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Abstract

Recently there has been great interest in modelling the association between aggregate disease

counts and environmental exposures measured at point locations, for example via air pollution

monitors. In such cases, the standard approach is to average the observed measurements from the

individual monitors and use this in a log-linear health model. Hence such studies are ecological in

nature being based on spatially aggregated health and exposure data. Here we investigate the

potential for biases in the estimates of the effects on health in such settings. Such ecological bias

may occur if a simple summary measure, such as a daily mean, is not a suitable summary of a

spatially variable pollution surface. We assess the performance of commonly used models when

confronted with such issues using simulation studies and compare their performance with a model

specifically designed to acknowledge the effects of exposure aggregation. In addition to

simulation studies, we apply the models to a case study of the short–term effects of particulate

matter on respiratory mortality using data from Greater London for the period 2002–2005.
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1. Introduction

The relationship between air pollution exposure and ill health came to public prominence in

the mid 1900’s, as a result of high air pollution episodes in both Europe (Firket, 1936) and

America (Ciocco and Thompson, 1961). Since then a large number of epidemiological

studies have consistently reported associations between a variety of pollutants at

comparatively low levels and health effects, including particulate matter (Laden et al.,

2000), sulphur dioxide (Schwartz, 1991), nitrogen dioxide (Zmirou et al., 1998), carbon

monoxide (Conceicao et al., 2001) and ozone (Verhoeff et al., 1996). Associations have also

been shown within different sub-groups of the population, such as the elderly (Dominici et

al., 2000) and children (Lin et al., 2002) for a range of health outcomes, such as asthma (Yu

et al., 2000) and respiratory and circulatory illnesses (Gwynn et al., 2000). Recently, large
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scale studies have investigated health effects in a large number of cities following to a

common protocol, such as the NMMAPS studies in the U.S. (Dominici et al., 2002) and the

APHEA and APHEA II studies in Europe (Katsouyanni et al., 1997, 2001).

Whilst a number of studies have examined the longer–term effects of air pollution, the vast

majority have investigated associations between short-term changes in air pollution and

health. These studies relate changes in exposure with subsequent changes in a specified

health outcome using daily health counts and measurements of exposure, the latter often

coming from a number of monitoring sites located within an urban area. The majority of

studies have estimated pollution exposure on a particular day by averaging the spatial

observations, either because of lack of access to the raw data or due to the simplicity of the

approach. A few studies have incorporated spatial modelling within health studies, see for

example Zidek et al. (1998), Zhu et al. (2003), Fuentes et al. (2006) and Lee and Shaddick

(2010), primarily because the health and exposure data were recorded at different

geographical locations or scales, an issue termed the ‘change of support problem’ by

Gelfand et al. (2001). In addition, routinely available covariate information, such as

temperature and humidity, is used. Less easily obtainable information on variables that

might be expected to have a relationship with pollution (and health), such as traffic density,

are often represented by surrogate variables. For example, ‘day of the week’ effects are

often used in place of traffic density based on the logical assumptions that there will be less

traffic at weekends in urban areas.

These studies are ecological in nature, being based on spatially aggregated health and

exposure data modelled at the same resolution. As such, there is the potential for ecological

bias; assuming that associations observed at the level of the area hold for the individuals

within the areas can lead to the so-called ecological fallacy. Ecological bias can manifest

itself in a variety of ways. For a review of the problems of ecological bias and possible

approaches for corrections, see Wakefield (2008).

In this paper we investigate the possibility of ecological bias being induced by aggregation

within short-term epidemiological studies. Results of using the standard ecological model

are compared with those from models which acknowledge such bias. The remainder of this

paper is organised as follows. Section 2 describes the ‘standard’ modelling approach used in

time–series air pollution and health studies. Section 3 describes the true underlying model at

the individual level but for which data are unlikely to be available and compares its

aggregated form with the ‘standard’ Poisson or quasi-likelihood model. This section also

describes alternative modelling approaches that may alleviate such problems. Section 4

presents a simulation study that assesses the biases that may arise from using the different

modelling approaches. Section 5 provides a case study comprising of an epidemiological

case study investigating the association between respiratory mortality and particulate matter

concentrations in Greater London for the period 2002–2005. Finally, section 6 provides a

concluding discussion.
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2. Time series studies of air pollution and health

The majority of short-term air pollution and mortality studies are based on an ecological

time series design, that use mortality, pollution and meteorological data that relate to a

geographical region  (such as a city or extended urban area) for n consecutive days. Only

daily counts of mortality or morbidity events from the population living within the study

region are available, and are denoted here by y = (y1, …, yn). These data are regressed

against ambient (background) air pollution concentrations and a vector of q covariates, the

latter of which are denoted by the n × q matrix  where 

representing the realisations for day t. The covariates remove the influence of unmeasured

risk factors that induce long-term trends, seasonal variation, over-dispersion and temporal

correlation into the daily health counts. The influence of such factors are typically modelled

by smooth functions of time (i.e. day of the study) and meteorological covariates, as well as

indicator variables for ‘day of the week’ effects and influenza epidemics.

The pollution data are obtained from k fixed site monitors located across  and measure

ambient pollution concentrations continuously throughout the day. A daily average is

typically calculated at each monitoring location, which for day t and spatial location sl is

denoted by wt(sl). The set of pollution locations are collectively denoted by  = {s1, …, sk}

(where sl = (al, bl) ∈ ), and for day t the pollution levels are summarised by the k × 1

vector wt( ) = (wt(s1), …, wt(sk))T. The pollution data for all n days are collected into an n

× k matrix W( ) = (w1( )T, …, wn( )T)T, which is likely to contain a small proportion

(typically less than 10%) of missing values. From these data the vector of daily pollution

exposures are almost exclusively estimated by w = (w1, …, wn), where

(1)

the average value across the k monitors on day t (missing values are typically ignored).

The relationship between (y, w, Z) is estimated using quasi-Poisson log–linear or additive

models, in which only the mean and variance of yt are specified using a quasi-likelihood

approach. The moments resemble those from a Poisson distribution, except that the variance

is allowed to be a multiple of the mean. The quasi-Poisson model has expectaton [yt|w̃t, zt]

= μt and variance Var[yt|w̃t, zt] = κμt, where κ is the over-dispersion parameter. In addition

the vector y1, …, yn are assumed to be independent, which may not be true as the number of

events on successive days are likely to be correlated. Pollution concentrations at a single or

multiple lags can be included into the model, with the specification above incorporating

exposures w̃t = (wt, wt−1, …, wt−l) from the same day up to a maximum lag of l days, where l

will typically range from between zero and five (Dominici et al., 2000). The mean log–linear

function is given by
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(2)

allowing the covariates to have have log–linear (e.g. ztjαj) or log non-linear (e.g. f(ztj|αj))

relationships with the health data.

A commonly used outcome measure in epidemiology is the Relative risk (RR), which is the

rate of risks of an event (or of developing a disease) with the denominator typically a

baseline level of exposure. From the above model, the estimate of βE gives us the

relationship between pollution and health and the relative risk is RR = exp(βE) with interest

lying primarily in whether this is significantly greater than one.

3. Statistical modelling

The ‘standard’ ecological model described by (1) and (2) may be defficient in a number of

ways, and here we focus on two, (i) the form of the mean function; and (ii) the exposure

measure. To illustrate these defficiencies we begin by describing the desired individual level

model, and then aggregate it to the ecological level.

3.1. Individual level model

The desired individual level model is based on data (yit, xit, zit) for the entire population of i

= 1, …, N individuals living in the study region  over all t = 1, … n days of the study. Here

yit is the Bernoulli indicator variable equalling one if individual i has a mortality or

morbidity event on day t and zero otherwise, while xit is the ambient pollution concentration

individual i is exposed to on day t. Finally zit = (zit1, …, zitq) are a vector of q individual

level covariates, that would include confounding factors such as age, sex, previous illness,

etc. If these data were available they could be modelled by

(3)

The log-linear model is appropriate for a rare outcome and could be replaced by a logistic

model for a non-rare outcome. The vector of lagged individual exposures is given by x ̃it =

(xit, xit−1, …, xit−l), while  are the associated individual level effects. Note

that βI is different from the corresponding ecological parameters βE, which represent the

ecological association with health rather than individual level effect.

However, the data to fit model (3) are very unlikely to be available, and instead routinely

collected daily totals of health events  and summary measures of pollution

concentrations on each day xt are used. Similarly, individual covariate risk factors such as

age, sex, etc are unlikely to be available, however their influence might be expected to be

limited as the distribution of these characteristics over the population are unlikely to change

from day to day. Instead ecological covariates as described in Section 2, that apply to the
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overall population rather than to individuals, are used. Therefore the desired ecological

analysis is obtained by aggregating (3) to a level at which data is available, giving a model

for yt|x̃t, zt.

In general, the distribution of yt|x̃t, zt has no closed form expression, because the individual

level risk pit is non-constant over all N individuals, but in the case of a rare events, as is

likely in the majority of the type of studies considered in this setting, each of the Bernoulli

random variables may be approximated by a Poisson random variable, with a log-linear risk

model as given in (3). In practice, the Poisson assumption of equality of mean and variance

is often relaxed using quasi-likelihood as described in Section 2.

3.2. Mean function [yt|x̃t, zt]

The correct mean function for yt|x̃t, zt is obtained by aggregating the individual level model

(3), which leads to

(4)

where X̃t = (Xt, Xt−1, …, Xt−l) is a vector of random variables representing the exposure

distribution for days t to t − l. Here, for simplicity we have assumed that ztj and Xtj are

independent. Wakefield (2008) considers the more general case. This differs from the

‘standard’ specification (2) in the way that the exposure is incorporated, specifically the

mean functions differ in that

Hence the correct approach is to calculate the average risk, rather than evaluating the risk at

the average exposure. This difference, between βE and βI is known as pure specification

bias, and occurs because a non-linear risk model changes its form under aggregation.

Equality between (βE, βI) occurs if (i) the variance of Xt equals zero; (ii) the mean of Xt is

independent of the higher moments, or (iii) the exponential risk function above is replaced

by a linear alternative, none of which are likely in the type of studies under consideration

here.

Two general approaches have been proposed to estimate . The

‘aggregate’ approach was proposed by (Prentice and Sheppard, 1995) and requires that the

available summary measure x̃t is a sample of m exposures x̃kt = (xkt, xkt−1, …, xkt−l) for k =

1, …, m. The mean function is given by

(5)
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which replaces  with its sample analogue. The same mean function

was used by Wakefield and Shaddick (2006) in assessing the possibility of ecological bias in

geographical studies of air pollution. They refer to this implementation as a ‘convolution’

model, and that is the term we use here.

Richardson et al. (1987) and Wakefield and Salway (2001) model ecological bias

parametrically by incorporating higher order moments (for example the variance) of the

exposure distribution. This approach assumes the exposure distribution follows a parametric

form. In this case,  is the moment generating function of the

multivariate exposure distribution of X̃t|x̃t. For example if X̃t|x̃t ~ N(x̄t, Σt), where the

summary measure x̃t comprises the mean and variance of the distribution, then the mean

function from (4) becomes

(6)

If the daily exposures do not follow a normal distribution equation (6) will be a second order

approximation to the true model, which is likely to be adequate provided the distribution of

Xt is not heavily skewed. Ott (1990) has shown that a log-normal distribution is appropriate

for modelling exposures to pollution, because in addition to the desirable properties of right-

skew and non-negativity, there is justification in terms of the physical explanation of

atmospheric chemistry. However, under the log-normal assumption ecological bias cannot

be modelled in this way because the moment-generating function does not exist. Salway and

Wakefield (2008) suggest that if βI is small (which is likely the case in studies of this type) a

Taylor series expansion may be used.

3.3. Pollution exposure estimation

In previous sections, it has been assumed that the summary measure of pollution

concentrations x̃t is known, with the aggregate approach requiring m unbiased sample

exposures, while the parametric normal alternative is based on the mean and variance of the

exposure distribution (x̄t, Σt). For example, the mean exposure on day t is given by

(7)

where xt(s) is the ambient pollution concentration at location s on day t and N (s) is the

population density such that ∫  N(s)ds = 1.

However the required information to perform the integral will be unknown, and two general

approaches have been adopted in the literature to estimating the required exposures. The

simplest approach is to estimate the summary measure x̃t directly from the ambient

monitoring data, which is the approach used by the majority of studies. The most common

approach being to estimate the mean exposure by the sample analogue (1).
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The second approach is to represent the ambient pollution surface with a spatial or

spatiotemporal model, and then to estmate the quantities of interest such as (7) using

prediction methods. For example, Carlin et al. (1999) estimate average zip code ozone

concentrations based on a Kriging procedure, while Gelfand et al. (2001) and Zhu et al.

(2003) adopt a Bayesian approach for the same data set, sampling from a posterior

predictive distribution. However in both cases the mean exposure (7) is estimated with the

simplifying assumption that the population distribution is spatially constant, that is N(s) = 1/|

|, and the ecological mean function (2) is adopted.

4. Simulation study

In this section we present a series of simulation studies in which we investigate the possible

impacts of ecological bias in short-term air pollution and health studies. We compare results

from the individual model with those from with ecological alternatives, including the

‘standard’ model (2) and the convolution model (5) which attempts to correct for the effects

of ecological bias. Where possible, the parameters used in generating the simulated data are

informed by the data used in the case study (Section 5).

4.1. Study region

The study region, , is a unit square 9 × 9 lattice comprising 81 spatial cells Ci, (i = 1, …,

81, each of which contains Ni individuals. Data are generated for this study region over t =

1, …, 730 consecutive days, and the spatial population distribution N1, … N81 are assumed

to be constant over time and for simplicity we assume the population distribution is spatially

uniform, that is Ni is constant for all spatial cells i. Each cell in the study region has a single

pollution concentration on a given day, and in the first instance we assume there are 81

monitors, one located in each of the cells and that the entire population within a cell is

located at the centre. Later, we consider the case where exposures are only available at a

subset of the cells and exposures need to be estimated at the other locations.

4.2. Data generation

Logged values of the daily exposures, xt, are generated from the following model;

(8)

where i = 1, …, 81 and t = 1, …, 730, giving two years of daily exposures at each of the 81

locations.

This comprises of three main components: (i) an intercept term reffecting the overall level of

pollution; (ii) a temporal term and (iii) spatial term, mi

The value used for the overall mean, β0x = 3.4, is based on the (logged) pollution data. For

the temporal component, wt, the daily average of the measurements from the monitoring

sites in Greater London (2002–2003) are used. For the spatial part of the model, mi were

generated from a Gaussian Random Field (GRF) with an exponential covariance structure,

where the elements of the covariance matrix, Σ, are equal to , σ2 is the overall
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spatial variance, φ gives the strength of the distance–correlation relationship and dij is the

distance between locations si and sj. Different combinations of the two parameters are

considered, using values of φ = 0.1, 1, 10 and , 0.019, 0.1 and 0.2, with the second

of these reffecting the magnitude of the spatial variation observed in the Greater London

data.

After generating exposures on the log scale, the exponentials, zit = exp(xit), of these values

are used to generate daily health counts at each of the locations;

(9)

where β0y is the overall mean of the health counts, taking the value log(21/81) (again based

on the real data) and f(t, df) is a function reffecting the underlying temporal pattern in the

health data which here is modelled using basis functions resulting in natural splines based on

patterns in the real pollution data. Similarly, the effect of temperature, g(tempt, df), is based

on that seen in the real data. The choice of degrees of freedom for the splines was made

according to that which minimised the Bayesian Information Criteria (BIC) (see Section 5.2

for further details) which resulted in a choice of 8 df for time and 3 df for temperature.

Two different values for the relative risk, exp(β1), were used; 1.02 and 2. The first of these

reffects the magnitude of the risks commonly observed in studies of this type for a change of

10 units of pollution and the latter, whilst less realistic, is chosen in order to make possible

biases easier to identify.

4.3. Analysis

Each of the simulated datasets were analysed using three models: (i) individual; (ii)

ecological and (iii) convolution for both known and unknown exposures. In the case of the

latter, exposures at each area i are predicted using spatial models based on exposures

measured at a subset of the locations.

To summarise, the following mean functions were used for the three models under

consideration;

i. I (individual) model:

where xit is the true exposures for area i at time t and  represents the

natural splines for underlying temporal patterns and the effect if temperature.

ii. E (ecological) model:
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where x̄ is the daily average (calculated over all locations) of the true exposures

from each of the sub-areas .

iii. C (convolution) model:

where xit is the true exposures for area i at time t (as in the individual model)

For the individual and ecological models, inference can be carried out via quasi-

likelihood. The convolution model is not a GLM since we do not have a linear

predictor, but estimation of the parameters may be carried out using non-linear

optimisation, such as the Nelder and Mead method.

For unknown exposures—Three different sets of locations were used, comprising 9, 25

and 81 sites (out of the 81 locations). In each case the set of associated measurements at

those locations was used to estimate the exposures at each of the locations by fitting an

exponential covariance model, with the parameters being estimated from the data.

Predictions at each of the 81 locations were then obtained using kriging. The resulting

predictions, x̄it, are then used in the above three models in place of the known exposures, xit.

4.4. Results

We first consider the case of known exposures for which the results of fitting different levels

of spatial variation and distance–correlation relationships with different relative risks can be

seen in Figure 1 for the case of φ = 1 and σ2 = 0.2 with a true RR of 2. The median relative

risk from the 50 simulations is indicated by the horizontal red lines with the dots showing

the estimates from the individual simulations together with associated 95% confidence

intervals (vertical lines). It can be seen that for the lower levels of spatial variability, all

three models accurately estimate the true relative risk, but when spatial variability is

increased substantial bias can be seen using the ecological model in comparison to the

individual model. The convolution model appears to be able to accurately estimate the risk

despite also being based on a single health outcome for each day. Similar patterns are seen

with different values of the distance–correlation parameter, φ, with for example the RR from

the ecological model being 2.340 and 2.761 for φ = 0.1 and 10 respectively at the highest

level of spatial variation (0.2). When the true RR=1.02, negligible biases are observed with

the corresponding results (at σ2 = 0.2) being 1.020 (φ = 0.1), 1.021 (φ = 1) and 1.021 (φ =

10).

When exposures are not available at each of the sub–areas, as will be the case in analyses

using real data, exposures may be estimated at the missing locations. Figure 2 shows the
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corresponding results to those seen in Figure 1 but where exposures were only available at a

random sample of 9 of the locations with predictions for the remaining 72 areas being

obtained using a spatial model as described in Section 4.3. The patterns in the medians of

the RRs from the individual simulations are similar to those using known exposures, but

there is a marked increase in the variability of the estimates around the medians and a

reduction in the precision of the individual estimates, resulting in wider confidence intervals,

suggesting that within a number of the simulations the spatial model is not able to accurately

predict the exposures at the unmeasured locations. Using a larger sample of 25 sites (with

predictions at the remaining 56 locations) resulted in the same patterns, although with less

variability.

5. Case study

5.1. Data description

We now apply the models previously described to a study of the short–term effects of

particulate matter on respiratory mortality within Greater London between 1st January 2002

and 31st December 2005. The health data comprise daily counts of respiratory mortality in

seniors (over 65 years old) which are only available in aggregate form for the entire region.

The particulate pollution data in this study are PM10 (particles smaller in size than 10μgm−3)

concentrations measured at 158 sites in the Greater London area, which include both the

London Air Quality Network (LAQN) and the National Network (AURN). However these

sites contain a proportion of missing observations, so we only consider the 43 of these that

have over 75% of the data present over the study period. The locations of the sites and their

classification according to site type can be seen in Figure 3.

The number of daily respiratory deaths, mean daily temperature and mean, calculated via

(1), PM10 exposures are shown in Figure 4, and summarised in Table 2. The mortality

counts show little overall trend but a pronounced yearly cycle, exhibiting more deaths in the

winter than the summer, as would be expected. Daily mean temperature measurements at 49

sites across London are also available, of which 28 have more than 75% of daily data being

available and are used in order to calculate a daily average temperature.

Of the 43 monitoring sites that are considered here 16 are roadside sites (roadside or

kerbside) which are likely to have higher concentrations as they are closer to the major

pollution source (traffic). This can be seen from Table 2 which shows that the average

concentrations are 24.3 for roadside sites compared with 18.7 for background sites. They are

also less likely to be an accurate reffection of the exposures experienced by members of the

study population. Therefore, we use data from the 27 of these sites which are classified as

background sites (urban background or suburban).

5.2. Results

5.2.1. Ecological model—The basic model commonly used to analyse data of this sort is

the ecological model with a single health count and exposure measure for each day, together

with daily covariate information such as temperature. The basic premise of such models is to

allow for long–term patterns in mortality and covariate effects before assigning any
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remaining (temporal) variation in mortality to short–term changes in pollution. The

underlying trend and seasonal pattern in the mortality data were modelled by a natural cubic

spline of time (i.e., day of the study), where the choice of smoothing parameter was

informed by the BIC and plots of the autocorrelation and partial autocorrelation functions of

the residuals. The smoother this pattern, the more of the variation is left to be explained by

pollution whereas if the underlying temporal pattern is allowed to follow the data too

closely, i.e. overfitting, then any effect of pollution is likely to be masked. This resulted in a

choice of 32 df in total (8 per year). Temperature has been shown to be an important

confounder in these studies (see, Dominici et al. (2002); Carder et al. (2008)), and the shape

of its relationship with respiratory mortality, as well as whether it should be lagged, was

investigated. Based on the BIC a lag of zero days was chosen, with the relationship being

represented by a natural cubic spline with three degrees of freedom. This final set of

covariates produced residuals with little temporal correlation or structure, suggesting the

model is an adequate fit to the data.

There is likely to be a lag in the effect of pollution, i.e. an increase in pollution may be

associated with an increase in mortality after a few days or it may be that it is the combined

effect of high pollution over a short period that results in increased mortality. Table 1 shows

the results of fitting a series of ecological models with 0, 1, 2 and 3 day lags and with the

average of lags 1–3. Significant increases in risk are observed for lags of 0, 1 and 3 days

with the largest risk being associated with the average of the previous 1–3 days.

5.2.2. Convolution model—It is not possible to fit the individual model for this real data

example as health and exposure data are not available at a suitable level of disaggregation.

However, it may be possible to use the convolution model if exposures can be estimated for

sub-areas within which risks can be calculated and then aggregated to the level of the overall

study region. As in the simulation examples, we assume that London is made up of 9 × 9

grid and we use the available monitoring information to obtain predictions at the centre of

each of the cells assuming an underlying GRF with an exponential correlation–distance

model. The parameters of the model were estimated to be σ̂2 = 0.03 and φ̂= 0.09, the latter

corresponding to a drop in correlation over 10km to approximately 0.4.

Using the average of the pollution levels over lags 1–3 resulted in a significant RR of 1.025

(95% CI 1.000 – 1.050). The RR is slightly smaller with a wider CI than using the

ecological model which, although using exposure information at a lower resolution, is based

on oserved data. The RR in this case may also be affected by possible misspecification of

the spatial model or the number of sub-areas which are used in the aggregation of the risks.

Table 3 shows the results from running the same analysis with different numbers of cells at

which predictions are made and also the effects of misspecifying the spatial model. Results

are given for models using 3 × 3, 5 × 5, 9 × 9 and 20 × 20 cells and for different values of

the correlation–distance parameter; φ = 0.09, 1, 10). The results appear robust to the choice

of the distance–correlation parameter which is a reffection on the fact that the pollution

surface (from background sites) in London is relatively spatially homogeneous. Wider

confidence intervals are observed with the smaller number of cells as there are smaller

numbers on which to base the estimation. When using 400 cells, the risk is very close to that

observed when using 81 when φ = 0.09 (based on the data), but for larger values of φ, which
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result in a more rapid decrease in correlation over distance and thus allow greater contrast in

the exposures an increase in risk can be seen.

6. Discussion

In this paper we have considered the potential for bias in epidemiological analyses that may

arise as a result of using aggregate level health data to assess the relationship with exposures

which arise from point locations. In the case of studies of the short–term effects of air

pollution this may arise by taking a simple daily average of measurements made at a number

of monitoring sites throughout an urban area. If there is substantial variability in the

underlying spatial process of pollution then taking a simple summary measure may induce

bias in the resulting estimated effects on health. Using simulation studies, we have shown

that where substantial spatial variation is present, the naïve ecological model is subject to

pure specification bias, but that if accurate measures of exposure can be obtained at a higher

geographical resolution then a convolution model may be used which is not subject to such

bias.

Wakefield and Shaddick (2006) illustrated the potential for ecological bias in area based

studies where the relative risk is based on the difference in health between areas of high and

low pollution. However, in comparison with such geographical analyses in short–term

studies it is temporal changes in exposure that drive the relative risk and the effects of

temporal variation are likely to outweigh any spatial variation. The cases of serious bias

observed in the simulation studies here arose when using a very high relative risk (=2) with

levels of spatial variation which may be far higher than might be expected in real data,

whereas negligible bias was seen using a more realistic relative risk of 1.02. It may therefore

require possibly unrealistic levels of spatial variability to produce serious levels of bias in

practice.

In addition to the issues of spatial variability, there are a number of other factors that may

lead to bias in estimates of the effects on health. There might be issues associated with the

underlying monitoring network in that both the number and locations of the pollution

monitors that will affect the accuracy of any estimates. If monitoring sites are located in

areas that are expected to have high (or low) concentrations, as may be the case to assess

whether guidelines and policies are being adhered to, then there may be preferential

sampling and in such cases, the entire spatial surface may be over- (or under-) estimated.

This will arise when the process that determines the locations of the monitoring sites and the

process being modelled (concentrations) are in some ways dependent (Diggle et al., 2010).

In the case study of the effects of particulate matter on respiratory mortality in London,

significant increases in risks were observed for a number of lags using the common

ecological model with a relative risk of 1.030 (95% CI 1.010 – 1.050) being associated with

the average of the previous three days. This used a daily mean of pollution ignoring any

spatial variability in exposures. It is possible to obtain exposures at a higher resolution by

using a spatial prediction model allowing the convolution model to be used. The convolution

model produced very similar risks estimates to the ecological model using a variety of levels

of aggregation and prediction models. The lack of sensitivity in this case arises largely from
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the fact that the London pollution field is relatively homogeneous and so any aggregation is

unlikely to be that different from taking a daily mean. However, this may not be the case in

other urban areas which may have different topology, for example areas of differing

elevation or large areas of water. In such cases it will be necessary to have a dense network

of monitoring sites that gives sufficient coverage of the area in order to specify a suitable

spatial model. If this is not the case then estimated exposures should be used with caution.

In the examples presented here, when predictions of exposure from spatial models were used

in the health model, there was no account of the inherent uncertainty in the predictions

which may result in confidence intervals for the risk estimates being narrow. The focus of

future research will be to combine the exposure and health modelling within a Bayesian

hierarchical framework in which the such uncertainties can be correctly acknowledged

within a coherent framework.
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Figure 1.
Results from fitting three models; I: Individual, E: Ecological and C: Convolution to fifty

sets of simulated data for two years of daily data using varying degrees of spatial variation.

In this case, the exposures used in each model are assumed to be known. Dots show the

estimated relative risk from each of the simulations with vertical lines indicating the width

of the corresponding 95% confidence intervals. Horizontal red lines indicate the median

relative risk from each of the fifty simulation with the horizontal black line showing the

‘true’ relative risk of two.
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Figure 2.
Results from fitting three models; I: Individual, E: Ecological and C: Convolution to fifty

sets of simulated data for two years of daily data using varying degrees of spatial variation.

In this case, the exposures are predictions from a spatial model. Dots show the estimated

relative risk from each of the simulations with vertical lines indicating the width of the

corresponding 95% confidence intervals. Horizontal red lines indicate the median relative

risk from each of the fifty simulation with the horizontal black line showing the ‘true’

relative risk of two.
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Figure 3.
Locations of the pollution monitors within Greater London for the period 2002–2005. Black

circles show the location of roadside sites and blue that of background sites. The larger red

circles indicate the selection of background sites (with greater than 75% daily

measurements) that were used in the analysis (see text for details).
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Figure 4.
Summary of data from Greater London for 2002–2005. Panel (a) depicts respiratory

mortality counts, (b) shows daily average PM10 concentrations, while (c) displays average

temperature levels.
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Table 1

Relative risks (RR) per 10 μgm−3 with associated 95% confidence intervals (CI) from fitting models with

different lags of exposure and the average of the previous three days. Data from Greater London, 2002–2005

Lag Exposure RR 95% CI

0 Xt 1.017 1.001 – 1.034

1 Xt−1 1.021 1.005 – 1.038

2 Xt−2 1.020 1.004 – 1.036

3 Xt−3 1.013 0.997 – 1.029

avg. 1–3 1.030 1.010 – 1.050
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