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Abstract Mammography is a primary imaging method for
breast cancer diagnosis. It is an important issue to accurately
identify and separate pectoral muscles (PM) from breast tis-
sues. Hough-transform-basedmethods are commonly adopted
for PM detection. But their performances are susceptible when
PM edges cannot be depicted by straight lines. In this study,
we present a new pectoral muscle identification algorithm
which utilizes statistical features of pixel responses. First, the
Anderson–Darling goodness-of-fit test is used to extract a
feature image by assuming non-Gaussianity for PM bound-
aries. Second, a global weighting scheme based on the loca-
tion of PM was applied onto the feature image to suppress
non-PM regions. From the weighted image, a preliminary set
of pectoral muscles boundary components is detected via row-
wise peak detection. An iterative procedure based on the edge
continuity and orientation is used to determine the final PM
boundary. Our results on a public mammogram database were
assessed using four performance metrics: the false positive
rate, the false negative rate, the Hausdorff distance, and the
average distance. Compared to previous studies, our method
demonstrates the state-of-art performance in terms of four
measures.
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Introduction

Mammography is one of the most important imaging methods
for breast disease diagnosis [1]. Two common approaches are

head-to-foot (craniocaudal, CC) view and angled side
(mediolateral oblique, MLO) view. In most MLO view and
some CC view mammograms, pectoral muscles (PM) appear
as a high-intensity, triangular region in the upper part of the
image, which is in the opposite direction of nipple. To avoid
misclassification, PM regions have to be removed from breast
areas in intensity-based applications such as breast density
evaluations [2, 3], lesion identification [4], etc. In other appli-
cations such as registration of multiple view mammograms,
PM boundaries, together with nipples and breast skin-air
borders, can serve as anatomical landmarks. In both scenarios,
it is an important issue to accurately identify and separate
pectoral muscles from breast tissues [5].

On a typical MLO mammogram, PM can be seen as a
triangular area in the top corner, and its boundary can be
approximately fitted by a straight line [6]. Based on this
observation, various Hough transform (HT)-based methods
were developed [7]. In these approaches, PM boundaries are
fitted as straight lines. To suppress interference by other
tissues, mammograms are often pre-enhanced using canny
operator [8] and other filters. The accuracy of HT-based
approaches is limited when curvatures of real pectoral muscle
boundaries cannot be omitted. For this reason, many modifi-
cations have been developed. Yam et al. utilized dynamic
programming to fit the curved pectoral edges [9]. Kwok
et al. extracted the fine boundary by iteratively searching the
edge points around straight line of PM [10]. These methods
were sensitive to preliminary line detections and were not
reliable on texture edges. Different from the HT-based
methods, Zhou et al. applied the shortest path searching algo-
rithm to identify pectoral muscle boundaries, in which the
straight line assumption was employed to determine PM ori-
entations [2].

PM detection methods without the straight-line assumption
were also developed. Ferrari et al. proposed a Gabor-filter
method to detect PM boundaries by locating pixels with
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opposite phase orientation [11]. Ma et al. proposed two graph-
theory-based segmentation methods in conjunction with ac-
tive contour to segment the pectoral muscles [12]. Camilus
et al. developed a graph cut-based segmentation method to
detect the pectoral edge and smoothed the edge using Bezier
curve [13]. Such methods outperformed the HT method in
terms of the false positive (FP) rate, the false negative (FN)
rate, and other performance measures. Some studies retrieved
PM boundaries from re-quantized version of mammograms.
Mustra et al. converted mammograms into 3-bit images and
located pectoral muscle boundaries using wavelet decompo-
sitions [14]. Similarly, Carvalho et al. reduced mammograms
to nine gray levels and detected pectoral muscle boundaries by
performing morphological operations at each level [15].
Iglesias and Karssemeijer introduced a different detection
method using information of multiple mammograms. The
method utilized the statistical information of image sets to
improve the accuracy [16].

In this study, we developed a new pectoral muscle bound-
ary detection method which consists of several successive
steps. First, the pixel-wise statistical features of mammogram
are evaluated using a 2D Anderson–Darling (AD) filter. Next,
a weight matrix is then applied on the AD mapping to sup-
press the non-PM regions. From the resulted AD image, a
preliminary boundary set is defined as the row-wise maxima.
Finally, the accurate PM boundary is obtained from the set by
iteratively searching the candidate curves. To the best of our
knowledge, it is the first study that uses the goodness-of-fit
style filter for mammography analysis. The method is more
sensitive to weak PM edges than common gradient-based
detection. Besides, the proposed iterative searching method
in the final step has no limits on contour shapes and is more
flexible when PM boundaries cannot be well described by
straight lines or simple curves.

The rest of the paper is organized as follows: In “Method”
section, the proposed method of PM detection is discussed.
The experimental results are demonstrated in “Results” sec-
tion. In “Discussion and Comparison” section, we discuss the
performance of proposedmethod and compare it with existing
studies. We conclude our work in “Conclusion” section.

Method

In this section, we explain the proposed algorithm of pectoral
muscle detection using weighted AD images. For simplicity,
we illustrate the method using MLO view mammograms. The
weight matrix and searching rules are developed using the
characteristic of MLO images. The method can be applied on
CC view mammograms by adjusting the parameters accord-
ingly. For convenience, the proposed method is explained for
the left breast mammogram. The right breast mammogram can
be processed in the same fashion once it is flipped

horizontally. Besides, we further assume that all test mammo-
grams have PM regions.

AD Image Generation Using a Pixel-Wise Discrepancy
Measure

Without loss of generality, a pixel oij in a mammogram can be
treated as a Gaussian random variable that satisfies

N μij;σ
2
ij

� �
. In smooth region, the parameters μij,σ

2
ij of

the pixel can be estimated using its neighbors. The agreement
does not held when pixel oij is in a non-uniform region where
strong local intensity variations exist. In other words, the pixel
and its neighbors cannot be well modeled using Gaussian
distribution. To measure the discrepancy, we selected the
AD test which is suitable for small sample sets. Suppose a
sample set contains total m observations of random variable o
with a desired distribution F0(o). Meanwhile, its empirical
distribution function can be estimated as Fn(o)=r/m if r of m
samples is no larger than oi. The discrepancy between the
empirical distribution and the desired distribution of sample
sets can be measured using the goodness-of-fit test statistics
[17],

M ¼ m

Z
−∞

∞
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where function f0(o) is the probability density function of
F0(o) and ψ(⋅) is a weight function. Equation (1) is the AD
test when ψ(F0(o))=[F0(o)(1−F0(o))]

−1.
The AD metric in Eq. (1) can be further converted into a

discrete form

AD ¼ −m −
X
i ¼ 1

m 2i − 1

m
lnF0 oið Þ þ ln 1−F0 om þ 1−ið Þð Þ½ �;

ð2Þ
where {oi} are sorted samples, {o1<…<om}. Replacing F0(o)
as the desired Gaussian distribution, the AD values can be
employed directly as measures of unlikeness of set {oi} to a
Gaussian distribution, or “non-Gaussianity” of variable o. It is
unlikely that the sample set is from a Gaussian distribution if
the corresponding AD value is large. In our study, the AD
value of a pixel is calculated using its w×w neighbors. w was
set to 11 by trail and error. The AD measure was pixel-wisely
applied on a mammogram to generate a 2D AD image.

Enhanced AD Images

A mammogram is an intensity mapping of X-ray radiation. In
Fig. 1a, an example (mdb110) from the mini-MIAS database
is demonstrated. In its smooth regions, such as pectoral mus-
cles and mass areas, local pixels have similar values, and the
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corresponding AD values are relatively small. In non-uniform
regions containing PM boundaries or tissue textures, a pixel
and its neighbors demonstrate strong intensity variations. The
fluctuations are far from the identical Gaussian distribution
assumption and lead to much larger AD values than smooth
regions. On the AD image, the bright pixels are related to a
higher spatial frequency contents in the original mammogram.
As can be observed in Fig. 1b, PM boundaries, skin-to-air
boundaries, and textures of breast tissues are bright in the AD
image. PMs are high-intensity triangular regions on MLO
view mammogram and are often obscured by overlapped
breast tissues.

To suppress non-PM regions, a weight matrix H is con-
structed to modulate the AD image. The coefficients are
selected based on the fact that the PM is a high density area
on one side of upper part in a typical MLO mammogram.

For a typical X-ray breast image shown in Fig. 2a, which
denotes the upper left corner of the PM at (i0, j0) as the origin
O, the weight on a AD pixel at (i, j) is,

h i; jð Þ ¼ 1 − d
�
r

if d ≤ r and i ≥ i0
0 else

�
ð3Þ

where d is the Euclidean distance from pixel P to pixel O
(i0, j0) and r is the distance from (i0, j0) to the right side of
the image, r=N−i0. The matrix H has the same size as the
AD image. The 3D view of the matrix is plotted in Fig. 2b.
The AD pixels are multiplied by the corresponding ele-
ments in H to produce the weighted AD image shown in
Fig. 1c.

Preliminary Boundary Sets

A preliminary boundary is a pixel set containing all row-wise
maxima since PM edges usually demonstrate the largest
values on the weighted AD images. As the AD map shown
in Fig. 3a, the red ridge (maximum values) represents the PM
boundary. Given y-axis position, the profile of one row (par-
allel to x-axis) is shown in Fig. 3b. Peak A represents a point
on the PM edge. By locating all peaks row by row, a prelim-
inary boundary setC0 are obtained. If multiple maximal pixels
exist in one row, the average position is selected. Other selec-
tions are possible such as the median, the most right, etc. But
we found that the average provides the best performance in
experiments. Note that the accurate positions of C0 is w/

Fig. 1 A mammogram and its AD map (mdb110 from the MIAS database; a original, b AD map, c weighted AD map)

Fig. 2 Construction of the weight
matrix (a weight calculation, b
3D view of weight matrix)
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2 pixels left to the peak because of the diffusion caused by the
AD operator.

Due to density variations, boundary set C0 is usually not a
continuous curve along a PM boundary. As shown in Fig. 4a,
C0 is a set composed of curve segments and isolated pixels.
Note that there is no overlap among segments as their pixels
were determined row by row. Besides, components of C0

often deviate from the actual PM boundary when row-wise
maxima are not in PM boundary regions. The preliminary set
of the PM boundary has to be further processed, as shown in
Fig. 4b, to obtain the accurate representation shown in Fig. 4c.

Final PM Boundary Retrieval

To accurately identify the PM boundary fromC0, we proposed
an iterative procedure using prior knowledge on typical left
MLO view mammograms: PM boundaries are continuous
curves whose directions are from the lower left to the upper
right. The boundary features of continuity and orientation are
utilized for the detection.

Continuity

Two successive pixels on a continuous curve should be con-
nected. Instead of 8-connectivity in a 3×3 neighborhood, 24-

connectivety on a 5×5 neighborhood is implemented to better
capture the local variat ions on the boundaries.
Mathematically, two column-wise successive pixels at (ia, j)
and (ib, j+1) are connected if |ia−ib|≤2.

Based on pixel connectivity definition, the connectivity of
two boundary segments is also defined. As shown in Fig. 5,
the vertical distance is k between end pixel A at (ia, j) on
segment 1 and end point B at (ib, j+k) on segment 2. Two
segments are connected if

ia−ibj j≤2k: ð4Þ

In Fig. 5, segments 1 and 2 are connected, while segments
2 and 3 are not connected according to Eq. (4). A “sub-
boundary” is a set of all “connected” boundary segments.
There are two sub-boundaries in Fig. 5. One is the combina-
tion of segments 1 and 2; the other is segment 3.

Orientation

A PM boundary spans from top right to bottom left on a left
breast MLO mammogram. The orientation can be adopted to
constrain positions of segments in set C0. For example, two
segments 1 and 2 should satisfy the constraint

i1 ≥ i2 if j1 ≤ j2: ð5Þ

Fig. 3 Row-wise peaks on AD
map (a AD map of a ROI
containing PM, b row-wise
profile at y=300)

Fig. 4 PM boundary detection (a
PM boundary set C0, b longest
sub-boundary, c pectoral
boundary Ce)
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if they are on PM boundary, where (i1, j1) and (i2, j2) are pixel
averages of two segments.

The continuity and orientation constraints are employed
alternately to extract a PM boundary from set C0. Pixels and
segments along a sub-boundary are reserved only if they
satisfied the two constraints. The missing components are
determined by searching the row-wise maxima in the local
areas defined by two neighbor elements in the sub-boundary.
Such operations are conducted iteratively until a continuous
PM boundary curve is retrieved. The detailed procedure to
retrieve a PM boundary from C0 is described as follows:

1. Set i=0.
2. Scan pixels on Ci and find all sub-boundaries on Ci.
3. Select the longest sub-boundary bi

l from Ci as the candi-
date boundary. If bi

l is the unique element of set Ci, select
bi
l as the final PM boundary and stop the iteration.
Note that bi

l might be a discontinuous curve composed
of multiple segments and pixels.

4. Find the missing pixels of bi
l and generate boundary set

Ci+1 which is composed of bi
l and all its missing pixels.

A missing region is a rectangular region defined by
positions of the last pixel of a segment and the first pixel
on the successive segment. For example, a “missing re-
gion” is defined in Fig. 5 by pixel A, the last pixel of
segment 1, and pixel B, which is the first pixel of segment
2. The missing pixels are detected as the local row-wise
maxima in the regions.

5. i=i+1, return to step 2.

The procedure is a fully automatic operation. Once the pre-
liminary boundary setC0 is given, a continuous PM curve will
be identified by iteratively executing steps 1–5.

Results

In this section, we applied the proposed algorithm on MLO-
view mammograms in the mini-MIAS database [18]. The
image resolutions are 1,024×1,024 with 200-μm-pixel
pitches. To simplify the processing, all right breast mammo-
grams (with odd filename numbers) were flipped horizontally
such that all images face the same (left) direction. The
lateralities could also be detected by analyzing the horizontal
intensity distributions.

Performance Measures

The automatic detected results are compared with the set (T2)
of manual boundaries depicted by an experienced radiologist
(SP). The FP rate is the percentage of detected pixels outside
the manually demarcated PM region, while the FN rate is the
percentage of non-detected pixels in the manually demarcated
PM regions. The other two measures are the average distance
and Hausdorff distance.

The Average Distance dave

The average distance dave between two curves is the average
distance dpc of all pixels on one curve to another curve. dave is
always a positive value. The smaller the value of dave, the
better match between the two curves. The value approaches
zero when the two curves are overlapped exactly.

The Hausdorff Distance dHau

The Hausdorff distance is a measure between two point sets
from each other [19]. It reflects the resemblance between two
objects. The measure is the maximum distance of points in
one set to another set and defined as,

dHau R;Gð Þ ¼ max sup
pr∈R

inf
pg∈G

d or; og
� �

; sup
pg∈G

inf
pr∈R

d or; og
� �( )

Performance on the MIAS Dataset

All mammograms were manually pre-screened to exclude
mammograms without PM. For 318 mammograms with PM,
the values of four performance metrics were calculated.
Overall statistics are shown in the third column of Table 1.
The average FP rate is 2.32 %, and the average FN rate is
3.81 %. To compare with previous studies, two distance mea-
sures are calculated in millimeters. The average and standard
deviation of dave values are 2.12±1.83 mm, and the average
and standard deviation of dHau values are 3.27±4.57 mm. We
also executed an alternative method in which the AD image is
replaced by the gradient image that is computed using the

Fig. 5 Segment connectivity on boundary set C0
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Sobel operator. The results are listed on the right side of
Table 1. Using the same searching approach, the two methods
obtained the similar results when the PM boundaries are clear
and strong. However, the gradient method failed to locate the
boundaries when the PM regions are obscured.

Visual examples are demonstrated in Fig. 6. In this figure,
the regional of interests (ROIs) of four mammograms with
different PM patterns are shown row by row. Original and
processed images are listed in multiple columns. From left to
right, they are the originals, AD images, gradient images, the
PM boundary sets by AD (in green) and gradient (in blue), and
the final results with manual references (in red).

Fig. 6 PMboundary detection onmultiple mammograms (from left to right: originals, AD images, edge image, boundary setC0, and detected boundary;
red reference, blue edged-based results, green AD-based results)

Table 1 Agreement of computerized detectionwith themanual reference

Measures AD Gradient

FP Average 2.32 % 3.34 %

Standard deviation 3.45 % 4.17 %

FN Average 3.81 % 4.57 %

Standard deviation 5.21 % 4.79 %

dave Average 2.12 mm 3.57

Standard deviation 1.83 mm 3.35

dHau Average 3.47 mm 4.15

Standard deviation 4.57 mm 5.14
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The first two rows are images of mdb028 and mdb066. PM
regions are distinguished from the background clearly on these
two examples. Although the contours are not the straight lines,
both AD- and gradient-based searching methods retrieved the
contours with high accuracy. The third row is frommdb322, on
which the PM boundary is obscured. For such cases, the AD
method is more robust to retrieve the correct PM boundaries
than the gradient method. The last two rows demonstrate the
cases with folded PMs (mdb123 and mdb110). On such mam-
mograms, multiple contours exist in the PM regions. The
performance of the proposed method is sensitive. For
mdb110, the AD detected contour is close to the reference.
However, the result of mdb123 is far to the manual result.

Discussion and Comparison

Our method utilizes both regional and global information to
detect the pectoral muscle on MLO view mammograms. The
local operations include pixel-wise AD measure and the con-
nectivity detection on accurate PM boundary. To enhance the
PM regions, a global operation of weight matrices is applied
on AD images. Prior knowledge of pectoral boundary loca-
tions and orientations are also adopted to retrieve the accurate
results.

We evaluated the observer variability in this study. Besides
the reference boundary set T2 using in “Performance on the
MIAS Dataset” section, a subset of mammograms (100 im-
ages) were independently annotated by two persons in our
previous study conducted 8 months earlier: T1 by the same
radiologist SP and J1 by the second author who was trained by
SP. The three manual data sets T1, T2, and J1 were used to
evaluate the inter-observer and intra-observer variability in
PM boundary detection. Table 2 shows the agreements be-
tween manual boundaries and between the computer detected
boundaries (AD) and manual references. The values in the

table are difference between every two sets listed in terms of
four measures. The results in row (J1, T1) and row (J1, T2)
show the inter-observer variability in terms of averages and
standard deviations of the four metrics. The results for intro-
observer variability evaluation are shown in row (T1, T2).
Three sets of comparison between the computer method and
the manual works are also shown, which are (AD, J1), (AD,
T1), and (AD, T2).

From the observer variability analysis shown in Table 2, no
essential difference was found from the comparisons of the
automatic and three manual references in terms of four per-
formance measures. For example, the average Hausdorff dis-
tance between two manual sets (J1, T1) is 3.62 mm, while the
value between the automatic set and one manual set(AD, T2)
is 3.47 mm. Errors of detected PM using our method are not
significantly larger than the intra/inter-observer variabilities
between manual references. When PM edge is weak, the
manual contours between two observations are far from con-
sistency due to the subjective judgment on subtle boundaries.
This is the major cause of the manual disagreement. For

Table 2 Effects of observer var-
iability on pectoral muscle
boundary identification using
AD-based approach

FP (%) FN (%) dave (mm) dHau (mm)

(J1, T1) Mean 1.98 3.41 1.21 3.62

Standard deviation 3.31 4.86 2.27 5.43

(J1, T2) Mean 1.82 3.21 1.33 3.79

Standard deviation 3.40 5.02 1.99 5.56

(T1, T2) Mean 2.02 3.58 0.98 3.87

Standard deviation 2.72 5.27 2.18 5.32

(AD, J1) Mean 2.12 3.78 1.67 4.33

Standard deviation 3.42 5.18 1.87 4.83

(AD, T1) Mean 2.21 3.67 1.46 4.17

Standard deviation 3.13 4.79 1.95 5.48

(AD, T2) Mean 2.32 3.81 2.12 3.47

Standard deviation 3.45 5.21 1.83 4.57

Fig. 7 Manually labeled PM boundaries of mdb128 (blue T1; red J1)
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example, two different contours are shown in Fig. 7. They
were manually labeled by two observers (T1 and J1) for the
same PM region. In such case, the deviations of AD detected
contours to the manual references are in the same scales of
difference between the manuals. Similar results are also re-
ported in [2].

To further evaluate the effects of reference variabilities on
the performance of the proposed method, paired t tests were
performed on pairs of three automatic manual comparisons in
terms of four metrics. The two-tailed p values are also shown
in Table 3. At the significant level of 0.05, the differences
among AD and manual pairs are not statistically significant.
However, the statement is not true for AD and gradient results
shown in the last row.

The performance of the proposed method is compared with
the state-of-the-art studies shown in Table 4. In the table,
“Hough” and “Gabor” are two methods in [11], and “AP”
and “MST” are methods in [12]. The other three methods are
“Radon” [8], “TFO” [2], and “Atlas” [16]. The last one “AD”
represents the proposed method. The values from the referred
literatures are listed in terms of four measures. Values not
provided are labeled as missing data. The average FN rate of
3.81 % using our method is close to that of the TFO method
and lower than all others. In terms of the Hausdorff distance,
our AD-based method is equivalent to the TFO method but
superior to others. Overall, the proposed method demonstrates
good performance for PM boundary detection on MLO view
mammograms.

The proposed method is composed of two major steps: the
AD processing and the iterative contour searching. To the best
of our knowledge, our method is the first approach that uses
AD Gaussianity test for pectoral muscle enhancement in
mammograms. Compare with common gradient-based ap-
proaches, the AD method is more robust on cases with weak
PM edges. To identify the accurate PM boundary, we devel-
oped an iterative method to determine local maxima on AD
images. The method has no assumption on contour shape
(e.g., straight line) and is more flexible when the PM regions
have complicated boundaries. The proposed method is based
on the assumption that a mammogram has one strong PM
edge. It cannot determine if a result is the true PM edgewhen a
mammogram has no PM or multiple PM edges (e.g., folded
PM).

Conclusion

We have proposed a novel method to detect pectoral muscles
on mammograms using the local non-Gaussianity measure.
The accurate PM boundary is identified using an iterative
procedure which utilizes a prior knowledge of PM positions
and orientations. Experiments on a mini-MIAS dataset dem-
onstrate the competitive performance of the proposed method.
The method also provides the flexibility for PM detections on
other applications. The appearances of pectoral muscles on
CC view mammograms are different. On these images, the
PMs are usually on one side of images. The weight function in
Eq. (3) can be changed to suppress the non-PM region on the
other side. Similarly, the searching rules should also adjust
according to the PM geometries on CC view mammograms.
An extension of the proposedmethod to CC view images is an
interesting topic to be considered.
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