by stochastic simulation and estimation. Single-dose PK studies 
for linear mAbs executed using the optimal designs are expected to yield high-quality model estimates, and accurate 
capture of NCA estimations. This model-based meta-analysis has determined typical popPK values for four mAbs with 
linear elimination and enabled prospective optimization of FIH study designs, potentially improving the efficiency of FIH 
studies for this class of therapeutics.



www.landesbioscience.com mAbs 1095

Typically, PK characterization of mAbs is an important objec-
tive of first-in-human (FIH) studies. There are a number of com-
plexities that should be considered in the design of appropriate 
FIH studies to provide for adequate PK characterization. These 
studies often last for several months due to the long-terminal 
half-life of mAbs, in contrast with small molecule drug candi-
dates. In addition, assessment of the frequency and impact of 
immunogenicity is important because of the potential effects on 
PK.6 Appropriate FIH study design is crucial to fully characterize 
PK, and to inform safety and efficacy relationships.

A growing number of population PK (popPK) analyses of 
therapeutic mAbs have been published in the scientific literature.7 
PopPK analysis supports optimal drug utilization by quantifying 
typical disposition characteristics and sources of variability (such 
as between-subject variability) within study populations. PopPK 
also attempts to identify and quantify the effect of covariates on 
systemic drug exposure, and to assess their potential implications 
for clinical dosing. Many features of the popPK of mAbs are 
similar, despite differences in their pharmacological targets. For 
example, a 2-compartment model has been used in the majority 
of population analyses to describe the disposition of the mAb. In 
addition, measures of body size (e.g., total body weight, body sur-
face area) were the most commonly identified covariates found to 
influence the PK of therapeutic mAbs.8,9

The objective of this retrospective analysis was to compare 
the popPK parameter estimates for four Amgen mAbs exhibit-
ing linear elimination in FIH studies. The accuracy of param-
eter estimates in mixed-effect popPK models is highly dependent 
on the design of the clinical study. Study design aspects such as 
number of samples collected per subject, timing of sample collec-
tion, and type of measurements are all factors that influence the 
outcome of the popPK analyses and the ability to simulate PK for 
future trial designs later in development. A poor study design can 
lead to unreliable or inaccurate estimates of model parameters, 
requiring the trial to be repeated, thus incurring additional costs. 
Conversely, in an effort to maximize the amount of information 
collected during FIH studies, drug companies commonly pursue 
study designs that incorporate rich sampling schedules, thereby 
increasing the overall cost of the study and increasing the burden 
on participating subjects and clinics. Therefore, an additional 

goal of this work was to provide a scientific rationale for refining 
FIH study design of mAbs by exploring population D-optimal 
design strategies using a modeling and simulation approach.

Results

Data
A total of 2716 mAb serum concentrations from 171 healthy 

subjects from FIH studies conducted with four Amgen mAbs 
were used in this pooled analysis. All four mAbs were human, 
and were directed against soluble targets (Table 1). The data 
set included predominantly male subjects with a wide range of 
ages and total body weights (Table 2). The mean age was 30.9 y 
(range 18 y to 60 y). The mean body weight was 77.6 kg (range 
53 to 112 kg).

Population pharmacokinetic analysis
A robust fit to the combined data from the four mAbs was 

obtained using a 2-compartment model with first-order absorp-
tion and linear elimination, utilizing a proportional residual error 
model. The goodness of fit plots indicated that the model did an 
adequate job of describing the data (Fig. 1). In addition, there did 
not appear to be a trend when conditional weighted residuals were 
plotted against dose, supporting the use of the linear elimination 
model. The popPK parameter estimates and associated standard 
errors for the base model are shown in Table 3. Inter-subject vari-
ability in most model parameters was moderate (i.e., <35%) with 
the exception of ka and Q, which showed greater inter-subject 
variability. Population parameter estimates for CL and V

c
 were 

0.20 L/day and 3.6 L with intersubject variability (IIV) of 31% 
and 34%, respectively. The random residual error was 14%. 
Because highly correlated random-effect estimates were observed 
for CL, V

c
, and V

p
, the off-diagonal elements of the covariance 

matrix were estimated. The correlation coefficients between CL 
and V

C
, V

C
 and V

P
, and CL and V

P
 were 0.735, 0.647, and 0.427, 

respectively. Figure 2 shows boxplots of maximum a posteriori 
empirical Bayes estimates for individual PK parameters for the 
four mAbs. Substantial differences (>2-fold) in PK parameters 
were not apparent across mAbs, and the 25th to 75th percen-
tiles of the parameters estimates overlapped across mAbs. IIV 

Table1. List of monoclonal antibodies included in the population pharma-
cokinetic analysis

mAb Antibody isotype* Route Dose (mg)

a IgG2
IV 210, 420, 700

SC 7, 21, 70, 210

b IgG2
IV 210, 700

SC 2.1, 7, 21, 70, 210, 420

c IgG2
IV 1, 3, 10, 30

SC 10, 30

d IgG1
IV 100

SC 30, 100, 300, 700

*All four are human mAbs.

Table 2. Baseline demographics of all study subjects

Characteristic/
Parameter

Mean ± SD or n (%)

mAb a mAb b mAb c mAb d Total

(n = 54) (n = 57) (n = 30) (n = 30)
(n = 
171)

Sex, n (%)

Female 0 (0) 13 (23) 1 (3) 0 (0) 14 (8)

Male
54 

(100)
44 (77) 29 (97)

30 
(100)

157 
(92)

Age, years
28.0 ± 

8.5
34.3 ± 

8.0
32.5 ± 
11.3

24.3 ± 
5.4

30 ± 10

Weight, kg
78.4 ± 
11.0

77.2 ± 
11.2

76.6 ± 
9.8

77.4 ± 
12.4

77.6 ± 
11.4
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in the absorption rate constant (ka) was 
minimal for mAb c, where the model esti-
mated parameter value for most subjects 
was equal to the typical population value 
(0.282 d-1).

Model evaluation
The general popPK model evaluation 

results suggested that the final model 
provided a reliable description of the 
data with good precision of structural 
model and variance parameter estimates. 
Figure 3A and B show the median and 
90% prediction interval with observed 
dose-normalized concentration-time data 
for all four mAbs overlaid after intrave-
nous (IV) or subcutaneous (SC) admin-
istration, respectively. The population 
estimate of bioavailability was 74% and 
the estimated T

max
 was ~6 d. The median 

half-lives of the α and β phases were esti-
mated to be 1.43 (0.33–5.33) and 24.3 
(16.7–37.8) days, respectively.

Covariate analysis
Body weight was included as the one 

covariate that appeared to explain the 
largest amount of IIV in CL, Q, V

c
, and 

V
p
. The effect of body weight on CL and 

V
c
 is shown in Figure 4A and B, respec-

tively. The line in each plot represents the 
least squares regression of CL or V

c
 as a function of body weight. 

The typical values (%RSE) of the exponential functions shared 
by CL and Q, and V

c
 and V

p
 were 0.865 (19.2) and 0.957 (16.4), 

respectively. The final model resulted in a significant reduction 
in minimum value of objective function (MVOF; ΔMOFV = 
–48.2 with the addition of 2 parameters [P < 0.001]) compared 
with the base model, as well as slightly reduced IIV in CL, Q, V

c
, 

and V
p
. Age did not appear to be a covariate based on exploratory 

analysis, and sex was not investigated because the healthy sub-
jects included in the analysis were mostly male.

Optimal sampling
Optimal sampling times were determined by reducing the 

scalar (D-optimal: determinant) asymptotic covariance of the 
estimates.10 That is, sampling times were selected to most inform 
the estimates of the PK model parameters. The optimal sampling 
times by the IV and SC routes for minimal (n = 5 samples/sub-
ject), NCA (n = 10 samples/subject), and rich (n = 20 samples/
subject for IV and n = 22 samples/subject for SC route) sampling 
strategies are shown in Table 4. Boxplots of popPK parameters 
from stochastic simulation and estimation (SSE) using the differ-
ent study designs for 1000 simulations/estimations are shown in 
Figure 5. Minimal sampling times reflect samples at maximum 
drug concentration (information on absorption and distribu-
tion) and during the terminal phase (information on elimina-
tion). Five unique sampling times for each group were observed, 
which matches the number of fixed effects in the model. This 
resulted in the direct observation of C

max
 for both routes of 

administration. The AUC
last

 estimate is predicted to capture 
~92% and ~99% of the true AUC

last
 for the SC and IV sampling 

schedules, respectively.
The rich sampling schedule for each route resulted in a deter-

minant of the Fisher Information of 1.72977e+050. The ratio of 
rich to minimal to the power of 1/11 is 1.087, indicating that the 
information content in the rich design is only slightly higher than 
that of the minimal design.

In terms of predicted asymptotic parameter estimate %CV, 
the ratio of optimal design to rich design was: V

c
 = 1.13, k

12
 = 

1.45, k
21

 = 1.55, CL = 1.07, k
a
 = 1.76, f = 1.06. Parameter %CV 

for CL, V
c
 and F are expected to be in the range of [1.06, 1.13]-

fold worse for the minimal design compared with the rich, sug-
gesting that these designs are of similar quality for estimating 
these parameters. Parameter %CV for k

12
, k

21
 and k

a
 are expected 

to be in the range [1.45, 1.76]-fold worse for the minimal design 
compared with the rich, suggesting that the rich design (par-
ticularly the early sampling for distribution, IV, and absorption, 
SC) is better for estimating these parameters. Comparatively, the 
minimal design uses 5 samples per subject, and the rich designs 
use 20 or 22 samples.

Discussion

In this report, we characterized the single-dose PK properties 
for four mAbs using a meta-analysis approach. Consistent PK 

Figure 1. Goodness of fit evaluated by plots of (A) observed concentration (µg/mL) vs. individual 
prediction, (B) conditional weighted residual vs. population prediction, (C) conditional weighted 
residual vs. time (days), and (D) conditional weighted residual vs. mAb dose (mg). Symbols are indi-
vidual concentrations. In plot (A), the solid line is the line of unity; in all plots, dashed line is line of 
regression; in plots (B, C, D), horizontal dotted lines represent ± 3 units of CWreS. Abbreviations: 
CWreS, conditional weighted residual; DV, dependent variable; PreD, population prediction.
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profiles were observed for each mAb after IV or SC administra-
tion in healthy volunteers, indicating that a single model of the 
data was plausible. For the four mAbs included in this retrospec-
tive analysis, target expression in the central compartment was 
low. A 2-compartment model with linear elimination provided a 
robust fit to the healthy volunteer PK data, with typical CL and 
V

C
 values of 0.20 L/day and 3.6 L, respectively, after IV admin-

istration. Absorption after SC administration was characterized 
by a first-order rate constant with a T

max
 of ~6 d and 74% bio-

availability. A meta-analysis approach enabled the integration of 
PK information from separate FIH study designs and produced 
robust popPK estimates. These results agree with commonly 
cited values for mAbs with linear PK; however the purpose of 
this work was to obtain an understanding of the value so that 
simulations could leverage this prior information to optimize 
FIH trial design.

This retrospective analysis was based on four recent mAb can-
didates that were selected based on narrow selection criteria. The 
results were from single dose studies in healthy volunteers, and as 
such do not include the effects of disease or target binding, which 
may alter the pharmacokinetic profile. For example, in a popPK 
analysis of denosumab, tumor type was identified as a covari-
ate that influenced the linear CL.11 Patients with solid tumors 
exhibited an approximate 1.1 to 1.4–fold increase in linear CL 
relative to healthy subjects. In addition, the sample scheme was 
optimized for mAbs with specific PK parameters that represent a 
subset of overall range in PK characteristics of mAbs. Therefore, 

the most appropriate optimal sampling scheme may be identified 
in cases where the PK properties are successfully anticipated from 
non-human primate studies or PBPK modeling.

Body weight has frequently been identified as a covariate in 
popPK analysis of mAbs.7,8 A fixed dosing strategy was employed 
for these FIH studies to facilitate characterization of the effect 
of body weight on PK parameters. In an effort to scale PK from 
non-human primates to humans, Dong et al. proposed coeffi-
cients of 0.75 and 1 for CL and V parameters respectively.12 The 
analysis showed that CL and V predictions were within 2-fold of 
the observed human parameter values for 9 of 10 mAbs exam-
ined. In the current analysis, similar values for the BW coeffi-
cients were estimated for CL and V parameters (0.865 and 0.957, 
respectively) for a combined data set of four mAbs in a single dose 
setting. Knowledge of the impact of covariates such as BW on PK 
can be useful to guide optimal dose selection. This data confirms 
the continued use of non-human primates in the prediction of 
human PK for mAbs that exhibit linear PK.

Optimal design methods were employed using the base 
popPK model to investigate alternative sample collection schemes 
to support FIH study designs. As expected, a rich sampling 
scheme with 20 or 22 serum samples collected per subject after 
SC or IV administration, respectively, returned the least biased 
estimates with the least between-trial variability. Reducing the 
number of samples to 10 per subject increased the estimate bias, 
but was similar to the rich design with regards to between-trial 
variability in the population parameter estimates. Use of the 

Table 3. Population pharmacokinetic parameter estimates for monoclonal antibodies

Parameter Units

Fixed effects - Population 
mean parameter

Random effects - Inter-subject/
Residual variance

Estimate
SE

(%RSE)
Estimate
(~CV%)

SE
(%RSE)

F1 – bioavailability after SC 
administration

– 0.744
0.0321
(4.31)

0.00a –

ka - absorption rate constant 1/day 0.282
0.0194
(6.88)

0.416
(64.5)

0.0651
(15.6)

CL- clearance from the central 
compartment

L/day 0.200
0.00677

(3.38)
0.0987
(31.4)

0.0117
(11.9)

Vc - volume of the central 
compartment

L 3.61
0.138
(3.82)

0.116
(34.1)

0.0288
(24.8)

Vp - volume of the peripheral 
compartment

L 2.75
0.109
(3.96)

0.0789
(28.1)

0.0125
(15.6)

Q - inter-compartmental distribution 
clearance

L/day 0.747
0.0670
(8.97)

0.699
(83.6)

0.130
(18.6)

Covariance between CL and Vc – – –
0.0786
(28.0)

0.011
(14.1)

Covariance between Vc and VP

0.0619
(24.9)

0.0150
(24.2)

Covariance between CL and VP

0.0377
(19.4)

0.0109
(28.9)

σ2 – – –
0.0208
(14.4)

0.00235
(11.3)

Se: Standard error of the estimate. CV%: Coefficient of variation calculated as . %rSe: relative standard error of the estimate calculated as 
. aInter-subject random variance was fixed at 0 in the PK model.
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minimal sampling scheme with 5 samples per subject resulted 
in the greatest degree of bias and between-trial variability in the 
population parameter estimates compared with rich and NCA 
designs. Depending on the objectives of the study, we have iden-
tified three potential collection schemes ranging from sparse 
to rich with an intermediate option to facilitate NCA analysis. 
Based on SSE analysis, the three collection schemes will deliver 
precise model estimates (<10% RSE) for fixed effect param-
eters. It should be noted that D-optimality does not take into 
account parameter estimate uncertainty. ED-optimality, where 
the uncertainty of the population parameters is included in the 
design step, is an alternative. Here, the %RSEs from the esti-
mation step are small (<10%), meaning that the parameters are 
well-known. Thus, D-optimality is an appropriate design metric 
for this case. In addition, this methodology may also be used to 
assess the effect of a missed sample collection on the precision of 
parameter estimates.

The NCA sampling scheme is appropriate for estimating typi-
cal NCA parameters such as T

max
, C

max
, AUC

last
, AUC from time 

zero to infinity (AUC
inf

) and half-life after SC or IV administra-
tion in FIH studies for linear mAbs as defined in this study. The 
respective sampling time points chosen provide adequate cover-
age of the serum concentration-time curve to estimate AUC

last
 

with average AUC extrapolation values below 20% as needed if 
AUC

inf
 is to be reported (WinNonlin software, Pharsight Corp.). 

In addition, a reasonable estimate of the mAb half-life could be 
computed with a minimum of 3 time-points selected after C

max
 

in the terminal phase to achieve a minimum adjusted R2 value 
of 0.8 for the regression fit. This intermediate sampling scheme, 
from a PK perspective, reduces the burden on subjects to return 
to the clinic for sampling, while delivering robust estimates of 
exposure comparable to the rich design. In addition, a reduction 
in the number of samples also reduces the associated expenses 
related to sample analysis and storage.

PopPK parameters from this analysis of linear mAbs agree 
with previous publications that have summarized results across 
mAbs.7,12-14 Based on estimates from Dong et al.,12 the range 
in CL and V

c
 was approximately 4.5-fold and 3.0-fold, respec-

tively, across the individual mAbs. The relatively narrow range 
of CL and V

c
 observed for mAbs reflects the similarity in physi-

cochemical and biochemical properties for these molecules. 
Physicochemical and biochemical factors such as charge, size, 
FcRn binding affinity, and glycosylation may play a role in the 
differences observed,15 and serve as areas of future research to fur-
ther optimize the PK properties of mAbs. Physiologically-based 
pharmacokinetic (PBPK) models offer the possibility of explor-
ing the effects of various physicochemical and physiological fac-
tors on mAb disposition and examples of such investigations are 
increasingly emerging in the scientific literature.16-18

In conclusion, this meta-analysis determined typical PK values 
for four mAbs with linear elimination. Single-dose PK studies for 
linear mAbs executed using the optimal designs evaluated here 
are expected to yield high quality model estimates, and accurate 
capture of NCA estimates, thus improving the efficiency of FIH 

Figure 2. Boxplots of population pharmacokinetic parameters for monoclonal antibodies included in the meta-analysis. The boxplots represent a sum-
mary of individual maximum a posteriori Bayesian estimates, where dashed and dotted horizontal lines represent the typical value and the 5th and 95th 
percentile values for each pharmacokinetic parameter, respectively. The median is shown as the dashed line, the 25th and 75th percentiles are repre-
sented as the bottom and top of the filled box, and the whiskers represent the range of values. ka, absorption rate constant; CL, clearance; Vc, volume of 
the central compartment; Vp, volume of the peripheral compartment; Q, distributional clearance.
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studies. As reported here, model-based meta-analysis has enabled 
prospective optimization of FIH study designs for mAbs.

Methods

Clinical data
Data from FIH studies conducted with four Amgen mAbs were 

used in these analyses (Table 1). Appropriate participant and insti-
tutional review board (IRB) approvals were received as part of each 
individual study. The combined data set was composed of 171 sub-
jects contributing a total of 2716 mAb serum concentrations, of 

which, 1153 came from subjects receiving 
IV doses and 1563 from subjects receiving 
SC doses of the mAbs. The median of the 
number of observations per subject was 16 
(12 to 22) for the IV arm and 17 (13 to 20) 
for the SC arm.

Analytical methods
Enzyme-linked immunosorbent assay 

(ELISA) methods were developed and vali-
dated to quantify mAb concentration in 
human serum. Capture reagents for mAbs 
in this assay format were anti-idiotype 
monoclonal antibodies. Inter-assay accuracy 
and precision requirements were less than 
20% coefficient of variation (%CV). The 
lower limit of quantification was 12.5, 10, 
1, and 50 ng/mL for mAbs a, b, c, and d, 
respectively.

Data inclusion and exclusion criteria
FIH studies conducted in normal healthy 

volunteers with human mAbs demonstrating 
linear PK were included in this meta-analy-

sis. Serum mAb concentration measurements that were missing or 
any values with unknown or missing associated observation times 
were excluded from the analysis. There were a total of 218 PK mea-
surements that were below the quantitation limit (BQL), represent-
ing ~7% of the data set. Given the small number of BQL records, 
no methodology was implemented to account for the effect of BQL 
values on parameter estimates.19 The data set was truncated at 168 d 
post-dose, given the small number of observations beyond this time 
point. No samples were reported positive for anti-drug antibodies.

Structural model
Individual concentration-time data from all subjects for 

all mAbs were pooled into a single data set for popPK analysis 

Figure 3. observed and simulated dose-normalized serum monoclonal antibody concentration (µg/mL/mg) vs. time after a single-dose intravenous 
(A) or subcutaneous (B) administration in healthy subjects, respectively. The solid lines and shaded areas are the median and 5th and 95th percentile 
simulated profiles for n = 1000 runs, respectively. The open circles correspond to the observed concentration values for all four mAbs.

Figure 4. Clearance (A) and central volume of distribution (B) vs. body weight. The symbols rep-
resent individual maximum a posteriori Bayesian estimates of clearance (A) and central volume of 
distribution (B) for each mAb. The line represents the least squares regression of body weight and 
population average clearance (A) or central volume of distribution (B).
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using nonlinear mixed effect model-
ing with the NONMEM software sys-
tem (Version 7.2, ICON Development 
Solutions). The first-order condi-
tional estimation with η − ε interac-
tion method (FOCEI) was applied to 
all models tested. mAb PK following 
IV administration was described by 
an open 2-compartment disposition 
model with first-order elimination 
from the central compartment. For 
mAbs administered SC, a depot com-
partment with a first-order absorp-
tion rate constant was included. The 
model was parameterized in terms of 
clearance (CL), central volume of dis-
tribution (V

c
), peripheral volume of 

distribution (V
p
), distribution clear-

ance (Q), and absorption rate constant 
(ka). The absolute bioavailability (F1) 
was estimated for SC administration 
relative to IV administration. Model 
selection was guided by various good-
ness-of-fit criteria, including diagnostic 
scatter plots, plausibility and precision 
of parameter estimates, and the MVOF.

Statistical model
An exponential random effect model 

was chosen to describe IIV as shown in 
Equation 1:

 (1)
where θ

i 
is the estimated parameter value for individual i (e.g., 

V
c,i

, CL
i
),  is the typical population value of the parameter, and 

η
θi
 is individual-specific intersubject random effect for individual 

i and parameter  and is assumed to be distributed ~N(0, ω2) 
with covariances defined by the intersubject covariance matrix 
Ω.

Residual unknown variability (RUV) was modeled using a 
proportional error model as shown in Equation 2:

 (2)

where C
ij
 and  are the jth measured and model pre-

dicted concentrations, respectively for individual i, and ε
ij
 is the 

associated intra-individual residual random error and is assumed 
to be distributed ~N(0, σ2).

Covariate model
The full covariate modeling approach, which emphasized 

parameter estimation, rather than stepwise hypothesis testing, 
was used for this popPK analysis.20 The primary covariates of 
interest had been predefined for this analysis, based on prior 
knowledge. Body weight was included as a covariate for CL, Q, 
V

c
, and V

p
. In addition, the effect of age on relevant pharmacoki-

netic parameters was evaluated. The effects of body weight on PK 
parameters were described using a power model as shown below:

(3)

Figure 5. Boxplots of population pharmacokinetic parameters from stochastic simulation and esti-
mation using minimal (sample collection n = 5), NCA (sample collection n = 10), and rich (sample col-
lection n = 20) study designs for 1000 simulations/estimations. The boxplots represent a summary of 
population parameter estimates, and dashed horizontal lines represent the typical parameter value 
for each pharmacokinetic parameter used in the simulation. The median is shown as the horizontal 
line, the 25th and 75th percentiles are represented as the bottom and top of the filled box, and the 
whiskers represent the range of values. F1, bioavailability; ka, absorption rate constant; CL, clearance; 
Vc, volume of the central compartment; Vp, volume of the peripheral compartment; Q, distributional 
clearance.

Table 4. Sampling times for different study designs

Sampling Strategy IV (day) SC (day)

Minimal 0, 2.71, 13.5, 74.8, 168 0, 5.11, 24.1, 81.3, 168

NCA 0, 0.04, 0.08, 2, 3, 14, 42, 77, 112, 168 0, 1, 2, 5, 6, 7, 24, 49, 82, 168

rich
0, 0.02, 0.04, 0.17, 0.33, 0.5, 1, 2, 4, 6, 8, 10, 14, 21, 28, 42, 56, 

70, 84, 112, 140, 168
0, 0.17, 0.33, 0.5, 1, 2, 4, 6, 8, 10, 14, 21, 28, 42, 56, 70, 

84, 112, 140, 168

Abbreviations: IV, intravenous; NCA, non-compartmental analysis; SC, subcutaneous
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where P
i
 is the estimated parameter value for individual i, θ 

is the typical population value of the parameter, BW
i
 is the body 

weight of individual i, 70 is the median body weight of the popu-
lation, and θ

BW_P
 represents the exponential function of the body 

weight effects on the parameter. CL and Q were allowed to share 
the same exponential function θ

BW_P
; similarly, Vc and Vp were 

allowed to share a common θ
BW_P

.
Similarly, the effects of age on various PK parameters were 

evaluated as shown in Equation 4 below:

 (4)
Where AGE

i
 is the age of individual i in years, 28 is the 

median age of the population, and θ
AGE_P

 represents the exponen-
tial function of the effects of age on the parameter.

A decrease in the MVOF of 3.841 or greater following intro-
duction of a single covariate into the “base” model was consid-
ered statistically significant (P < 0.05 with 1 degree of freedom), 
using the χ2 distribution, if the 95% confidence intervals (CI) 
for the estimate did not include the null value.

Model evaluation
The predictive performance of the base model was evaluated 

using a visual predictive check. The popPK model was used to 
simulate 1000 hypothetical subjects that received a 1 mg dose of 
mAb, either IV or SC. The distribution (median and 90% pre-
diction interval) of the simulated concentration vs. time curves 
was compared with the dose normalized mAb concentrations 
observed in the model-building data set.

Optimal design model
D-optimality seeks to reduce the scalarized (D-optimal: 

determinant) covariance of the estimated population parameters 
by selection of an experimental design. The invocation of the 
Cramer-Rao inequality provides an asymptotic (lower) bound on 
the covariance of the parameter estimates as the inverse of the 
Fisher information matrix (FIM).21 Optimal designs for popula-
tion PK studies have been investigated in the form of D-optimal 
design strategies by Duffull et al.,22,23 and others.24

D-Optimality was performed using PopED (version 2.12).24 
The PK model parameters were transformed to the set (V

c
, k

12
, 

k
21

, CL, k
a
, F), where k

12
 = Q/Vc and k

21
 = Q/Vp. If available, 

the IIV estimates from the PK model were used for the optimal 
design model. k

12
 and k

21
 IIV was set to 0.1 (31.6% IIV). No off-

diagonal IIV estimates were used in the optimal design model.
Minimal sampling times by route
Initial sampling times were 1, 2, 4, 7, 14, 21, 42, 84, 112, and 

140 d for both SC and IV groups. Random search, stochastic gra-
dient and line search methods were used to refine these sample 
times. Sampling times were allowed to vary independently for 
each group.

Additional samples for non-compartmental analysis
Additional sampling times were added to the minimal sam-

pling design for each route for the purposes of accurately observ-
ing C

max
 and estimating area under the concentration-time curve 

from time zero to the last quantifiable concentration (AUC
last

). 
Drug concentration profiles were simulated using the model, and 
“true” C

max
 and AUC

last
 were provided by these simulations. Four 

additional samples were added to each sampling schedule, and 
this number was selected to minimize the AUC

last
 estimate bias 

to less than 10%.
Comparison to rich sampling strategies
The minimal design was compared with the standard rich 

sampling strategy for each route. Rich sampling typically includes 
the following 20 time points: 0, 0.17, 0.33, 0.5, 1, 2, 4, 6, 8, 10, 
14, 21, 28, 42, 56, 70, 84, 112, 140, and 168 d post-dose for the 
SC route, with an additional 2 samples at 0.02 and 0.04 d post-
dose for the IV route.

Naturally, the rich sampling strategies provide more infor-
mation, so it is anticipated that the rich sampling strategies will 
provide smaller expected parameter uncertainty. A compari-
son of the efficiency of each design was made in the form of a 
D-efficiency calculation. The ratio of the determinant of the 
Fisher Information for the rich design relative to the minimal 
design to the power of 1/p, where p is the number of parameters 
in the model (12; 6 model, 5 IIV, and 1 RUV parameters) was 
calculated. This number can be thought of as a factor by which 
the minimal design must be replicated to achieve the same level 
of parameter precision as that of the rich sampling design.

Additionally, expected asymptotic variance estimates for the 
designs were calculated. These were translated into parameter 
%CV for the purposes of determining the effect of design choice 
on individual parameters.

Stochastic simulation and estimation
SSE analyses were performed for the minimal (n = 5 samples/

subject), NCA (n = 10 samples/subject), and rich (n = 20–22 
samples/subject) sampling strategies to assess the performance of 
each study design. First, 1000 replicates of popPK data (30 sub-
jects each for SC and IV routes) were simulated for each design 
using NONMEM. Next, model parameters were back estimated 
from the simulated data sets using the FOCEI method. The 
resulting estimated model parameters (i.e., typical values for 
theta) for each of the 3 study designs were compared with the 
typical values of the parameters derived from the observed data 
using boxplots.
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