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Abstract

While progress has been made in identifying common genetic variants associated with human diseases, for most of
common complex diseases, the identified genetic variants only account for a small proportion of heritability. Challenges
remain in finding additional unknown genetic variants predisposing to complex diseases. With the advance in next-
generation sequencing technologies, sequencing studies have become commonplace in genetic research. The ongoing
exome-sequencing and whole-genome-sequencing studies generate a massive amount of sequencing variants and allow
researchers to comprehensively investigate their role in human diseases. The discovery of new disease-associated variants
can be enhanced by utilizing powerful and computationally efficient statistical methods. In this paper, we propose a
functional analysis of variance (FANOVA) method for testing an association of sequence variants in a genomic region with a
qualitative trait. The FANOVA has a number of advantages: (1) it tests for a joint effect of gene variants, including both
common and rare; (2) it fully utilizes linkage disequilibrium and genetic position information; and (3) allows for either
protective or risk-increasing causal variants. Through simulations, we show that FANOVA outperform two popularly used
methods – SKAT and a previously proposed method based on functional linear models (FLM), – especially if a sample size of
a study is small and/or sequence variants have low to moderate effects. We conduct an empirical study by applying three
methods (FANOVA, SKAT and FLM) to sequencing data from Dallas Heart Study. While SKAT and FLM respectively detected
ANGPTL 4 and ANGPTL 3 associated with obesity, FANOVA was able to identify both genes associated with obesity.
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Introduction

Advances in genotyping and sequencing technologies have

revolutionized genetic studies of human diseases [1]. During the

past decade, genome-wide association studies (GWAS) have

identified thousands of common genetic variants predisposing to

hundreds of human diseases [2]. Nevertheless, for most complex

diseases, the genetic variants identified from GWAS only explain a

small proportion of heritability [3]. Additionally, a robust

replication of initial genetic association findings has proved to be

difficult. There is a number of explanations for a lack of

reproducible results: population stratification, variability in linkage

disequilibrium among samples, and, more importantly, weak

genetic effects and lack of statistical power. The traditional single-

marker association studies can detect variants that explain a

relatively large fraction of the phenotypic difference, however, the

effect size of newly discovered variants is typically overestimated

[4]. A single strong association suggested by initial studies often

has a more subtle disease protection or predisposition effect in the

subsequent research. Moreover, the majority of genetic effects are

expected to be very small, resulting in an L-shaped distribution of

effect sizes [5,6] and studies of small size are under-powered to

reliably detect them. Many variants in a study might be truly

associated, but not detectable or not reproducible by a single-

marker analysis.

To identify additional genetic variants contributing to human

diseases, efforts have been shifted from common variants of small

effect towards uncovering rare variants of large effect. Benefiting

from the recent high-throughput exome sequencing and whole-

genome sequencing technologies, researchers were able to assess

the spectrum of rare variants and comprehensively study their role

in human diseases [7,8]. Sequencing studies have been successful

in identifying genetic variants contributing to Mendelian disorders

and undiagnosed childhood genetic diseases [9]. Nevertheless,

challenges remain in uncovering genetic variants associated with

complex human diseases.

To improve the power of association analysis with sequencing

data, burden tests, such as the weighted sum test [10], have been

introduced to evaluate the combined effect of multiple variants in

a genetic region. By collapsing information over multiple variants,

burden tests attain improved performance for sequencing data

analysis and alleviate the multiple-testing burden. However, the

limitation of a burden test lies in its assumption of the same

direction of the effects [11]. Such an assumption may not hold in

certain scenarios (e.g., a gene with both loss-of-function and gain-

of-function mutations). To relax this assumption, many methods
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have been developed, including the C-alpha test [12], the

sequence kernel association test (SKAT) [11], and the estimated

regression coefficient test [13].

It is now increasingly recognized that many variants jointly

contribute to the observed phenotypic variation in complex

human traits [6,14] and it would be desirable to study their joint

effect without having to specify an arbitrary threshold to collapse

information over rare variants or a weight function to combine

common and rare variants. To address this issue, we propose the

use of the functional analysis of variance (FANOVA) for

association analysis using sequence data by testing for an overall

difference in allele frequencies of multiple variants within a genetic

locus between unaffected and affected populations. A locus is

defined as a region of continuous sequence that includes many

(both common and rare) variants. Similar to other function-valued

methods, such as a test based on functional linear models (FLM)

[15], the word ‘‘functional’’ in FANOVA indicates that the

method is based on the analysis of continuous functions (curves) –

an approach to analyzing high-dimensional data popularized by,

among others, Ramsay and Silverman [16]. As a function-valued

method, FANOVA has a number of attractive features, including

the built-in facility to account for the correlation structure (i.e.,

linkage disequilibrium, LD), absence of restrictive assumptions,

such as that rare variants confer a deleterious effect direction as

well as a relatively higher risk compared to common variants, and

no requirement of a weight function or a threshold to handle rare

variants. Additionally, the functional analysis of variance fits

perfectly with the paradigm of most case-control association

studies, and has the advantage over an existing function-valued

method [15] when the sample size of a sequencing study is small

and/or variants have low to moderate effects.

For both the currently proposed FANOVA approach and the

FLM method of Luo et al. [15], genetic data (i.e., genotype

labeling) of an individual need to be represented by a smooth

function. Therefore, we begin with a discussion of how to build

functional data objects and propose a genotype relabeling method

that provides data that more coincide with smooth characteristics

required to treat observations as functions. We then introduce

FANOVA and provide a brief overview of SKAT and FLM. A

simulation study is conducted to evaluate empirical type I error

rates and power of these methods. We conclude with real data

application to the Dallas Heart sequencing data and a subsequent

discussion.

Materials and Methods

Smoothing
Before applying functional methods to perform an association

test, we need to transform the discrete genotype profile of a subject

(i.e., sequencing variants typically coded as 0, 1 or 2) into smooth

functions y(t), measured at t~1, . . . ,T allele genomic positions.

Smooth functional representation is achieved by the use of basis

functions and is discussed in several textbooks, e.g., [16–18]. Here,

we provide a brief overview of how to reconstruct smooth

functional data from discrete observations and caution a reader of

potential pitfalls encountered in the application of smoothing

methods to genomic data.

In functional data analysis, we denote a function, y(t), as a

linear combination of independent basis functions, wk(t), with

coefficients, bk, as

y(t)~
XK

k~1

bkwk(t): ð1Þ

The choice of basis functions is rather wide but can be narrowed

to two popular options: Fourier basis system (i.e.,1, sin (vt),
cos (vt), sin (2vt), cos (2vt), . . . , sin (Kvt), cos (Kvt)) for peri-

odic data and a spline basis system using locally defined

polynomials for non-periodic data. Because it is difficult to assume

that genetic variants exhibit periodic behavior, a spline basis

system becomes a natural choice. To specify a spline basis system,

one needs to 1) divide the genetic region into sub-intervals by

specifying break points; 2) specify the order of the polynomials that

are going to be fit on each sub-interval, and 3) define a sequence of

knots that are placed at sub-interval breakpoints. We can use

Figure (1) to conceptualize the idea. Dots in each panel of

Figure (1) represent the same genetic data – 81 variants coded

based on the number of minor alleles – versus genomic position of

the variants. The genomic region was scaled to 0,1½ � (the x-axis),

which does not influence graphical representation of the data.

Vertical dotted lines show ‘‘knots’’ – break points that divide the

Figure 1. Smooth curves obtained by cubic B-splines using six knots (left panel), 42 knots placed at every other variant position
(middle panel), and 21 equally spaced knots (right panel).
doi:10.1371/journal.pone.0105074.g001
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range of variant positions into segments along with two end points.

Cubic B-splines [19] are fit within each segment under the

constraint that the fitted line, including the first and second

derivatives, is continuous at the break points.

In Figure (1a), the number and the position of knots concur with

recommendations in Luo et al. [15]. In Figure (1b), we put a knot

in every second position. In Figure (1c), we chose 21 equally

spaced knots as one of the values in a range of 10 to 25

recommended in Fan et al. [20]. It is clear that the more knots are

used, the less smooth the curve becomes. Additionally, the position

of the knots plays a crucial role. When genotypes are missing (as in

Figure (1) from 0.25 to about 0.4), then a ‘‘larger’’ value of equally

spaced knots may produce a fit to data that has wild excursions

over segments with missing information (consider a ‘‘wild’’ dip to

over negative five in Figure (1c)).

It is generally unclear how to choose the ‘‘optimal’’ number of

knots. A common recommendation is to choose the amount of

knots based on the visual comparison of the smoothers. Clearly,

this approach is unrealistic with large-scale genomic data, where

an ‘‘adequate’’ representation of the discrete data by a smoother is

hard to define. Alternatively, the optimal number of knots can be

chosen based on AIC (Akaike information criterion) optimization.

Wood [17], however, argues that it is unwise to go the route of

finding the optimal number of knots. Instead, smoothing splines

(also called penalized splines) can be used. With smoothing splines,

a parameter l – a smoothing parameter – can be used to vary the

smoothness of a curve for the same number of knots by penalizing

the roughness of the curves in penalized least squares estimation.

Figure (2) illustrates the effect l on the functional fit. The larger

the value of l is, the more linear is the fit. Thus, instead of looking

for the optimal number of knots, one may look for the optimal

amount of smoothing for a fixed, typically large number of knots.

The optimal value for l is usually found using generalized cross

validation, GCV [17].

The number of knots and the smoothing parameter aside, the

functional fit to the data will depend on the variant coding. Single

nucleotide polymorphism (SNP) genotype is usually coded ‘‘0’’ for

homozygote with respect to the major allele, ‘‘1’’ for heterozygote,

and ‘‘2’’ for homozygote with respect to the minor allele. The

power of functional procedures may depend on the linearity of the

functional fit. That is, if in the original sequence data the pattern

0-2 (or 2-0) is persistent, which can be expected with a negative

pairwise LD between biallelic variants, a smoother is going to have

a high frequency of oscillations. Negative LD is expected to be

common based on the population genetics theory [21] and is

indeed abundant in real data [22]. These oscillations, in turn, can

result in a loss of statistical power to detect true signals because of a

poor fit of the smoother to the data. To address this issue, one can

Figure 2. Smooth curves for different values of l. Left panel: l~1e{2, middle panel: l~1e{7, and right panel: l is determined through
generalized cross validation (GCV).
doi:10.1371/journal.pone.0105074.g002

Figure 3. Sample genotype information over seven subjects and two SNPs. Left panel illustrates original data and highlights subjects for
which a flip in genotype coding at SNP2 position is possible. Right panel illustrates ‘‘flipped’’ data at the SNP2 position.
doi:10.1371/journal.pone.0105074.g003
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use a small number of knots as in Luo et al. [15] and mask the LD

patterns by a large amount of smoothing. However, we find this

solution unsatisfactory and propose an alternative approach. Since

the minor allele is not guaranteed to be deleterious, genotype

coding should not depend on which of the two alleles is the minor

allele. That is, if all ‘‘2’’ values are flipped to ‘‘0’’ values (and vice

verse) at a particular genomic position across all cases and

controls, the result of association analyses that do not make a priori
assumptions about the direction and the magnitude of effects

should be unaffected. Thus, we suggest a genotype relabeling

algorithm to minimize the number of ‘‘flips’’ that, in turn, should

decrease the number of noisy oscillations in smoothed data.

Figure (3) illustrates the idea by providing sample genotype data

for seven subject across two SNPs. Left panel of the table

highlights subjects for which relabeling of SNP2 would obliterate

the flip; the right panel shows the same data but genotype coding

at the SNP2 position relabeled.

Figure (4) shows the effect of relabeling on the genotype curves.

For the genotype curves, the effect of relabeling is most apparent if

GCV is used to determine the optimal amount of smoothing for

each subject. Intuitively, this result makes sense. Specifically, with

a small number of knots (e.g., Figure (1a)), the functional fit is ‘‘too

smooth’’ and is insensitive to arbitrary relabeling. However,

whenever the amount of smoothing can vary from subject to

subject, and is optimized using the GCV algorithm, the functional

fit is sensitive to the relabeling. Similar to continuous registration

[16], we expect an increase in statistical power of functional

procedures after genotype relabeling (if the functional fit is

sensitive to the relabeling) and confirm this result in our simulation

study.

Statistical Procedures
Once the continuous functions are obtained, the question

remains how to perform statistical inference with functional data.

Here, we propose a functional analysis of variance approach and

provide an overview of the methods based on functional linear

models by Luo et al. [15], as well as the kernel sequencing

association test by Wu et al. [11].

FANOVA. Suppose we have k independent groups with

functional samples yi1(t), . . . ,yini
(t), i~,1 . . . k. In functional data

Figure 4. Smooth genotype curves using original data (left panel), and relabeled data (right panel).
doi:10.1371/journal.pone.0105074.g004

Table 1. Estimated type I error rates for each association testing procedure based on 1,000 samples from the null hypothesis with
no risk variants at a~5% and N~500 subjects.

Method Implementation Details Common Variants Common and Rare Variants

Small Basis Cubic Splines 0.046 0.056

0.044 0.055

FANOVA Large Basis Cubic Splines 0.069 0.065

0.065 0.063

Large Basis Penalized Splines 0.053 0.045

0.050 0.053

FLM 0.042 0.049

0.040 0.056

SKAT 0.045 0.044

The rows highlighted in bold report type I error rates of the procedures after SNP genotype was relabeled to minimize the number of ‘‘2-0’’ or ‘‘0-2’’ flips.
doi:10.1371/journal.pone.0105074.t001

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e105074

FANOVA for Association Studies



analysis, t typically represents a real-valued time variable, but in

the current problem it denotes genomic position of a variant; and

y(t) is the smoothed genotypic value. We assume that

yi1(t), . . . ,yini
(t) *i:i:d:GP(mi(t), c), i~1, . . . ,k, where GP stands

for ‘‘Gaussian Process’’, mi(t) is unknown mean function and

c(s,t) is the common covariance function. The FANOVA model

can be written as

yij(t)~mi(t)zEij(t), Eij(t) *i:i:d:GP(0, c)

j~1, . . . ,ni; i~1, . . . ,k:

We wish to test if the mean genotype functions vary among k

groups over a continuous sequence region T :

H0 : m1(t)~ � � �~mk(t), for all t[T ,

Ha : mi(t)=mj(t), for at least one i=j and t[T :

A number of test statistics were proposed to perform the above

test (e.g., [23] and [24]). For example, similar to the regular

analysis of variance, one can compare between and within group

variations:

F~

Ð
T
P

k
i~1ni(m̂mi(t){m̂m(t))2dt=(k{1)Ð

T
P

k
i~1

P ni
j~1(yij(t){m̂mi(t))

2dt=(n{k)
, ð2Þ

~

Ð
T
P

k
i~1ni(m̂mi(t){m̂m(t))2dt=(k{1)Ð

T ĉc(t,t)dt
,

where the group mean functions and the common covariance

function are estimated as

m̂mi(t)~n{1
i

Xni

j~1

yij(t), i~1, . . . ,k,

m̂m(t)~n{1
Xk

i~1

nim̂mi(t), n~
Xk

i~1

ni,

Table 2. Empirical type I error rates for each association test at the nominal a~0:05=50 based on 10,000 simulations.

Nominal level FLM SKAT FANOVA

a~0:001 0.0007 0.0005 0.0014

doi:10.1371/journal.pone.0105074.t002

Figure 5. The effect of the proposed genotype relabeling method on power of functional procedures. Functional procedures were used
to test for an association between all variants (both common and rare) in a genomic region with a dichotomous phenotype. In the left panel,
statistical power is calculated based on a permutation tests. In the right panel, statistical power is based on the parametric test.
doi:10.1371/journal.pone.0105074.g005
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ĉc(s,t)~(n{k){1
Xk

i~1

Xni

j~1

(yij(s){m̂mi(s))(yij(t){m̂mi(t)):

Under the Gaussian assumptions, it can be shown that the

numerator of F follows a mixture of chi-squared distributions,Pm
r~1 lmx2

k{1; and the denominator follows a mixture ofPm
r~1 lmx2

n{k, where l1§l2§ . . . §lmw0 are the decreasingly

ordered positive eigenvalues of c(s,t) and x2
(:) are independent chi-

squared random variables. The proof of this result can be found in

Figure 7. Empirical power of the three methods for N~50 subjects, the second disease model (i.e., mb~0:05). Left panel: small effect
sb~0:25. Right panel: large effect sb~1.
doi:10.1371/journal.pone.0105074.g007

Figure 6. Empirical power of the three methods for N~50 subjects, the first disease model (i.e., mb~0). Left panel: small effect
sb~0:25. Right panel: large effect sb~1.
doi:10.1371/journal.pone.0105074.g006
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Zhang [25] Theorem 5.8. By applying the Satterwaite approxi-

mation method, one can write

Xm

r~1

lmx2
(:)*cx2

(:)k, where c~

P?
i~1l2

iP
?
i~1li

and k~
(
P?

i~1li)
2

P
?
i~1l2

i

:

The distribution of F is then approximated as a ratio of

cx2
(k{1)k

cx2
(n{k)k

*F(k{1)k,(n{k)k: ð3Þ

Shen and Faraway [23] denotes k as the ‘‘degrees-of-freedom-

adjustment-factor’’. In practice, the continuous functions yij(t) are

discretized on a large grid of M points, yij(t1), . . . ,yij(tM ) and then

k can be estimated as k̂k~tr2(ĈC)=tr(ĈC2), where ĈC~fĉc(ti,tj)g is the

empirical M|M covariance matrix. Alternatively, the empirical

distribution of F can be approximated using permutations.

FLM. The method proposed by Luo et al. [15] is also based

on genotype functions. Unlike the FANOVA approach, which

models a function-valued response and a scalar explanatory

variable, the FLM approach deals with a scalar response and a

function-valued explanatory variable. Specifically, the FLM model

is written as:

yi~b0z

ð
T

Xi(t)b(t)dtzEi, Ei *
i:i:d:

N(0,s), ð4Þ

where yi is the phenotype of subject i, Xi(t) is the genotype

function, and b(t) is the genetic additive effect of a variant at a

position t. The goal is to test for an association between a

phenotypic trait and a genomic region T :

H0 : b(t)~0, for all t[T ,

Ha : b(t)=0, for at least one t[T :

We now have to estimate the infinite-dimension function b(t)
based on a finite number of observations n, which is an impossible

problem. A way around this, is to rewrite b(t) in terms of the basis

function expansion as in Eq. (1), that is b(t)~
PKb

k~1 bkhk(t). This

is a dimension reduction technique that simplifies the problem to

the standard multiple regression problem. The hypotheses of

interest can be build on the coefficients of the basis functions:

H0 : bk~0 for all k~1, . . . ,Kb,

Ha : bk=0; for at least one k:

The coefficient vector b can be estimated using the least squares

approach, which is detailed in Luo et al. [15] as well as in Ramsay

and Silverman [16]. The test statistic is the simple Wald test

statistic:

TQ~b̂bT Var{1(b̂b)b̂b, ð5Þ

where b̂b is the least squares estimate of the parameter vector b and

Var(b̂b) is the sampling variance of b. The Wald test statistic follows

a chi-squared distribution, x2
Kb

. Nevertheless, because we need to

account for selecting a smoothing parameter as well as the

Figure 8. Empirical power of the three methods for N~500 subjects, the first disease model (i.e., mb~0). Left panel: small effect
sb~0:05. Right panel: large effect sb~0:15.
doi:10.1371/journal.pone.0105074.g008
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smoothing itself, Luo et al. [15] use permutations to obtain the p-

values. That is, they first find the observed p-value based on the

x2
Kb

distribution, permute the phenotype vector yi a large number

of times and recalculate the p-value based on the x2
Kb

distribution

across permutations. The p-value for the test can be obtained as

the proportion of the permuted p-values that exceeded the

observed p-value.

It should be noted that in Luo et al. [15] the scalar response, yi,

was assumed to be a continuous trait and in our application it is a

dichotomous variable. However, we can use a linear model in Eq.

(4) with a binary phenotype to perform the chi-squared test for an

association. In fact, the equivalence of the chi-squared test and the

ANOVA test for dichotomous populations was shown by

D’Agostino [26] and in our simulations we confirm the adequacy

of this approach for the function-valued methods.

SKAT. The sequence kernel association test (SKAT) was

proposed by Wu et al. [11] as a computationally efficient semi-

parametric method to test an association between a SNP set in a

region and a continuous or dichotomous trait. The details of

SKAT were discussed in multiple publications (e.g., [11,27]) so we

leave it to the interested reader to review the mathematical

machinery behind it. In short, SKAT draws together single-variant

association statistics to compute a p-value for an entire set of SNPs.

An interesting result was provided in Kinnamon et al. [22], where

they showed an equivalence between the weighted sum of single-

variant Cochran-Armitage trend chi-square statistics and the

SKAT statistic under an additive genetic model without covari-

ates, and with score statistic weights equal to the inverse estimated

null variance of the single-variant Cochran-Armitage trend score

statistic.

Results

We performed simulation studies to evaluate FANOVA and

compare its size and power to FLM and SKAT. The genetic data

were simulated using the 1,000 genome project [28] to mimic the

real sequencing data structure, e.g., realistic linkage disequilibrium

pattern, allele frequencies, and randomly missing genotype data.

The binary phenotype Xi was simulated using logistic regression as

logit(Pr(Xi~1))~Gi(SNPj)|bj , ð6Þ

where Gi was a genotype label (i.e., 0, 1, or 2) of a causal variant in

position j; and bj , the effect size, was simulated from a normal

distribution, N(mb,s2
b). The sample size ranged from 50 (25 cases

and 25 controls) to 1,000 (500 cases and 500 controls). The

simulations were based on variants from a randomly selected 30 kb

genetic region. After excluding variants whose genotype labels

were constant across all subjects (both cases and controls), each

simulated data had an average of 155 variants for 50 subjects, 315

variants for 500 subjects, and 377 variants for 1,000 subjects. For

each data set, we tested for an association between a set of all

variants (both common and rare) and a dichotomous phenotype.

Two disease models were considered. First, we ran simulations

for a model with both deleterious and protective causal variants.

Therefore, the effect, b, was sampled from N(0,s2
b). Second, we

considered a model in which the majority of causal variants was

assumed to be deleterious and b was simulated from N(mb,s2
b),

with mbw0. The strength of the effect size was varied by

manipulating s2
b. The percentage of causal variants ranged from

5% to 100%.

Details of the Analysis
To explore the effect of smoothing on functional procedures, we

considered three different smoothing strategies:

1. The number and the position of knots were chosen to concur

with recommendations in Luo et al. [15] and cubic B-splines were

fit within each segment. As illustrated by Figure (1a), this

functional fit corresponds to high amount of smoothing.

Figure 9. Empirical power of the three methods for N~500 subjects, the second disease model (i.e., mb~0:01). Left panel: small effect
sb~0:05. Right panel: large effect sb~0:15.
doi:10.1371/journal.pone.0105074.g009
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2. A knot was placed in every other genetic position and cubic

B-splines were used as basis functions. As illustrated by Figure (1b),

the fit results in oscillating curves.

3. A knot was placed in every genetic position and an optimal

smoothing parameter, l, was chosen separately for each subject

through the GCV algorithm. Penalized cubic B-splines are used as

basis functions (Figure 1c).

The functional data were estimated using the fda [29] R

package [30] with the smoothing parameter, l, for the third

scenario estimated separately for each subject via mgcv package

[31]. The smoothing parameter, determined by the GCV

algorithm, ranged from 1|10{15 to 45:83. The upper bound

ofl values might seem to be high, but it just indicates that

sometimes all simulated genotype labels of a subject were the

same, resulting in a linear fit and a high value of lambda. To study

the effect of genotype relabeling, we performed an association test

with genotype labeling based on the number of minor alleles and

for the ‘‘flipped’’ labeling. The association test proposed by Luo et

al. [15] based on functional linear models was implemented using

the script provided at https://sph.uth.edu/hgc/faculty/xiong/

software-F.html. The sequence kernel association test proposed by

Wu et al. [11] was implemented using R SKAT package [32] with

a small sample adjustment.

Simulation Study Results
Empirical Type I Error Rates. Under the null model with

no casual variants, empirical type I error rates are reported in

Table 1 at the a~5% nominal level. The results were calculated

based on 1,000 simulated data sets. In tables, the rows highlighted

in bold correspond to the type I errors of the procedures after

genotype relabeling that minimizes the number of ‘‘flips’’ was

implemented. For N~50 subjects, we calculated p-values based

on both the permutation and asymptotic methods (Eq.(2)-(3)). The

resolution of the functional discretization,M, was twice the

number of variants under consideration. Discretized points,

t1, . . . ,tM , were equally spaced over the locus range T .

Permutation-based p-values were calculated by shuffling the

distance matrix I = 999 times which is a computationally more

efficient equivalent of the usual permutation procedure where the

affection status labels are shuffled. Specifically, the FANOVA test

statistic can be expressed in terms of a distance matrix, i.e.,

symmetric matrix of pairwise dissimilarities among every pair of

subjects. In terms of the test statistic values, a simultaneous

permutation of rows and columns of the distance matrix is

equivalent to a permutation of rows of the data set where each row

holds genotype values of an individual. That is, row labels of the

distance matrix become exchangeable units allowing one to avoid

recalculation of pairwise distances for each permutation of

genotype profiles, which greatly reduces computation time [33,

34]. P-values were calculated as the proportion of I = 999 re-

calculated test statistics greater than the observed one [35].

Despite the gains in computational performance due to use of the

distance matrix, permutation testing can still be time-consuming as

the number of subjects increases. Running time for obtaining one

permutation-based p-value for 500 subjects on 2.5 GHz second

generation Intel quad-core processor with 8 GB system memory

was 68 seconds versus 1.4 second for the asymptotic p-value. As

demonstrated by the simulations (i.e., Table 1 and Figure 5), the

permutation and asymptotical approximations have comparable

performance even when sample sizes are small (i.e.,N~50). We

therefore only reported asymptotic p-values for FANOVA.

Table 1 shows that for all methods empirical type I error rates

are around the nominal 5% level, but for the situations whenever

cubic B-splines with a knot in every other position was used to fit

smooth curves and p-values were found using parametric

approximation. This inflation in type I errors is an artifact of the

smoothing method. Genotype relabeling has little effect on the

type I error rates. Under the null hypothesis, this result is expected

since the size of a test should not depend on how we code a

reference allele. The results for SKAT after genotype relabeling

are not presented. By default, if SNPs are not coded as minor allele

counts, SKAT flips them back to minor allele coding.

Finally, via anonymous review of this article, we were

encouraged to check the FANOVA performance at a nominal a
level less than 0.05, since in practice multiple genes/regions will be

tested. To keep the number of additional simulations feasible, we

chose to use the alpha level 0.05/50 = 0.001, which would

correspond to the Bonferroni adjusted alpha for 50 independent

regions. We only checked the size of FANOVA for the asymptotic

test, since it is the one primarily utilized in this paper. The number

of subjects was kept low, N~50, to save computational time and

to check the FANOVA performance in the ‘‘worst case scenario’’

because the performance of an asymptotic test improves as sample

size increases. The empirical type I error rates for the three

association tests (FANOVA, FLM, and SKAT) were calculated

based on 10,000 simulations. To further speed up computational

time, FLM permutation-based p-values were still approximated

based on I = 999 permutations because it is the smallest value of I
for which the empirical type I error rate estimate is unbiased

fora = 0.001. This value of I can be calculated to provide

equivalence of the left hand side to the desired nominala level in

Pr (p̂pjƒa)~
taIsz1

Iz1
[36], where p̂pj is the simulated p-value of the

jth iteration and ts is the ‘‘greatest integer contained in’’ or the

‘‘floor’’ function. The results of these additional simulations are

presented in Table 2. As expected, the validity of all association

tests holds.

We started our simulations by examining the impact of the

proposed genotype relabeling method on power of functional

procedures. The results are summarized in Figure (5). In

Figure (4a), power was evaluated for N~50 subjects based on a

permutation test. In Figure (4b), power was evaluated for the same

number of subjects but based on the parametric test. In Figure (5),

thick lines represent power whenever genotype labeling was based

Table 3. P-values of the three methods for testing an association with BMI.

Gene FLM SKAT FANOVA

ANGPTL 3 0.046 0.075 0.037

ANGPTL 4 0.069 0.003 0.002

ANGPTL 5 0.864 0.721 0.441

ANGPTL 6 0.927 1.000 0.754

doi:10.1371/journal.pone.0105074.t003
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on the count of minor alleles and slim lines represent power

whenever genotype was relabeled to minimize the number of flips.

As expected, genotype relabeling drastically increases power of

functional procedures if penalized cubic B-splines are used to

obtain smooth curves (note the difference between thick and thin

blue lines). In the case of a small number of cubic spline basis

functions, the relabeling does not have much of an effect because

the resulting smoothed function are ‘‘too smooth’’ and are

insensitive to SNP relabeling. Similarly, in the case of a large

number of cubic spline basis functions, the relabeling does not

have much of an effect due to high oscillation in the fitted curves.

Based on the comparison of Figure (4a) to Figure (4b), it is evident

that statistical power of the parametric test is very similar to that of

the permutation test. The power of FANOVA with the large

number of basis functions is higher under the parametric test than

for the permutation test, but it comes at the expense of an elevated

type I error rate.

Taking these results into consideration, in the remainder of the

article we used penalized cubic B-splines after genotype relabeling

and the asymptotic test for the FANOVA method. We believe that

penalized splines with the ‘‘optimal’’ amount of smoothing for

each subject chosen through GCV is the most adequate way to

represent genetic data out of the three different smoothing

strategies that we considered. Additionally, parametric test has

approximately the correct size and satisfactory power along with

the best computational efficiency.

Simulations were then conducted to evaluate power of the three

methods under the two different disease models (i.e., a model with

both deleterious and protective effects and a model with

deleterious effects) and varied percentage of causal variants.

Figures (6) and (7) show power for each association testing

procedure and N~50. Under both disease models, statistical

power of all procedures increases with the increase in the

percentage of causal variants. The FANOVA test has the highest

power for a small effect size (i.e., sb~0:25) but for a larger effect

size (i.e., sb~1), FLM gains power and its performance is

comparable or even higher than that of FANOVA. Both

functional procedures have substantially higher power to detect

an association than SKAT for N~50. Figures (8) and (9) show

power for N~500 subjects and Figures (10) and (11) for

N~1000. Similar to the case of N~50, FANOVA has the

highest power when the magnitude of the effect size is small.

SKAT gains power as the number of subjects increases and its

performance becomes comparable to that of the functional

methods.

To validate that FANOVA is also appropriate for GWAS data,

we ran additional simulations in which we tested for an association

a set of only common variants and a dichotomous phenotype.

These results are available in Figures S1-S6 and show the same

general pattern as for all variants. The only difference is that

inclusion of rare variants increases statistical power of all of the

procedures.

Application

We used FANOVA, FLM and SKAT to test for an association

between body mass index (BMI) and ANGPTL3, ANGPTL4,

ANGPTL5, and ANGPTL6. The four genes are members of the

ANGPTL family, with variants found contributing to plasma

triglyceride levels [37]. Some recent studies suggest that

ANGPTL4 could be potentially associated with BMI [15,38].

To test for an association, we conducted a gene-based analysis by

applying the three methods to each of the genes.

Although one of the strengths of functional approaches is that

missing data are efficiently handled, software implementation of

FLM by Luo et al. [15] does not provide straightforward handling

of missing data. Therefore, in order to make a fair comparison

between the methods, we handled missing genetic information by

imputation using Bayesian linear regression model implemented in

mice R package [39]. We excluded individuals with over 30% of

missing variants (88 individuals for ANGPTL 3; 94 individuals for

Figure 10. Empirical power of the three methods for N~1000 subjects, the first disease model (i.e., mb~0). Left panel: small effect
sb~0:05. Right panel: large effect sb~0:1
doi:10.1371/journal.pone.0105074.g010
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ANGPTL 4; 147 individuals for ANGPTL 5; and 103 individual

for ANGPTL 6), as well as genetic variants that had information

for less than 70% of subjects (none for ANGPTL 3; one for

ANGPTL 4; 11 for ANGPTL 5; and none for ANGPTL 6). After

multiple imputation and omitting variants with no variation, the

total numbers of variants were 50, 70, 52, and 45 for ANGPTL3,

ANGPTL4, ANGPTL5, and ANGPTL6 genes, respectively. We

examined the phenotypic association with BMI obesity by splitting

the individuals into two groups: BMI#30 and BMI.30. The

sample sizes were: 1,307 subjects (ANGPTL 3), 1,596 subjects

(ANGPTL 4), 1,739 subjects (ANGPTL 5), and 1,365 subjects

(ANGPTL 6). Genomic positions were available for all variants

but for those from the ANGPTL 5 gene. For this gene, we

assumed that sequencing variants were equally spaced over the

genomic region. Table 3 summarizes results of our analysis. Both

SKAT (p-value = 0.003) and FANOVA (p-value = 0.002) detected

an association in ANGPTL 4 with BMI obesity. In addition, FLM

(p-value = 0.046) and FANOVA (p-value = 0.037) detected a

marginal association between ANGPTL 3 and BMI obesity. No

association evidence has been found for ANGPTL5 and

ANGPTL6, which may suggest that these two genes make no

contribution to BMI obesity, although the FANOVA method

produced the smallest p-value of the approaches considered. After

the Bonferroni adjustment for four tested genes, only the

ANGPTL4 association (by SKAT and FANOVA) remains

significant. Nevertheless, unajusted p-values for ANGPTL3 and

ANGPTL4 genes appear to confirm previous findings, considering

that both genes have been linked to obesity and related phenotypes

in prior studies that employed independent data sets [38,40–44].

Discussion

We have presented a new method based on functional analysis

of variance for detecting an association of multiple genetic variants

with a dichotomous phenotypic trait. The FANOVA framework is

a natural strategy for the case-control study design that exploits the

correlation structure among variants. Functional data analysis

(FDA) methods, including both FANOVA and FLM, effectively

utilize position and LD information over sequenced data which

can result in increased power over competing methods like SKAT.

Furthermore, we have found that if the sample size or the

magnitude of the majority of the effects is small, our procedure has

substantially higher power than that of both FLM and SKAT.

FANOVA surpasses these methods in a common situation when

there are multiple susceptibility variants within a gene but

statistical power to detect any particular variant by itself is

insufficient.

We investigated different strategies for fitting functional objects

to sequenced data. The typical FDA paradigm is that the smoother

the original data are, the better, so that passing a smoother on

each curve can effectively recover the true sample curves. If data

jitter, the observations may contain additional random errors that

need to be accounted for. As might be imagined, the typical FDA

paradigm does not readily fit typical sequenced data. By using our

flipping method of a reference allele, we tailored the genetic data

to the FDA techniques which can result in a gain in power. To

achieve better performance with our flipping method, the

smoothing technique should be taken into careful consideration.

With a typical approach based on a B-spline basis, a higher

number of basis functions may result in an abundance of noise

inherited by the smoother and subsequently may not lead to a

power gain. To help overcome this noise, the number of basis

functions can be truncated but the resulting fit may be overly

smooth which would also not result in a gain in power. We

recommend the use of penalized B-splines, in which the ‘‘optimal’’

amount of smoothing is based on the generalized cross validation

algorithm. Our empirical findings demonstrated that our flipping

method with the penalized B-splines greatly increased power of

our procedure.

Figure 11. Empirical power of the three methods for N~1000 subjects, the second disease model (i.e., mb~0:001). Left panel: small
effect sb~0:05. Right panel: large effect sb~0:1
doi:10.1371/journal.pone.0105074.g011
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The functional analysis of variance method provides access to

other potentially useful extensions. It allows for a follow-up test

[45], in that once a genetic region associated with a phenotype is

identified, it can be split into mutually-exclusive subregions to help

focus on a subset of potentially functional variants and facilitate

further identification of disease-causing variants. FANOVA also

allows for a pair-wise comparison of phenotype levels [46], with

which a researcher is able to contrast genotypes between pairs of a

multilevel phenotype, either overall or within subregions where

differences are identified. For example, in the majority of

heritability studies of cognitive dysfunction, scaling of the observed

trait is necessarily ordinal (e.g., from cognitively intact to cognitive

dysfunction) [47] and it may be of interest to compare genetic

differences between different levels of cognitive impairment.

Future applications of the FANOVA methodology in this area

would be able to borrow from these already developed tools.

A useful area for improvement would be an extension of our

methodology to a multiple phenotype case as well as the ability to

adjust for other covariates. If the additional phenotype and

covariates are factors (e.g., sex), then multifactorial ANOVA for

functional data provides a solution. Similar to Eq. 2, test statistics

for the main-effect and for the interaction effect functions could be

based on the L2-norm of the functional sums of squares [25]. If the

additional phenotype and covariates are continuous (e.g., age),

then there are two possible solutions. First, if the purpose of the

analysis is to investigate an association between a factor phenotype

and a set of genetic variants, given any effects of continuous

covariates, these additional effects can be treated as nuisance

parameters and their effects can be eliminated prior to investigat-

ing the association of interest. A naive approach to eliminating

these effects would be to regress a genotype function on continuous

covariates and then to treat the resulting residual function as a

dependent variable in regression on a factor phenotype. The

problem with this approach is twofold: if the effect of a factor

phenotype is non-null, the estimated effects of continuous

covariates in the initial regression will be biased and power can

be compromised; if the effect of a factor phenotype is null, but the

factor phenotype and continuous covariates are collinear, the type

I error rate can be conservative [48]. A possible solution, suggested

by ter Braak [49] and Kennedy and Cade [48], is to regress both a

factor phenotype and a genotype function on the continuous

covariates. Then, our FANOVA methodology can be applied to

the residualized factor alone with residualized genotype function.

Second, if all of the effects are of interest (i.e., no nuisance

parameters) the functional dependent variable can be related to

univariate covarieties using a functional linear model but a new

test statistic may be required. A possible solution to this problem

was recently outlined by Reimherr and Nicolae [50].

We believe that functional analysis of variance is a promising

method for efficient locus-wide inference. As we saw in our

application, FANOVA is capable of delivering powerful results

with interpretable conclusions. We hope that this paper will

promote research on development and implementation of FDA

methods for genetic studies.
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Figure S1 Empirical power of the three methods, only
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Figure S2 Empirical power of the three methods, only
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Figure S4 Empirical power of the three methods, only
common variants, N~500 subjects, second disease
model (i.e., mb~0:01). Left panel: sb~0:05. Right panel:
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Figure S5 Empirical power of the three methods, only
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(TIFF)
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