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Abstract This study aimed to investigate a computer-aided
system for detecting breast masses using dynamic contrast-
enhanced magnetic resonance imaging for clinical use. Detec-
tion performance of the system was analyzed on 61 biopsy-
confirmed lesions (21 benign and 40 malignant lesions) in 34
women. The breast region was determined using the demons
deformable algorithm. After the suspicious tissues were iden-
tified by kinetic feature (area under the curve) and the fuzzy c-
means clustering method, all breast masses were detected
based on the rotation-invariant and multi-scale blob charac-
teristics. Subsequently, the masses were further distinguished
from other detected non-tumor regions (false positives). Free-
response operating characteristics (FROC) curve and

detection rate were used to evaluate the detection perfor-
mance. Using the combined features, including blob, enhance-
ment, morphologic, and texture features with 10-fold cross
validation, the mass detection rate was 100 % (61/61) with
15.15 false positives per case and 91.80 % (56/61) with 4.56
false positives per case. In conclusion, the proposed computer-
aided detection system can help radiologists reduce inter-
observer variability and the cost associated with detection of
suspicious lesions from a large number of images. Our results
illustrated that breast masses can be efficiently detected and
that enhancement and morphologic characteristics were useful
for reducing non-tumor regions.
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Introduction

Breast cancer is one of the most common cancers in women
[1], and treatment of breast cancer in an earlier stage will
reduce the mortality rate [2]. If a tumor is detected in its earlier
stages, the chance of successful treatment is higher with
proper diagnosis and treatment [2]. Some algorithm on mam-
mography [3] and breast ultrasound (US) [4] have been used
for breast cancer detection and diagnosis. However, some
limitations might occur using these computer-aided algo-
rithms in different imaging techniques. In mammography,
dense fibroglandular tissues can obscure some breast cancers
[5], resulting in missed lesions. Mogatadakala et al. [6] pro-
posed a method using order statistic features from
multiresolution decompositions of energy-normalized subre-
gions to discriminate surrounding normal and tumor regions
in two-dimensional (2-D) US images. However, these algo-
rithms are difficult to be applied to a large three-dimensional
(3-D) volume data because the algorithm and feature are
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designed for 2-D images. Improper US machine settings and
scanner operation error may increase the risk of missed
lesions.

Compared with US and mammography image, time-
intensity curve obtained from dynamic contrast-enhanced
(DCE) magnetic resonance imaging (MRI) can increase the
diagnostic accuracy if morphological appearance is indeter-
minate [7, 8]. Breast magnetic resonance imaging has a mod-
erate specificity but high sensitivity [9, 10]. The detection of
early breast cancer in high-risk populations in the preoperative
cancer assessment becomes increasingly important [11]. In
MRI study, some breast lesion can be identified from maxi-
mum intensity projection (MIP) images if manual rotation in
different projections is performed [7] while some suspicious
lesions are more likely missed in 2-D MIP examination.
Because breast lesion is inherent 3-D, 2-D characterization
using MIP might be unable to extract the accurate 3-D
lesion information due to overlapping between the en-
hancing fibroglandular tissue and lesion. In viewing of
the only 2-D MIP images, the depth of the lesion
perpendicular to plane might be lost. Due to the large
number of thin-section 3-D DCE-MRI images obtained
from the current state-of-the-art MR scanners, manual
tumor identification by radiologists is inefficient and
subjective to inter-observer variability. To assist in char-
acterizing inherent 3-D lesion and reducing the inter-
observer variability, a computer-aided detection (CADe)
system for 3-D breast DCE-MRI image data to detect
tumor is proposed for clinical practice. In this study, a
3-D multi-scale tumor detection system is developed for
detecting not only suspicious-enhanced tissues by time-
intensity curve but also whole 3-D mass-like lesions
using morphological and textural characteristics.

Materials

Patients Enrollment

This study is approved by the Institutional Review Board, and
informed consent is waived for our retrospective study. In our
experiment, the dynamic contrast-enhanced magnetic reso-
nance images were obtained by radiologists from August
2006 to August 2009 and consisted of 61 biopsy-
proved lesions (21 benign and 40 malignant lesions,
size range from 5 to 60 mm, mean 19.3±12.8 mm) in
34 women (age range from 36 to 77 years, mean 51.0±
10.4 years) to evaluate the performance of the proposed
detection system for breast MRI. The benign lesions
included 15 fibrocystic changes, 4 papillomas, and 2
fibroadenomas. The malignant lesions included 35 inva-
sive ductal carcinomas (IDC), 3 ductal carcinoma in situ
(DCIS), and 2 invasive lobular carcinomas.

MRI Study

DCE-MRI is a medical imaging technique that traces changes
in contrast enhancement of internal tissues, such as breast or
brain tissue. In our experiment, DCE-MRI images were ac-
quired using a 1.5T superconductive MR scanner (Signa Ex-
cite HD, GE Healthcare, Wauwatosa, WI, USA) with a ded-
icated eight-channel breast coil from patients in the prone
position. The dynamic study was performed with the follow-
ing parameters: pulse sequence VIBRANT (Volume Imaging
for BReast AssessmeNT), fat-suppressed 3-D fast spoiled
gradient echo (FSGR), repetition time/echo time/inversion
time (TR/TE/TI)=3.5/1.7/14 ms, flip angle 12°, matrix
256×160, image size 256×256 pixels, slice thickness
2.5 mm without gap, acquisition 0.75, and field of view 24×
24 to 30×30 cm. There were 56 slices obtained for each
acquisition of dynamic study with 14 cm coverage in cranio-
caudal distance There were 35 total acquisitions, each lasting
15 s. Intravenous injection of a contrast agent (0.5 mmol/ml,
gadodiamide; Omniscan, GEHealthcare AS, Oslo, Norway or
gadopentetate dimeglumine; Magnevist, Bayer Healthcare
Pharmaceuticals, Montville, NJ, USA) was performed with
antecubital venous access through a plastic cannula (20G),
with a bolus injection (4 ml/s) at the beginning of fifth
acquisition.

Method

The proposed detection algorithm includes four stages. First,
the breast region was segmented by template-based segmen-
tation [12]. Based on the area under the curve (AUC) [13], the
fuzzy c-means (FCM) clustering method [14] was used to
identify suspicious tissue regions. Mass candidates with dif-
ferent sizes were then detected from these suspicious regions
using multi-scale detection. The high frequency of false pos-
itives (FPs) could lead to unnecessary biopsies. The FPs are
further reduced from candidates by blob, enhancement, tex-
ture, morphologic, and combined features.

Breast Region Segmentation

Breast MRI images include not only the breast region
but also additional chest regions, such as the lung and
the heart. Therefore, the other chest or thorax should
be excluded to determine the breast region of interest
for tumor detection. However, the shape of the breast
and thorax regions is difficult to automatically define
due to variation in breast shape and density patterns
[12]. Thus, manual inspection of each data is needed
to avoid degrading segmentation accuracy from such
variation. In the template-based segmentation algorithm
[12], the outline between the breast and thorax is
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manually delineated on one 2-D slice, producing a
template to initialize the segmentation outline of other
slices. In this study, the manual outline was delineated
in the middle transverse slice of the AUC image
(Fig. 1). The AUC image was generated from the
accumulation of contrast enhancement on time-
intensity curve. The intensity of each pixel in AUC
image was composed of the area under the curve and
similar with the area-under-curve (AUC) color maps in
previous study [13]. This outline could exclude most
of thorax, chest body region, except for the axillary
region. To exclude the axillary region, the thoracic
spine and the two breast margins of the bilateral
pectoralis muscles were manually identified to define
the bilateral margins on the template by a radiologist
who had more than 10 years of experience of
interpreting breast MR (Yeun-Chung Chang) (Fig. 1).
The v-shape cut [12] formed by these three landmarks
can exclude the axillary region (Fig. 1). The breast
region was determined as the region below the outline
inside the v-shape cut (Fig. 1). To determine the breast
region in adjacent slices, the outline and landmarks of
adjacent slices were used. To evaluate the deformation
of chest regions between two adjacent slices, the thorax
was defined with a manual bounding box (Fig. 1)
to register the chest region inside the same bounding
box in the adjacent slice using the demons deformable
algorithm [12, 15]. When registering to neighboring
slices based on the computed deformation from two
adjacent chest regions, the outline and the landmarks
were simultaneously deformed and used to extract the
breast region of the neighboring slice. Based on the
high similarity between the two adjacent slices, the
procedure above could be propagated to each two
adjacent slices from middle transverse slice to the

cranial margin and caudal margin. Figure 2a shows
the sequential segmentation results.

Finally, the breast region from each slice was segmented
using the boundary curve and the v-shape cut (Fig. 1). The
suspicious tissues were detected from the segmented breast
regions for further mass detection.

Suspicious Tissue Detection

Because diseased tissues usually show more intense
enhancement compared to normal tissues [16], the
pixels with more enhancement are initially considered
as potentially suspected lesions. In this study, the AUC
feature computed by the accumulation of contrast en-
hancement on time-intensity curve [13, 17] was to com-
pute the enhancement degree. The voxels with larger
AUCs in the first half of the AUC cumulative histogram
[17] computed from the segmented breast region are
considered as enhanced tissues. Furthermore, the en-
hanced tissues were divided into four clusters [14] using
FCM clustering method [15, 24], and the average AUC
of each cluster was computed. The voxels inside the
two clusters with higher average AUC were identified
as suspicious (Fig. 2b, c).

However, the suspicious tissues include some en-
hanced normal tissues (e.g., fibroglandular tissue, skin,
and vessels). Besides, if the tumor is connected with
other non-tumor tissues, the real tumor can be obscured
within an over-segmented region, as shown in Fig. 3.
The over-segmented regions, including tumor tissues
and normal tissues, are difficult to diagnose due to
their poor shape and synthetic composition. Hence,
the tumor-like tissues were further extracted from sus-
picious tissues using the Hessian method based on the
morphologic characteristics.

Breast Mass Detection

The Hessian method, which has been applied to detect
several kinds of geometrical structures [18–20], was
used in our study to detect breast masses [21]. The
Hessian method calculate the blob-like degree of each
suspicious voxel based on the second derivatives along
the three-dimensional directions by convoluting the
AUC image. The analysis of eigenvalues [18] from the
Hessian matrix were defined by

H ¼
Ixx Ixy Ixz
Iyx Iyy Iyz
I zx I zy I zz

2
4

3
5 ð1Þ

where the elements inside the Hessian matrixH are the partial
second derivatives of the image [18], computed by

Fig. 1 The solid arrow illustrates the manual outline on the AUC image.
Three landmarks were connected to depict the v-shape cut formed by the
two oblique lines
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convoluting the AUC image I(x,y,z) with second-order deriv-
atives of 3-D Gaussian kernels G(x,y,z,σ) [19]. The kernels
scale σ at each voxel is defined as the radius of the
largest blob-like structure centered at this pixel. The
eigenvalues of H are defined as λ1, λ2 and λ3 (|λ1|<|λ2|<|λ3|)
and the blob-like degree of each suspicious voxel is computed
by Oσ(λ) defined as

Oσ λð Þ ¼ 1−e
−R2

A
2α2

� �
e
−R2

B
2β2 1−e

−S2
2c2

� �
ð2Þ

RA ¼ λ2j j
λ3j j ð3Þ

RB ¼ λ1j jffiffiffiffiffiffiffiffiffiffiffiffi
λ2λ3j jp ð4Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
1 þ λ2

2 þ λ2
3

q
ð5Þ

where α, β, and c are user-defined and fixed to 0.5,
0.5, and 20, respectively [18]. If a region is more blob-

like or mass-like, the blob-like degrees Oσ(λ) will be
higher. By means of blob-like degrees, we can distin-
guish mass from tubular and plate-like region. The
maximum matching response [18], Oσ(λ), of each sus-
picious voxel evaluated the multi-scale blob-like degree
at a range of spatial scales σ of the Gaussian kernel to
detect the mass with different sizes, defined by

O λð Þ ¼ maxσ∈ σmin;σmax½ �Oσ λð Þ ð6Þ

where the kernels scale σmin and σmax are used to
control the minimum and the maximum radius of the
blob-like structures. Because skin and vessels are not in
blob shapes, these enhanced tissues should be of lower
blob-like degrees and excluded. The degree was firstly
normalized to a range between 0 and 1, and the voxels
with the degree lower than 0.2 were eliminated.

After detecting the mass voxels from the suspicious
tissues, the voxels were grouped into regions using the
3-D connected component algorithm [22, 23] (Fig. 4).
Then, the mass-like likelihood of each connected region
was evaluated to differentiate the mass from other non-
tumor regions.

Fig. 2 The breast segmentation
of three continue slices of 3.5 cm
IDC and 0.5 cm fibrocystic
changes, indicated using white
arrows on the AUC image. a
AUC image. b The four FCM
clusters results are represented by
different colors. Non-breast
regions and tissues without
significant enhancement are
colored black. c The connected
regions from the two clusters with
higher average AUC. The
different connected regions are
colored by different colors
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Mass Selection from Candidates

Some false positives were detected as candidates. If all candi-
dates were considered real mass and estimate the tumor-like

likelihoods, the processing might be time-consuming and the
performance of the CADe system was poor. Before evaluating
the likelihoods of these candidates, most false positives should
be filtered out to avoid unnecessary evaluation. Because the size

Fig. 3 The 1.4 cm IDC and
0.7 cm fibrocystic changes,
indicated bywhite arrows. aAUC
image. b The four FCM clusters
results are represented by different
colors. c The connected regions
from the two clusters with higher
average AUC. The different
connected regions are colored by
different colors

Fig. 4 Breast mass candidates
from a Fig. 2 and b Fig. 3. The
different connected regions are
displayed by different colors. The
tumor is indicated using white
arrow
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of most detected FPs was small, the candidates with smaller
volumes [24] were considered the scattered FPs and reduced.
Hence, only the 50 largest detected regions per case were
considered as mass candidates for further tumor selection.

A probability value, called likelihood, was evaluated for
predicting the mass-like likelihood. For evaluating the mass-
like likelihood of each candidate, each mass candidate was
evaluated for blob, enhancement, texture [25], morphologic
[26], and combined features, including previous four feature
sets. If the likelihood of a candidate was higher than the thresh-
old value, THreg, this candidate was considered to be a mass.

Mass Selection by Blob and Enhancement Features

To select the masses from the candidates, the blob-like degree
of all voxels inside the candidate was averaged as the blob-like
degree of candidate. On the other hand, the enhancement
degree of each candidate was computed by averaging the
AUC characteristics of all the voxels inside the candidate.
To select the relatively higher blob-like and enhancement
degrees for each case, the rank features were used to sort the
2°, respectively, in descending order. That is, if a candidate is
assigned with a smaller rank value, it is comparatively more
blob-like or enhanced than the other candidates. Therefore,
beside the 2° (Bd and Ed), two rank values (Br and Er) of the
blob-like and enhancement degrees were applied (Table 1).

Mass Selection by Morphologic Features

Morphological features have been widely used to characterize
breast tumors [26, 27]. In our study, seven morphologic fea-
tures were used to measure the mass-like likelihood of candi-
dates, including two compactness features (C1 and C2), radius
(R), spiculation (Rs) [26], surface ratio (ERsurface), axis ratio
(ERaxis) [26], and volume (V) features computed by the num-
ber of tumor voxels and image resolution (Table 1).

Mass Selection by Texture Features

The texture features computed from the gray level co-
occurrence matrix (GLCM) of the first post-contrast acquisi-
tion measured not only the intensity distribution but also how
correlated spatially a voxel is to its neighbors. GLCM features
have been applied for medical image processing, including
breast diagnosis [26] and classification [28]. In our study,
eight GLCM characteristics [25] were applied to measure
the mass-like likelihood of candidates for discrimination be-
tween tumors and normal candidates. These GLCM features
included energy (G1), entropy (G2), correlation (G3), inverse
difference moment (G4), inertia (G5), cluster shade (G6), clus-
ter prominence (G7), and Haralik’s correlation (G8) (Table 1).

Statistical Analysis

To compare the ability to distinguish between mass and FP,
statistical analysis was used to analyze features. Each feature
was analyzed for normal distribution by the Kolmogorov-
Smirnov test [29]. If the p value of Kolmogorov-Smirnov test
was greater than or equal to 0.05, it indicated that the feature
was normally distributed and the mean and standard deviation
of the feature could be further analyzed. For these features, the
differences between the masses and FPs were tested by Stu-
dent’s t test [29]. Otherwise, the median of the feature was
given, and the differences between masses and FPs were
tested by the Mann-Whitney U test [29]. If the p value of
Student’s t test orMann-WhitneyU test was less than 0.05, the
features of the masses were considered significantly different
from the FP features.

The combined features were selected using the backward
elimination algorithm [29]. Two performance indices, detec-
tion rate, and FPs per case were used to evaluate the mass
detection performance. The detection rate is defined as the
number of the selected candidates divided by the number of all
truemasses confirmed by a radiologist. A higher detection rate
means fewer missed masses. FPs per case indicates the num-
ber of detected non-tumor regions for each case. A smaller
number of FPs indicate that fewer wrongly detected regions
needed to be further identified by a radiologist. Using the
proposed mass selection features, the mass-like likelihood of
each selected region was evaluated by logistic regression [29].

Table 1 Definition of the features (blob, enhancement, morphological,
and texture) for mass selection

Features Description

Category Symbol

Blob features Br Blob-like degree

Bd Blob-like rank

Enhancement features Er Enhancement degree

Ed Enhancement rank

Morphological features C1 Conventional compactness

C2 New compactness

R Radius

Rs Spiculation

ERaxis Axis ratio

ERsurface Surface ratio

V Volume

Texture features G1 Energy

G2 Entropy

G3 Correlation

G4 Inverse difference moment

G5 Inertia

G6 Cluster shade

G7 Cluster prominence

G8 Haralick’s correlation
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The 10-fold method [30] was adopted for cross validation. All
masses were partitioned into 10 groups that were approxi-
mately equal in size. In each step of the validation, all candi-
dates in one group were considered as the testing data and the
candidates in other nine groups were training data used to train
the logistic regression model. The mass-like likelihood of
each candidate in the testing data can be predicted by the
trained regression model. The procedure was repeated until
the likelihoods of all candidates were evaluated. If the evalu-
ated likelihood of the mass region was greater than or equal to
the threshold value, THreg, it was considered to be a mass.
THreg increased at 0.1 increments from 0.0 to 1.0 to generate
the free-response operating characteristics (FROC) [31]
curves.

Experiments and Results

Statistical Analysis for Mass Selection

Not all features were normally distributed according to the
Kolmogorov-Smirnov test; therefore, the median value and p
value from the Mann-WhitneyU test were used to analyze the
mass selection (Table 2). Except for one texture feature,G4, all
blob, enhancement, and morphologic features were significant
different between masses and FPs (p<0.05) (Table 2).

Mass Selection by Different Features

After applying the proposed detection method, all masses
were included among the candidates. Based on logistic regres-
sion, the tumor-like likelihood of each candidate was evaluat-
ed for the proposed selection features. In addition to the blob,
enhancement, morphologic, and texture features, the com-
bined features were selected from the all features with the
backward elimination algorithm to select the masses (Table 3).
Based on these feature sets, the detection performance was
analyzed by the detection rate and the FPs per case.

Mass Selection

The 50 largest regions from each patient detected by the
Hessian method were considered to be mass candidates. The
likelihood of each candidate was evaluated by blob, enhance-
ment, morphologic, texture, and combined features (Table 3).
The relation between the detection rate and FPs per case was
analyzed using different likelihood thresholds (Table 4). The
threshold, THreg, was set at 0.1 and 0.5 to separate masses
from FPs based on the combined features. For all masses, the
detection rate was 100 % (61/61) with 15.15 FPs and 91.80 %
(56/61) with 4.56 FPs based on the combined features and
THreg set at 0.1 and 0.5, respectively. For benign masses, the
detection rate was 100 % (21/21) with 16.27 FPs and 76.19 %

(16/21) with 4.80 FPs. For malignant masses, the detection
rate was 100 % (40/40) with 15.27 FPs per case and 100 %
(40/40) with 4.68 FPs per case. All masses were detected
while THreg set at 0.1. But 5 benign masses were missed using

Table 2 Comparison among different features for selecting masses from
candidates

Feature categories Features Type Median p value

Blob features Br Mass 11 <0.001*
FP 54

Bd Mass 150 <0.001*
FP 136

Enhancement features Er Mass 5 <0.001*
FP 48

Ed Mass 599 <0.001*
FP 425

Morphological features C1 Mass 21.80 <0.001*
FP 29.56

C2 Mass 70.45 <0.001*
FP 54.19

R Mass 4.84 <0.001*
FP 3.12

Rs Mass 1.37 <0.001*
FP 1.21

ERsurface Mass 1.61 <0.001*
FP 1.39

ERaxis Mass 0.61 <0.001*
FP 0.47

V Mass 539.03 <0.001*
FP 107.67

Texture features G1 Mass 0.36 0.036*
FP 0.50

G2 Mass 1.78 <0.001*
FP 1.15

G3 Mass 0.28 <0.001*
FP <0.001

G4 Mass 0.83 0.45
FP 0.83

G5 Mass 0.35 <0.001*
FP 0.27

G6 Mass −0.03 <0.001*
FP <0.001

G7 Mass 0.55 <0.001*
FP 0.07

G8 Mass 7.59×106 <0.001*
FP 6.15×106

*p<0.05 is considered statistically significant

The median value and p value of Mann-Whitney U test are used to
compare each feature between mass and FP

The blob features are the blob-like degree and its rank value (Bd and Br).
The enhancement features are the enhancement features ant it rank value
(Ed and Er,). Morphological features are two compactness (C1 and C2),
radius (R), spiculation (Rs), surface ratio (ERsurface), axis ratio (ERaxis),
and volume feature (V). Texture features are energy (G1), entropy (G2),
correlation (G3), inverse difference moment (G4), inertia (G5), cluster
shade (G6), cluster prominence (G7), and Haralik’s Correlation (G8)
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THreg set at 0.5. These five masses (three fibrocystic changes
and two papillomas) are considered as more easily missed by
our system.

Detection Performance Analysis with FROC Curves

To compare the detection performances of the proposed
CADe system using different feature sets, the FROC curve
was used to analyze the relationship between the detection rate
and the FPs per case (Fig. 5). The combined features were
most useful to select masses, which are with higher detection
rate and lower FPs. FROC curves for all, benign, and malig-
nant masses using the combined features were shown in
Fig. 6. Moreover, the detection performance estimated by
the jackknife alternative of FROC-1 (JAFROC) figure of
merit (FOM) [32, 33] was applied to analyze the FROC curve
of different feature sets statistically (Table 5). The FOM
describe whether the mass-like likelihood of tumor is higher
than that of FPs. A larger FOM score indicates that the feature
set could select mass well. The result reveals that the com-
bined features are most useful to select breast masses and
significantly better than other feature sets (p<0.05).

Detection Performance Analysis According to Different Size
Groups

Because small tumors are easily missed [8, 34], the relation-
ship between the detection rate and the tumor size was further

analyzed. The detection rate for different size groups is listed
in Table 6. Among the five missed masses using THreg 0.5,
four masses were smaller than 1 cm and one mass was
between 1 and 2 cm (Table 6).

Discussion

Early tumor detection and proper treatment is important for
increasing cancer survival rate [35]. Because MRI is the most
sensitive technology for screening high-risk women for breast
cancer [36], it has been widely applied by radiologists [8, 34].
Because the amount of three-dimensional (3-D) imaging data
with current state-of-the-art MRI techniques is tremendous,
the increasing capability of computer assistance was not only
to avoid missing tumors but also to reduce interpretation time.
To the best of our knowledge, however, multi-scale blob-
based detection algorithms have not been applied to detect
breast masses for 3-D DCE-MRI. In this study, we proposed a
robust algorithm of 3-D tumor detection, including breast
segmentation, mass detection, and mass selection to detect
differential cancers from everything else in the breast.

In previous MRI detection studies [8, 34], malignant tu-
mors were manually detected from MRI maximum intensity
projection plane of enhanced MRI image sets. Nevertheless,
the inter-observer inconsistency and variation are inevitable,
and performance depends on the experiences of interpreting
radiologists. To overcome these issues, automatic detection of

Table 3 Each feature set of the
combined features used for mass
selection

Blob features Enhancement features Morphologic features Texture features

Br Er, Ed C1, C2, R, Rs, ERsurface, V G1, G3, G5, G6, G7, G8

Table 4 The detection rate and FPs per case for mass detection based on combined feature selection

All cases Benign cases Malignant cases

Detection rate FPs per case Detection rate FPs per case Detection rate FPs per case

Th=0.0 100.00 % 43.74 100.00 % 46.27 100.00 % 43.30

Th=0.1 100.00 % 15.15 100.00 % 16.27 100.00 % 15.27

Th=0.2 96.72 % 10.41 90.48 % 11.00 100.00 % 10.57

Th=0.3 91.80 % 8.00 76.19 % 8.60 100.00 % 8.07

Th=0.4 91.80 % 6.18 76.19 % 6.80 100.00 % 6.10

Th=0.5 91.80 % 4.56 76.19 % 4.80 100.00 % 4.43

Th=0.6 81.97 % 3.53 52.38 % 3.67 97.50 % 3.43

Th=0.7 78.69 % 2.68 42.86 % 3.00 97.50 % 2.67

Th=0.8 73.77 % 1.88 33.33 % 2.13 95.00 % 1.90

Th=0.9 62.30 % 1.12 19.05 % 1.20 85.00 % 1.20

Th=1.0 0.00 % 0.00 0.00 % 0.00 0.00 % 0.00

If the likelihood of detected candidates estimated by the combined features is larger than the logistic regression threshold value, Th, it is selected as a
mass. If a case included benign and malignant masses, the case is considered as both benign and malignant case. There are 15 benign cases and 30
malignant cases
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benign and malignant breast masses using computer assis-
tance was proposed for 3-D DCE-MRI data in this study.
Renz’s study [37] proposed a detection algorithm to detect
potential tumors using a hierarchical 3-D Gaussian pyramid to
outline regions with high local intensity similarities. However,
only enhanced contrast characteristics were used to evaluate
tissues. Some normal tissues, such as fibroglandular, skin, and
vessels, were also detected to increase the number of FPs. As a
result, two malignant lesions were missed and the detection
performance was 95.74 % with 17 FPs. In our study, not only
enhancement but also blob features characterized the tumor
tissues to improve the detection performance.

The whole breast region must be determined before detect-
ing masses. In previous study [38], the border was identified
manually by radiologists. However, manual segmentation was
usually inconsistent and caused inter-observer variability. A
straight line method [39] to segment breast cannot segment the
breast tissue near the axilla. In contrast with the previous
segmentation methods [38, 39], demons segmentation

technique preserves the most of breast region because the
outline can deform to segment breast [12, 15]. The semiauto-
matic breast segmentation initialized by three manual land-
marks in this study can segment the precise breast region
compared to previous studies. Although the manual land-
marks might result in little inter-observer variability, it can
improve the accuracy of breast segmentation for clinical
practice.

All suspicious tissues from the segmented breast were
identified using the FCM clustering method based on AUC
feature. However, suspicious tissues identified only using the
enhancement characteristic includedmany flat or lengthy non-
tumor tissues. The blob characteristics [40] of masses were
applied to further identify the masses from other normal
tissues. After mass detection stage, we apply some features,
such as the blob, enhancement, texture, morphologic, and
combined features, to select the masses from the other normal
candidates. Based on our experiment (Table 2), most features
show significant difference between masses and FPs
(p<0.05), except for one texture feature, inverse difference
moment (G4). In the previous study, the morphologic features
[27] of breast MRI are important criteria to characterize breast
masses and enhancement-related [13] features are useful to
interpret tissues on DCE-MRI. According to the median and p
value, the different masses and FPs were more significant in
blob, enhancement, and morphological features than texture
features. The experiment results indicated the high importance
of 3-D morphological and enhancement for tumor detection.
The detection performance using the five categories of fea-
tures is listed in Fig. 5. The combined features performed
better than individual features, with higher detection rates
and fewer FPs per case. Table 4 and Fig. 6 show that the
malignant masses were more easily selected than benign
masses. The detection rate of malignant tumors is 100 %,
higher than that of benign tumors at 76.19 %. To maintain a
high sensitivity for detecting breast cancer, the malignant
tumors should not be reduced and at the mass selection
process. THreg values set at 0.5 as a suitable threshold to detect
all malignant tumors in our experiment, compared to THreg

values as 0.1 (Table 4). For the combined features, the detec-
tion performances were 100 % (61/61) and 91.80 % (56/61),
respectively. Five benignmasses were missed using a THreg of
0.5. The JAROC-1 FOM of different feature sets is listed in
Table 5. The combined features and morphological fea-
tures were more capable of detecting breast mass, which
are with higher ROM values, 0.45 and 0.36, respective-
ly. The p value for FOM between different pairs of
feature sets indicated that the combined features can
significantly improve the detection performance from
other individual feature set. The morphological features
are most used in clinical practice. The differences
between morphological and texture features, as well as
blob features, are also statically significant.

Fig. 5 The free-response receiver operating characteristic (FROC) curve
of the proposed system for all cases using different feature set

Fig. 6 The free-response receiver operating characteristic (FROC) curve
of the proposed system for all cases, benign cases, and malignant cases
using combined features
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The p value of all the features for different types of
detected regions and the five missed masses were ana-
lyzed using a THreg of 0.5. For the clinically used
feature, enhancement degree (Ed), the missed masses
were more similar with the FPs than malignant and
benign masses (p>0.05). The enhancement degrees
(Ed) of the malignant and benign masses (753.78±
367.22 and 619.38±209.63) were significantly larger
than that of the missed masses (400.00±119.26) (p=
0.018 and 0.032). The tumor volumes (V) of malignant
masses (2765.03±3347.59 mm3) were significantly larg-
er than the missed masses (265.37±140.55 mm3) (p=
0.003). Like previous studies [7, 34], masses which are
relatively small or have a slight absence of perceptible
enhancement could be missed. The miss-detected benign
tumors were difficult to be detected using only enhance-
ment and volume features. The morphologic features,
C1, C2, R, Rs, ERsurface, ERaxis, and V computed from
benign tumors were similar to those from FPs (p>0.05).
The result indicates that morphologic characteristics be-
tween the miss-detected masses and benign tumors, as
well as normal tissues, are not significantly different.
Therefore, they are difficult to be distinguishable only
based on the morphologic characteristics. Because all
texture features were larger than 0.05, single texture
feature was not useful for mass detection. The detection
rate analyzed according to different tumor size groups is
listed using THreg of 0.5 (Table 6). The malignant
masses were detected correctly among all size groups.
The missed masses were benign and smaller in size.
Prior study [41] with a large cohort of MRI-guided
needle localization shows that lesions smaller than
5 mm have low likelihood of being cancer.

Some limitations in this study could be considered
further. The voxels with blob-like degrees higher than
the 0.2 obtained by experiments were considered to be
masses in our study. However, the threshold to deter-
mine whether the voxel is a mass tissue can affect the
detection performance. Because of poor spatial resolu-
tion (image size 256×256 pixels and slice thickness
2.5 mm), tumor tissues might seem to connect to en-
hanced normal tissues on images. Hence, these tumor
tissues can be evaluated as lower blob-like degrees and
easily filtered out by an automatically defined threshold.
Therefore, an automatic algorithm to determine the
threshold of blob-like degree on a higher resolution
image will be important for future work involving more
precise detection of blob-like tissues. Because the
missed benign masses contain only small numbers of
voxels, a few enhanced voxels can make analysis diffi-
cult. The use of higher resolution images might over-
come this problem. On the other hand, kinetic features
usually analyzed the malignancy likelihood of benign
and malignant tumors [17], but the study about using time-
intensity curve to distinguish tumor from non-tumor tissues
were rare. In addition to the blob, morphological, and texture
features, the pharmacokinetic might be incorporated to im-
prove our system in the future.

Conclusion

In the proposed breast DCE-MRI computer-aided detection
system, whole breast region is determined using the modified
demons deformable algorithm. Masses are detected using
multi-scale Hessian method. The mass detection rates are
100 % (61/61) with 15.15 false positives per case and
91.80 % (56/61) with 4.56 false positives per case. To
date, this is the first study using a multi-scale blob-
based tumor detection algorithm followed by morpho-
logic tumor selection to automatically detect both be-
nign and malignant tumors on 3-D DCE-MRI study. In
conclusion, the developed DCE-MRI computer-aided
detection (CADe) system might potentially assist physi-
cians to detect mass before clinic diagnosis.

Table 5 FOM values of five feature sets for mass selection

Combined features Morphological features Texture features Blob features Enhancement features

0.45◎†Φ║ 0.36Θ‡ 0.18$ 0.09# 0.31

All p values of FOM between different pairs of feature set
◎ p<0.05 while comparison between combined features and morphological features; † p<0.05 while comparison between combined features and
enhancement features; Φ p<0.05 while comparison between combined features and texture features; ║ p<0.05 while comparison between combined
features and blob features; Θ p<0.05 while comparison between morphological features and texture features; ‡ p<0.05 while comparison between
morphological features and blob features; $ p<0.05 while comparison between texture features and enhancement features; # p<0.05 while comparison
between blob features and enhancement features

Table 6 The detection rate for different size groups

Tumor size All masses Benign masses Malignant
masses

≦1 cm 77.78 % (14/18) 71.43 % (10/14) 100 % (4/4)

>1 cm and ≦2 cm 95.45 % (21/22) 83.33 % (5/6) 100 % (16/16)

>2 cm 100 % (21/21) 100 % (1/1) 100 % (20/20)
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