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Summary

Availability of diverse genomes makes it possible to predict gene function based on shared

evolutionary history. This approach can be challenging, however, for pathways whose components

do not exhibit a shared history, but rather, consist of distinct “evolutionary modules.” We

introduce a computational algorithm, CLIME (clustering by inferred models of evolution), which

inputs a eukaryotic species tree, homology matrix, and pathway (gene set) of interest. CLIME

partitions the gene set into disjoint evolutionary modules, simultaneously learning the number of

modules and a tree-based evolutionary history that defines each module. CLIME then expands

each module by scanning the genome for new components that likely arose under the inferred

evolutionary model. Application of CLIME to ∼1000 annotated human pathways, organelles and

proteomes of yeast, red algae, and malaria, reveals unanticipated evolutionary modularity and

novel, co-evolving components. CLIME is freely available and should become increasingly

powerful with the growing wealth of eukaryotic genomes.

Introduction

Biological pathways and complexes represent the fruits of extensive pruning, expansion and

mutation that have occurred over evolutionary timescales. For example, mitochondria
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represent a defining feature of all eukaryotes, yet an estimated one-half of the organelle's

ancestral machinery has been lost (Vafai and Mootha, 2012), and the remaining machinery

varies significantly across eukaryotic taxa, with many new lineage-specific innovations.

Similarly, cilia were likely present in the last common eukaryotic ancestor, though most

plants and fungi lost this organelle completely while nematodes have specifically lost motile

cilia. Charting the evolutionary history of modern-day pathways and complexes can help to

define the taxonomic distribution of pathways and thereby highlight model organisms for

experimental studies. Such evolutionary analyses may also teach us about the environmental

niches within which they evolved. Importantly, correlated gains and losses can help to

predict the function of unstudied genes, and also reveal alternative functions even for genes

considered to be well-characterized.

Pioneering work introduced the concept of “phylogenetic profiling” to chart the

phylogenetic distribution of genes and relate them to each other (Pellegrini et al., 1999). In

this approach, a binary vector of presence and absence of a given gene across sequenced

organisms is used to predict function of genes sharing a similar profile, based on the

Hamming distance (Hamming, 1950). A number of different computational methods have

been developed (Kensche et al., 2008), and have been applied successfully to predict

components for prokaryotic protein complexes (Pellegrini et al., 1999), phenotypic traits like

pili, thermophily, and respiratory tract tropism (Jim et al., 2004), cilia (Li et al., 2004),

mitochondrial complex I (Ogilvie et al., 2005), and small RNA pathways (Tabach et al.,

2013).

Although many phylogenetic profiling algorithms are now available, several features limit

their utility (Kensche et al., 2008). First, most existing methods compare an input gene to a

query gene one at a time – which cannot take advantage of patterns only discernible by

analyzing a collection of input genes. Second, most methods do not explicitly model errors

in a gene's phylogenetic profile, each of which may be individually noisy due to the inherent

challenges of genome assembly, gene annotation, and detection of distant homologs

(Trachana et al., 2011). Third, with a few notable exceptions (Barker and Pagel, 2005;

Mering et al., 2003; Vert, 2002; Zhou et al., 2006), most existing algorithms do not take into

account the phylogenetic tree of the input species, but assume independence across species

and hence are highly sensitive to the choice of organisms selected. Available tree-based

methods are computationally intensive and not readily scalable to large genomes (Barker et

al., 2007; Barker and Pagel, 2005).

Because most existing phylogenetic profiling methods are designed to operate on single

genes, they cannot be readily extended to biological pathways, where each member may

have different phylogenetic profiles. Our previous experience with mitochondrial complex I

illustrates this point (Pagliarini et al., 2008). Human complex I is a macromolecular machine

consisting of 44 structural subunits. We observed that these subunits did not share a single,

common history of gains and losses across eukaryotic evolution, but clustered into several

distinct evolutionary modules. One “ancestral” module consisted of 14 core subunits that

were present in bacteria and in humans yet lost independently four times in eukaryotic

evolution, whereas other modules consisted of recent animal or vertebrate innovations. By

first identifying the “ancestral” module, we could scan the human genome to identify
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additional genes sharing the same evolutionary history. Five of these genes have since been

shown to encode complex I assembly factors that are mutated in inherited complex I

deficiencies (Mimaki et al., 2012).

Our previous analysis suggested that biological pathways, as we conceive of them, represent

mosaics of gene modules, each sharing a coherent pattern of evolutionary gains and losses.

If such modules can be detected accurately, they can then be “expanded” to identify new

components. The major challenge in accurate detection is that the number and histories of

modules have to be inferred simultaneously.

Here, we introduce a new method that generalizes this approach in a statistically principled

manner, using a Bayesian mixture of tree-based hidden Markov models. Our method, called

CLIME (clustering by inferred models of evolution), first partitions an input gene set into

modules of genes that exhibit coherent evolutionary histories, and then expands each module

with new genes sharing the same evolutionary history. CLIME is distinct from existing

approaches in that it (i) is a tree-based method for partitioning an input set of related genes,

(ii) automatically learns the number of distinct evolutionary modules in the input set, and

(iii) leverages information from the entire input gene set to more reliably predict new genes

that have arisen with a shared pattern of evolutionary gains and losses.

We systematically applied CLIME to over 1000 human complexes and pathways, two

human cellular organelles (cilia and mitochondria), and three entire genomes (red algae,

yeast, and the malaria parasite). The results, the software and an online analysis portal, are

freely available at www.gene-clime.org.

Results

CLIME: an algorithm for clustering genes based on inferred models of evolution

The CLIME algorithm partitions genes based on inferred models of evolution (Figure 1).

CLIME accepts three user-defined inputs: (1) a binary species tree; (2) a phylogenetic

profile matrix, X, defining the presence or absence of all genes in a given organism across

all species in the tree, and (3) an input gene set G. CLIME partitions the input set G into

disjoint evolutionary conserved modules (ECMs), using a Bayesian mixture model to infer

simultaneously the number of ECMs, the evolutionary model for each ECM, and gene's

membership for each ECM. The algorithm next creates an ECM expansion set, ECM+, that

includes other genes in the genome that are likely to have arisen under the ECM's inferred

model of evolution compared to a null model.

CLIME models the evolution of an individual gene using a tree-based hidden Markov model

(HMM), with the assumption that each gene has a single gain event in evolution followed by

zero or more loss events on the species tree (Figure 2A,B). CLIME does not consider branch

lengths, only the tree topology. For each gene g, the HMM of evolution is based on the

presence/absence profile across S living species (Xg the observed states). The HMM contains

2S-1 hidden states (Hg) corresponding to the true presence/absence of that gene in all living

and extinct species (Figure 2B). The model includes a user-defined observation error

parameter ε (default 0.01) representing the probability that the observed data is an error
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compared to the true hidden presence/absence (e.g. incomplete genome assembly/

annotation). CLIME infers a tree-based HMM to model the evolution of each gene

separately, as well as to model the evolution of each ECM. The evolutionary model of each

gene g is represented by a single gain branch (λg) and a vector of branch-specific loss

probabilities of its ECM (θk) – inferred at the Pre-processing step and Partition step,

respectively (Experimental Procedures). Conditional on that gene g is in ECM k, the

complete likelihood function for gene g is

(1)

where Qk,s is the transition matrix for ECM k on branch s (Figure 2A,B), which is the same

for all genes in the same ECM and will be inferred from the input data, σ(s) denotes the

direct ancestral species of s, T(λg) is the set containing all species in the sub-tree of λg, and 

{·} is the indicator function. The complete likelihood function for CLIME's Bayesian

mixture of HMM on phylogenetic profile data is formulated as,

(2)

where Ig is the ECM assignment indicator for gene g Employing a Dirichlet process prior on

the ECM clustering and independent Beta priors on the θ's (i.e., loss probabilities), CLIME

uses Markov Chain Monte Carlo (MCMC) sampling (Liu, 2008) of the posterior distribution

to simultaneously estimate the optimal partitioning, hidden evolutionary history of genes in

G and the probability of gene loss for each ECM on each tree branch. CLIME then scores all

genes in the genome for the likelihood of having arisen under an ECM's inferred model of

evolution compared with the background null model, using a log-likelihood ratio (LLR).

Genes exceeding a threshold (default 0) are included in the expansion ECM+. The CLIME

algorithm consists of three main steps (Figure 2C), which are described in Experimental

Procedures briefly and in detail in the Supplementary Experimental Procedures.

We have implemented CLIME in C++ software using an algorithm of complexity of O(Sn2)

per MCMC iteration, where S is the number of species, and n is the number of genes in G.

Using a standard, single computer processor, CLIME can cluster a 100-gene input set in 20

minutes, a 1000-gene input set in less than a day, and (with parallel processing) a 5000-gene

input set in under two days (Supplementary Experimental Procedures).

CLIME Inputs: species tree and phylogenetic matrix

CLIME inputs a user-defined species tree and a corresponding phylogenetic matrix. For the

current study we used a species tree consisting of 138 diverse, sequenced eukaryotes (Bick

et al., 2012) with a prokaryote outgroup. Each gene was deemed to have an ancestral,

prokaryotic homologue if it had sequence similarity to at least 20 diverse bacterial/archaeal

species. More diverse organisms in the input trees contribute to greater CLIME power,

through the increased opportunity for independent loss events (Figure S1).
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The user-defined phylogenetic matrix can be constructed using either homology-based or

orthology-based methods. Unlike homology matrices, orthology matrices attempt to

distinguish between members of multigene families – which is extremely challenging at

large evolutionary distances. In the current work, we evaluated seven such methods and

found that a simple homology matrix, using a BLASTP expect threshold, performed best

(see Experimental Procedures, Figure S2, and Discussion). For the human-centered analyses

described below, we created a phylogenetic matrix from 20,834 human genes, where each

gene's profile reported whether a homolog was present or absent in each of the 138

eukaryotic species.

Simulation analysis

We used simulation analysis to evaluate CLIME's performance in partitioning and

expansion. We varied four simulation parameters: NL, the number of randomly chosen

branches having positive probability of gene loss; PL, the probability of gene loss on these

branches; NS, the number of singleton genes within each simulated dataset; and ε, the

observation error rate in the phylogenetic profile matrix. Higher NL and PL indicated more

independent loss events and probability of loss events, hence greater signal; higher Ns and ε

introduced more noise.

To evaluate the partitioning ability of CLIME and to compare it to existing phylogenetic

profiling methods, we simulated synthetic input gene sets containing 500 genes, comprising

a mixture of 50 ECMs, each with 10 genes, that were generated using tree-based as well as

tree-independent models of evolution. We compared CLIME to hierarchical clustering based

on two existing distance metrics, Hamming distance (Pellegrini et al., 1999) and squared

anticorrelation distance (Glazko and Mushegian, 2004), for their ability to recover the

simulated ECMs. When phylogenetic profiles were generated from a tree-based model of

evolution, as expected CLIME outperformed the other methods in all simulated scenarios

(Figure S3A). The simulations showed that CLIME's Dirichlet process mixture model could

accurately estimate the correct number of ECMs in data. CLIME was quite accurate at

reconstructing modules with at least 6 independent loss events and performed moderately

well with 4 loss events (Figure S4). Even when simulations were performed assuming that

all 138 species were independent – violating CLIME's fundamental model of evolution –

CLIME performed comparably to other methods (Figure S3B). We note that 6 losses from

the tree-based model manifests as 20 losses in a tree-independent model – thus these NL

values are comparable (Experimental Procedures). Both CLIME and hierarchical clustering

could almost perfectly cluster the data from the tree-independent model when there were

many simulated absences (NL, exceeding 20), or when there were strongly coherent modules

(PL exceeding 0.8).

Next we evaluated CLIME's ability to correctly expand a module. We simulated a scenario

in which a genome contained 20,000 genes, 10 of which in actuality form an evolutionary

coherent module E* with 10 genes, and 19,990 of which are singleton genes with unrelated

evolutionary histories. First, we input a gene set of size 10 consisting of only one member of

E*; CLIME correctly partitioned the 10 input genes into 10 singleton ECMs, and in the

expansion phase identified 7 of the 9 additional E* members (LLR range 2-16) and 4 false

Li et al. Page 5

Cell. Author manuscript; available in PMC 2015 July 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



positives (LLR range 2-8) (Figure S5A). In this scenario, CLIME inferred 3 false losses on

the tree due to the fact that with only one gene CLIME could not distinguish real loss events

from observation errors in the phylogenetic profile. Second we input a gene set with two

members of E* and 8 singletons; CLIME properly partitioned the two E* genes together into

an ECM and then expanded it with all 8 remaining E* genes (LLR range 4-29), and 2 lower

scoring false positives (LLR range 2-3) (Figure S5B). Third, we input a gene set with 5 of

the 10 true E* genes; CLIME properly partitioned the 5 genes into an ECM, and expanded it

to recover all other 5 simulated ECM genes (LLR range 7-27) and only 1 false positive

singleton (LLR = 1.7). In this latter scenario CLIME properly inferred all 5 tree branches

with high probability of gene loss (Figure S5C). These simulations demonstrate input sets

containing more true E* genes lead to more reliable evolutionary models and hence higher

LLR scores in the ECM+ for true versus false positives. Intuitively, these analyses

demonstrate how CLIME leverages information from multi-gene inputs to more accurately

distinguish between real shared loss events from observation or inferential errors.

Application of CLIME to pathways with well-studied evolutionary histories

Next we applied CLIME to three well-studied gene sets: a macromolecular protein complex

(complex I), a single gene (MICU1), and an organelle (cilia) for which there was existing

evidence of informative evolutionary histories and for which previous manual phylogenetic

profiling methods had been successfully applied to discover novel related proteins

(Gabaldón, 2005; Li et al., 2004; Ogilvie et al., 2005; Pagliarini et al., 2008; Perocchi et al.,

2010). Analysis of these pathways can help evaluate how faithfully CLIME recovers

established evolutionary modules, and also affords opportunity for discovery.

First, we applied CLIME to the 44 human genes encoding complex I of the mitochondrial

respiratory chain (Balsa et al., 2012). Since 7 of the complex I genes are encoded by the

human mitochondrial genome (mtDNA), we focused this analysis on the subset of 111

species for which mtDNA sequences and annotations were available. CLIME partitioned the

44 complex I genes into 4 non-singleton ECMs (Figure 3A). The ECM with the highest

ECM strength (ϕ = 7.6) contained 14 genes, including 8 out of the 14 core essential

components conserved to bacteria (Figure 3A). This ECM was nearly identical to the profile

identified through extensive manual inspection (Pagliarini et al., 2008). The expansion ECM

+ contained 52 predictions with an LLR>0, including five proteins recently shown to

assemble complex I (Mimaki et al., 2012). The top predictions are shown in Figure 3A. It

has long been known that systematic exposure of insecticides targeting complex I give rise

to Parkinson's disease, though the mechanism of selective loss of dopaminergic neurons is

unknown. It is notable that two genes, dopamine decarboxylase and glutamate

decarboxylase, are also within this ECM+, raising hypotheses about direct links between

complex I and the metabolism of two key neurotransmitters.

Next, we analyzed the single gene MICU1. We had previously used simple phylogenetic

profiling with three species in combination with RNAi assays to identify MICU1 as the first

known component of the mitochondrial calcium uniporter channel (Perocchi et al., 2010).

The CLIME expansion, ECM+, contained 8 genes with similar histories, including four

genes recently shown to encode additional components of the channel (MCU, MCUb,
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MICU2, MICU3) (Sancak et al., 2013). Most notably the top-scoring gene (LLR = 10.1),

MCU, encodes the pore-forming channel itself (Baughman et al., 2011).

Third, we analyzed a curated set of 203 cilia-localized genes, for which manual annotations

into 16 sub-compartments were available (Figure 4A). CLIME automatically partitioned the

203 cilia genes into 26 non-singleton ECMs containing 120 genes. Importantly, many of the

ECMs were enriched for specific sub-compartments (cumulative hypergeometric P < 10-4)

(Figure 4B), highlighting that in this case functionally related genes have co-evolved and are

grouped together by CLIME. Each cilia ECM corresponded to a distinct model of evolution,

some with very few loss events (e.g. most of membrane trafficking genes and IFT motor

genes didn't show any loss events across 138 species), and others with extensive loss events

(e.g. 5 BBSome genes lost 11 times). This evolutionary clustering highlighted particular

model organisms for further study, such as arthropods that have specifically lost several

transition zone components. CLIME expanded the 25 non-singleton ECMs with 783

additional human genes at an LLR > 0 (excluding ECM12+ that contains a large Zinc finger

multigene family). There is a significant overlap between these 783 ECM+ expansion genes

and the genes present in the Ciliome database (Inglis et al., 2006), which aggregates data

from seven large-scale experimental and computational studies. The expansion list of the top

ECM (ϕ = 21.4) contained many highly scoring genes, which are likely to encode novel cilia

components (Figure 4D).

Several key points emerge from CLIME's results on complex I, calcium uniporter, and cilia.

First, components of pathways do not all share the same evolutionary history but are

comprised of distinct sub-modules, each with their own unique history. Second, these sub-

modules can correspond to functional subsets such as the cilia motile apparatus. Third, genes

that share evolutionary history with ECMs do in fact functionally relate with the original set

of genes. Fourth, while the evolutionary signal is boosted from inputs containing more than

one gene, the algorithm can be useful even with a single input gene as long as it exhibits a

sufficient number of independent loss events. Fifth, the more evolutionary coherent ECMs,

reflected by high ECM strength, are more robust and can identify more reliable ECM+

genes.

Exploring the evolutionary modularity of 1025 canonical pathways and complexes

To systematically identify human pathways with informative evolutionary histories, we

applied CLIME to over a thousand predefined functional gene sets including physical

complexes as well as metabolic and signaling pathways. We hypothesized that a subset of

these human pathways will contain modules with highly informative patterns of

evolutionary gains and losses that can shed light on the underlying organization of the

pathway, can highlight new model organisms for further study, and can predict function of

wholly uncharacterized genes for experimental validation.

We applied CLIME to 1025 pathways and complexes including 909 cellular components

from the Gene Ontology (GO) database (Ashburner et al., 2000) and 116 metabolic and

signaling pathways from KEGG (Kanehisa et al., 2012). Overall, we find that 145 canonical

cellular components and pathways (14%) show highly informative ECMs, defined as ECM

strength > 2 and containing at least 50% nonhomologous genes. Paralogs and other genes
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with sequence similarity will trivially cluster together since they will share inferred histories,

thus they are flagged in CLIME output so that users can optionally filter them out of

consideration. We find that approximately half of the identified ECMs contained two or

more genes that do not share sequence similarity (Figure S2). The pathways with the highest

strength ECMs are shown in Figure 5, and complete results are available (www.gene-

clime.org).

One KEGG metabolic pathway with a strong evolutionary signature involved six steps of

heme biosynthesis (Figure 5B, ECM ϕ = 9.5). While this pathway is highly conserved in

most eukaryotes, CLIME highlights a loss event in the nematode lineage – consistent with

an experimental study that confirms absence of heme biosynthesis in C. elegans and that

proposes pharmacologic targeting of heme transport as potential anti-helminthic therapy

(Rao et al., 2005).

One of CLIME's strongest evolutionary signatures and predictions was derived from the

small WASH (Wiskott–Aldrich syndrome homologue) protein complex involved in

endosome trafficking (Duleh and Welch, 2010) (Figure 5C). Of 9 WASH complex genes, 4

are partitioned into an ECM (ϕ = 5.7) defined by approximately 11 independent loss events.

These genes have no apparent bacterial homologs, but were present early in eukaryotic

evolution and show absences in four protist clades, five plant clades, all fungi, and one

animal species (Schistosoma mansoni). Interestingly, the ECM+ contains 7 genes with LLR

> 10 and includes two (CCDC93, CCDC22) recently shown to physically associate with the

WASH complex (Harbour et al., 2012). Other ECM+ genes, such as the second-scoring

C16orf62 (LLR = 21.2), are completely uncharacterized.

A striking phylogenetic profile was observed for three cell-adhesion genes localized to the

basement membrane, which anchors epithelial tissue to connective tissue through adhesion

molecules in the extracellular matrix (Figure 5D). These genes (NTN1, NTN4, ITGB1) are

present in all animal species as well as three quite distant species (N. gruberi, T. trahens, D.

discoideum). CLIME infers an evolutionary model (ϕ = 3.7) for these genes with only two

independent loss events in plants and fungi, and suggests that the other instances of profile

“presence” calls may be BLASTP errors or horizontal gene transfer. The presence of these

cell adhesion molecules in T. trahens and D. discoideum suggests that these may be early

innovations in the path to multicellularity. More surprising is their presence in the free-

living and single-cell amoeba N. gruberi – however recent evidence suggests that a closely

related pathogenic amoeba (N. fowleri) expresses integrins to facilitate invasion within the

host extracellular matrix, which might explain their presence (Jamerson et al., 2012). The

expanded ECM+ contains 28 genes with LLR > 0, including six members of the integrin

complex (half of which do not share sequence similarity to ITGB1) as well as five proteins

annotated to reside in the plasma membrane or extracellular matrix (CNTNAP5, CNTNAP2,

MFGE8, GPR116, CRIM1), raising hypotheses for shared evolution of proteins required for

multicellularity or host invasion.

Application of CLIME to the human mitochondrial proteome

CLIME's evolutionary modeling can be applied not only to individual pathways, but to chart

complex evolutionary histories of larger entities – such as the mitochondrion. Standard
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CLIME analysis of the human mitochondrial proteome (Pagliarini et al., 2008) organized

proteins into evolutionary modules that recapitulated many known pathways (e.g.,

TIM/TOM protein import, fatty acid biosynthesis) and revealed unexpected connections

between pathways (e.g. heme and folate biosynthesis) (Figure S6 and Supplementary

Experimental Procedures).

Next we analyzed the gain branches and loss events for each of the 1007 nuclear and

mtDNA-encoded mitochondrial genes, inferred during CLIME's preprocessing step, to

dissect the complex history of the organelle. We first counted the number of gains observed

on each of the 27 potential gain branches between human and the eukaryotic least common

ancestor (Figure 6A, blue branches). Mitochondrial genes showed strikingly more ancient

evolutionary origins compared to all human genes (Figure 6B), consistent with previous

reports (Pagliarini et al., 2008). We next averaged the branch-specific loss probabilities for

all mitochondrial genes to highlight the species whose mitochondrial proteomes are greatly

reduced relative to rest of their proteomes (Figure 6A, red branches). Analysis of lineages

with mitochondrial-specific losses (Figure 6C) highlighted precisely the 7 organisms known

to have lost the mitochondrial genome (C. parvum, C. hominis, T. vaginalis, G. lamblia, E.

dispar, E. histolytica, E. cuniculi). In contrast, this analysis spotlights the red alga C.

merolae that has a greatly reduced proteome in general, without a commensurate reduction

in its mitochondrial proteome (Figure 6C). Thus the automated CLIME evolutionary

analysis provides insights into the reductive and expansive evolution of this well-studied

organelle, defines its gene modules based on evolutionary inference, and highlights specific

model organisms for further study.

Genome-wide CLIME analysis of malaria, red alga, and yeast

CLIME can also be applied in an unsupervised manner to partition the genes of entire

organisms based on evolutionary history. Although it is not currently computationally

tractable for CLIME to cluster all ∼20,000 human genes, we have applied it to three diverse

species each of whose genomes encode ∼5000 genes (Figure 7). For each species, we

created a species-specific phylogenetic matrix generated from homology searches against all

138 eukaryotes (see Methods). From such whole-organism partitioning, we can explore the

evolutionary history of features such as the apicoplast or chloroplast, or predict the function

of uncharacterized genes. All results are available (www.gene-clime.org), with a few

examples highlighted below.

CLIME analysis of P. falciparum—The malaria parasite P. falciparum is a member of

the protozoan phylum Apicomplexa, named for presence of the apicoplast organelle. This

non-photosynthetic plastid was derived by secondary endosymbiosis from an alga (Lim and

McFadden, 2010), and since it's essential for parasite survival it is an attractive target for

drug development. Although the essential apicoplast functions are not well elucidated, it has

known roles in the biosynthesis of fatty acids, isoprenoids, heme, and iron-sulfur clusters

(Lim and McFadden, 2010). Interestingly, the apicoplast organelle has been lost entirely

within one Apicomplexan lineage (Cryptosporidium), but is present in 10 other

Apicomplexan genomes analyzed within our 138 eukaryotes.
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CLIME analysis partitioned the 5331 P. falciparum genes into 405 non-singleton ECMs

(346 of them contain at least two or more non-homologous genes), many of which are

significantly enriched for known biosynthetic pathways and cellular compartments

annotated in KEGG and GO (Figure 7A). Specifically, 18 distinct ECMs were enriched for

apicoplast-localized genes from GO (Figure S7A): some restricted to the Apicomplexan

lineage, others sharing homology with plant lineages, and others with broader phylogenetic

distribution, consistent with the complex endosymbiotic origin of this organelle.

Interestingly, two top apicoplast-enriched ECMs show distinct evolutionary patterns for

genes involved in isopentenyl diphosphate biosynthesis (ECM 12, ϕ = 10.2, Figure 7B) and

genes involved in fatty acid biosynthesis (ECM 33, ϕ = 8.0) – with the latter module absent

in three Apicomplexa (B. bovis, T. annulata, T. parva). These ECMs highlight the ability of

CLIME to reconstruct known metabolic pathways, and pinpoints species particularly

amenable for dissecting the distinct roles of isoprenoid biosynthesis versus fatty acid

biosynthesis in apicoplast function. The results may help to de-orphan the function of

uncharacterized genes, such as PFI0660c, MAL13P1.111 and MAL13P1.327, which we

predict are involved in isoprenoid biosynthesis.

CLIME analysis of C. merolae—Cyanidioschyzon merolae is a primitive red alga with a

highly reduced genome. This organism is not well-studied and many of its genes are

uncharacterized – thus unsupervised CLIME clustering has the potential to highlight novel

evolutionary modules and identify new members of known pathways.

CLIME analysis partitioned the 5014 C. merolae genes into 503 non-singleton ECMs, 336

of which contained at least two non-homologous genes (Figure 7C). One of the top

evolutionary modules contained homologs to the isoprenoid biosynthesis highlighted in the

apicoplast analysis above, and it is likely this pathway was present in the plastid ancestor of

both the choloroplast and apicoplast. Of interest, ECM 4 (ϕ = 13.9) with 40 genes contained

11 enzymes in the Shikimate pathway involved in the biosynthesis of aromatic amino acids

(Figure 7D). This pathway likely resides within the chloroplast, based on homology to A.

thaliana genes. It is possible that other genes in ECM 4 may encode some of the missing

steps of this pathway (Figure 7D).

CLIME analysis of S. cerevisiae—Lastly, we performed unsupervised CLIME

clustering of the 5882 protein-coding genes in yeast – the premiere cellular model organism.

CLIME partitioned 4112 genes into 802 non-singleton ECMs (568 of them contain at least

two or more non-homologous genes) (Figure 7E). One of the modules (ECM 45, ϕ = 8.5)

contains 7 non-paralogous genes (ADE5,7, ADE16, ADE17, ADE6, ADE8, ADE1, ADE2)

encoding consecutive enzymatic steps of the de novo purine biosynthesis pathway – that

were originally discovered through a classic 1969 genetic screen for mutants accumulating

red pigment when grown on adenine-deficient media (Dorfman, 1969). These genes were

evidently lost independently six times in evolution (Figure 7F), and highlight several

surprising animal species that appear to lack this key pathway (S. mansoni, B. malayi, D.

pulex), consistent with one experimental report (Dovey et al., 1984).

The unsupervised clustering of three entire organism genomes recapitulated known

functional modules, suggested functions for many uncharacterized genes (Table S1),
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suggested unexpected links between known pathways, and identified ECMs with entirely

uncharacterized genes which raise the hypotheses of potential novel pathways (Table S2).

Online Resources

The website www.gene-clime.org provides access to the CLIME software, source code, pre-

computed phylogenetic matrices, results from this report, and a web-based interactive tool

for analysis of user-defined gene sets from 10 model organisms: H. sapiens, M. musculus, D.

melanogaster, C. elegans, S. cerevisiae, N. crassa, A. thaliana, C. merolae, P. falciparum

and T. brucei.

Discussion

We have introduced a new way to partition and expand biological pathways based on

inferred models of evolution. A key feature of CLIME is that it explicitly models a pathway

as a set of disjoint gene modules, each with its own evolutionary history. The method

simultaneously infers the number of modules and evolutionary history that defines each

module, and then identifies new members that have arisen under similar models of

evolution. The tool is fast and flexible, and reports cluster strength and prediction likelihood

using statistical measures that are principled and readily interpretable.

Three key features distinguish CLIME from other algorithms: (i) it operates on an input set

of genes, (ii) it models errors in the input phylogenetic profile, (iii) it assumes a tree-based

model of gene evolution with a single gain branch and branch-specific loss probabilities.

While CLIME can input single genes or entire genomes, best results are obtained from input

gene sets with a high prior likelihood of functional relatedness (Figure S5). Leveraging

information from multiple genes and modeling profile errors is key, since phylogenetic

profiles are often noisy due to incomplete assemblies/annotations, and errors in detecting

distant homologs. For instances where the input tree topology is incorrect – or for instances

of true horizontal gene transfer or incomplete genome annotations – CLIME will

inaccurately model the independent loss events and thus may inflate likelihood scores.

However, where the topology is accurate, CLIME's evolutionary model renders it insensitive

to overrepresentation of particular clades. Of course, CLIME is not expected to perform well

in bacteria, where horizontal gene transfer is rampant and violates CLIME's tree-based

model of evolution.

We observed that the chief limitation of CLIME was not due to the algorithm per se but to

our homology-based input matrix – which cannot distinguish between members of

multigene families. Since CLIME can input any binary phylogenetic matrix, we initially

evaluated orthology-based matrices that attempt to resolve multigene families (Figure S2).

However ortholog resolution is extremely difficult at large evolutionary timescales, which

are the most useful for phylogenetic profiling (since the most power is derived from the

most diverse species). Indeed, manual phylogenetic reconstructions of selected multigene

families revealed that both best-bidirectional hit (BBH) and orthogroup methods were

accurate only within smaller evolutionary time scales (e.g. within fungi/metazoa). In

contrast, our homology-based phylogenetic matrix (derived from BLASTP using a simple

expect threshold) was more accurate at large timescales but also more limited: “presence”
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indicates presence of any multigene family member and “absence” indicates absence of the

entire family. This homology matrix works well for single gene families (e.g. subunits of

complex I) and for multigene families where all members function within the same pathway

(e.g. proteins containing the “interflagellar transport domain”). This approach does not work

well for genes sharing the same domain that act within fundamentally different pathways

(e.g. kinases, G-protein coupled receptors). This limitation could be addressed by using

more sophisticated methods to resolve orthology, such as SYNERGY (Wapinski et al.,

2007). Alternatively, for pathways with sufficient loss events within a given clade (e.g.

opisthokonts), a simple BBH matrix using a smaller tree may be best. Future versions of

CLIME may accept a phylogenetic matrix with a probability-based score to account for the

uncertainty in resolving homology or orthology.

One of the most important results from the current CLIME analysis is the evolutionary

modularity of many pathways and complexes. Application of CLIME to over 1000 human

protein complexes, metabolic pathways, and signaling pathways showed that approximately

15% had highly informative evolutionary modules (with strength > 2 and at least 50% non-

homologous genes). CLIME analyses have highlighted wholly unanticipated evolutionary

modularity within even pathways traditionally considered to be well studied. In less well-

studied pathways and organisms, a number of very high scoring modules and predictions

have emerged which are ripe for experimental analysis (e.g. WASH complex in human,

isoprenoid biosynthesis in red alga and malaria). Excitingly, the power of CLIME will scale

with the growing wealth of eukaryotic genome sequences. Inclusion of high quality

genomes, especially from more distantly related species or those filling gaps in the tree of

life, will increase the opportunity to observe loss events and increase the precision with

which CLIME can parse biological pathways.

Experimental Procedures

CLIME Algorithm

Step 0: Pre-processing—For each gene g, the gain branch λg is selected as the branch

with the highest likelihood of generating Xg, assuming a branch-independent loss rate

(default 0.03, determined based on the genome-wide average observed in our data). CLIME

then infers g's evolutionary history by forward-summation-backward-sampling (Liu, 2008)

with the same branch-independent loss rate (default 0.03). Next, CLIME uses these models

of evolution for all genes in the genome to construct a null model of branch-specific losses

(θ0), where the loss rate for each branch s is the fraction of genes lost on branch s.

Step 1: Partitioning—MCMC sampling is used to partition the input gene set G into

disjoint ECMs, using a user-defined number of iterations (default 1000). Each MCMC

iteration has three updates: (1) for each gene g, we impute the missing evolutionary history,

Hg, by sampling from probability distribution P(Hg|Xg,θIg) with forward-summation-

backward-sampling (Liu, 2008); (2) for each ECM k, we update branch-specific loss

probabilities, θk, by sampling from the conditional distribution P(θk|Hk) where Hk contains

evolutionary histories of genes in ECM k; (3) for each gene g, we update the ECM

assignment by re-assigning g to an existing ECM k with computed probability P(Ig=k|Xg,θk)
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or by forming a new ECM with probability P(Ig=K+1 |Xg). To implement, we integrate out

θs from the model and run a collapsed Gibbs sampler, which targets the same posterior

distribution of partitioning but dramatically improves algorithm efficiency (see Extended

Experimental Procedures). CLIME calculates the marginal likelihood of the current ECM

partitioning, P(X|I), at the end of each iteration and finally retains the ECM partitioning with

the highest marginal likelihood. Once the partitioning is complete, CLIME calculates the

ECM strength, ϕk, summarizing how well the evolutionary model of ECM k matches the

inferred models of each member gene compared to the null model, using the normalized

Bayes Factor (Kass and Raftery, 1995):  where

Nk is the number of genes in ECM k and P(θ) denotes the prior distribution of loss rates.

Step 2: Expansion—CLIME scores all genes in X for the likelihood of having arisen

under an ECM's inferred model of evolution compared with the background null model,

using the log-likelihood ratio (LLR) as a measure. Genes with their LLRs exceeding a

threshold (default 0) are included in the expansion ECM+, excluding members of input set

G.

Simulation analysis

Simulated datasets were constructed as a mixture of 50 non-singleton ECMs (10 genes each)

with a certain number of singleton ECMs. 64 simulations were run using a combination of

four parameters: (i) the number of singleton ECMs: Ns ∈ {0, 100, 200, 500}; (ii) the number

of loss events for each simulated ECM (on randomly selected branches): NL ∈ {4, 6, 8, 10}

for tree-based model and NL ∈ {10, 20, 30, 40} for tree-independent model; (iii) the

probability of gene loss on each of the NL branches: PL ∈ {0.6, 0.7, 0.8, 0.9}; The

simulation observation error rate was set to 0.02. Phylogenetic profiles per ECM for the

tree-based simulations were generated from our probabilistic generative model, where loss

branches were randomly selected from the 2S-1 branches on the 138-species eukaryotic tree.

For the tree-independent simulation, losses were independently selected from the 138

species. Note that the tree-independent simulation is equivalent to tree-based simulation

with loss events only happen on the leaf branches of the tree. We chose two different sets of

NL for tree-based and tree-independent models of evolution to make their phylogenetic

profile matrices equivalent (with comparable absence/presence ratios). For each parameter

configuration we simulated 100 datasets, ran CLIME on each dataset, calculated the

adjusted rand index (ARI, Hubert and Arabie, 1985) between CLIME's output and the true

ECM partitioning, and averaged the ARI across the 100 datasets. For comparison to other

distance metrics, we used agglomerative hierarchical clustering with the average method and

using 10% singleton genes as cutoff for clusters, as described in (Glazko and Mushegian,

2004). For Figure S5 we used simulation parameters NL = 5, PL = 0.8.

Homology matrix

Protein sequences from 138 eukaryotic organisms corresponding to the published

phylogenetic tree (Bick et al., 2012) were downloaded as follows: 132 species from the

KEGG Organisms Database, Release 58 (Kanehisa et al., 2006) and 6 species (Thecamonas
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trahens, Capsaspora owczarzaki, Sphaeroforma arctica, Salpingoeca rosetta, Allomyces

macrogynus and Spizellomyces punctatus) from the Origins of Multicellularity Sequencing

Project at the Broad Institute (7/9/2012) (Ruiz-Trillo et al., 2007). For each of the ten

reference genomes, a species-centric binary phylogenetic matrix Xg,i was constructed to

contain 1 if reference gene g shared sequence similarity with any protein in species i

(BLASTP, Expect<1e-3) and 0 otherwise. A paralogy matrix was created based on BLASTP

(Expect<1e-3). A single “prokaryote” outgroup was added to the eukaryotic tree and to the

phylogenetic profile matrix, where Xg,prokaryote =1 if gene g had BLASTP similarity (Expect

< 1e-3) to at least 20 out of 502 prokaryotic species in KEGG Organisms Database, Release

58, otherwise 0. These 502 species were selected from 1477 KEGG species, retaining one

species per genus (the species with the largest number of annotated proteins).

Comparison of homology matrices

We compared homology matrices using leave-one-out (LOO) cross-validation on the 1025

GO/KEGG pathways (8876 distinct genes; 20594 gene-pathway pairs). For a range of LLR

thresholds, sensitivity was calculated as the percent of the genes correctly recovered in any

ECM+ derived from the LOO input gene set (from which the gene had been artificially

removed) and specificity was calculated as the percent of non-pathway genes correctly

absent from all ECM+ derived from the LOO input set. We compared 7 homology matrices:

eggNOG (Powell et al., 2012), and six BLASTP-based matrices generated with a

combination of thresholds for expect E ∈ {1e-2, 1e-3}, query gene coverage C ∈ {0%, 20%,

30%}, and bi-directionality B ∈ {top-hit, best bidirectional hit} (Figure S2). To assess

paralogy effects (Figure S2), we performed LOO cross-validation after removing redundant

paralogous genes (BLASTP E<10-3) from each GO/KEGG gene set.

Pathways and enrichment statistics

Metabolic and signaling pathways for 10 model organisms were downloaded from the

KEGG Pathway Database, Release 58 (Kanehisa et al., 2006), excluding 3 large terms

(‘Human Diseases’, ‘Organismal Systems’, ‘Environmental Response and Signaling’) and

excluding all genes that were present in greater than 3 different pathways. Gene ontology

terms for cellular compartments were downloaded from the NCBI Gene database (H.

sapiens genes, downloaded 12/2012), PlasmoDB version 9.3 (P. falciparum genes), and

YeastMine (S. cerevisiae genes, downloaded 11/2011). For unsupervised CLIME clustering,

ECMs were tested for enrichment of KEGG or GO categories using the hypergeometric test

(P < 10-6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. CLIME is a tree-based algorithm that clusters gene sets based on evolutionary

history

2. CLIME predicts new members of a pathway based on shared inferred ancestry

3. CLIME software and a web-based interface are freely available (www.gene-

clime.org)
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Figure 1. Schematic overview of CLIME
CLIME partitions an input set of genes into evolutionarily conserved modules (ECMs), and

predicts additional genes sharing the same inferred model of evolution. Input: species tree,

an input gene set (G), and a phylogenetic matrix (X) for all genes in a reference organism

showing presence (green) or absence (white) across all extant species in the tree. For display

purposes, a separate blue/white matrix shows the profiles of genes in G, which are a subset

of X. Partition: input genes G are partitioned into K distinct ECMs, using a Bayesian

mixture of HMMs to simultaneously infer the number of ECMs and the shared evolutionary

history of each ECM. Each ECM is modeled by a tree structured HMM with an inferred gain

branch (blue) and branch-specific probabilities of gene loss (red). Expansion: each ECM is

expanded by identifying genes within the genome that are more likely to have evolved from

the ECM's model of evolutionary history compared to a null model of evolution, scored by

the log likelihood ratio (LLR). Output: K disjoint ECM clusters and associated ECM+

expansions.
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Figure 2. The CLIME algorithm
(A) Notation for random variables in CLIME's statistical model. (B) CLIME's generative

tree-structured HMM, including observed states (Xg) and hidden states (Hg) that correspond

to the inferred presence/absence of gene g in all living and extinct species in the pre-defined

tree. The model is constrained to a single gain branch (blue). Loss events are modeled using

branch-specific transition matrices (inset) derived from an ECM or null model (red color

indicates branches with high loss probability). This example shows the likely evolutionary

scenario that phylogenetic profile of gene g (presence only in species 3 and 4) is generated

from ECM k which has high loss rates on two branches (red color), so gene g is likely to be

lost on these branches while inherited on other branches. (C) Statistical details for three

steps of CLIME.
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Figure 3. Application of CLIME to mitochondrial complex I and calcium uniporter
(A) CLIME partitioning of the 44 subunits of mitochondrial respiratory chain complex I into

ECMs (separated by aqua lines). Inset shows ECM1, including the independent loss events

(red branches), the phylogenetic profile for the ECM1 genes (blue/white matrix and blue

text) and the top genes in ECM1+ (green/white matrix and green text). Tree branch color

indicates gene gain (blue), loss (red, brighter hue indicating higher confidence), or

inheritance (black), otherwise shown gray. Asterisks indicate core bacterial complex I

homologs. Green arrows indicate predictions with recent experimental or human genetic

support for functional association with the input set.

(B) CLIME partitioning of the single input gene MICU1, which encodes the first identified

protein component of the mitochondrial calcium uniporter complex. The ECM1+ includes

four components recently shown to encode uniporter proteins (green arrows).
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Figure 4. Application of CLIME to cilia
(A) Annotation of 203 human cilia-related genes within 16 sub-compartments.

(B) CLIME partition of 203 cilia genes into modules (separated by aqua lines). Red boxes

indicate shared absence in selected clades, labeled above. Sub-compartments with

significant enrichment per ECM are labeled at right (parentheses show fraction of ECM

genes within sub-compartment).

(C) Overlap between CLIME predictions and seven orthogonal cilia gene sets (Inglis et al.,

2006).

(D) The ciliary ECM with highest ECM strength (21.4), including the evolutionary model

(gain branch in blue, loss branches in red), the ECM genes (blue text and blue/white matrix)

and the ECM+ predictions (green/white matrix). Green tick marks indicate predictions with

independent evidence of cilia-related function based on Ciliome database.
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Figure 5. CLIME analysis of 1025 human pathways
(A) Top 50 pathways with highly informative ECMs (strength > 2 and containing at least

50% non-homologous genes), ranked by strength of the top non-homologous ECM. All non-

singleton ECMs are shown as separate dots.

(B-D) ECMs for selected pathways. As in Figure 3, the inferred gain/loss events are

indicated by blue and red tree branches. Blue/white and green/white matrices show

phylogenetic profiles of ECM and ECM+ genes, respectively. Green arrows indicate

experimental evidence of functional association with the input gene set.
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Figure 6. CLIME analysis of the mitochondrial proteome
(A) CLIME's estimates of proportions of gene gain (blue branches) and average branch-

specific probabilities of gene loss (red branches) on the 138 eukaryotic species tree for the

1007 human mitochondrial genes. Brighter hue indicates higher probability. The presence/

absence of the 1007 human mitochondrial genes across 138 species is shown in blue/white

matrix.

(B) Cumulative gain proportions of mitochondrial genes versus all human genes (only

selected branches labeled).

(C) Average loss probability of mitochondrial genes versus all human genes for each tree

branch (only selected branches labeled).
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Figure 7. Application of CLIME to the genomes of malaria parasite, red alga, and yeast
CLIME partitioning of all genes within three model organisms: Plasmodium falciparum (A),

Cyanidioschyzon merolae (C), and Saccharomyces cerevisiae (E). ECMs are ordered by

mean number of homologs present across taxa, and separated by aqua lines. All ECMs

significantly enriched (hypergeometric p-value<10-6) in GO or KEGG gene sets are marked

at right. Selected ECMs are shown for the three species (B, D, F), along with schematic

pathway diagrams that highlight the location of ECM genes (blue text), genes not in the

ECM (black text), and enzymes not known to reside in the species (question marks) based
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on KEGG. Genes within the ECM but not present in the relevant KEGG pathway are listed

below, and may encode novel pathway members.
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