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Abstract

Research in animal learning and behavioral neuroscience has distinguished between two forms of

action control: a habit-based form, which relies on stored actio n values, and a goal-dir ected form,

which forecasts and compares action outcomes based on a model of the environment. While habit-

based control has been the subject of extensive computational research, the computational

principles underlying goal-directed control in animals have so far received less attention. In the

present paper, we advance a computational framework for goal-directed control in animals and

humans. We take three empirically motivated points as founding premises: (1) Neurons in

dorsolateral prefrontal cortex represent action policies, (2) Neurons in orbitofrontal cortex

represent rewards, and (3) Neural computation, across domains, can be appropriately understood

as performing structured probabilistic inference. On a purely computational level, the resulting

account relates closely to previous work using Bayesian inference to solve Markov decision

problems, but extends this work by introducing a new algorithm, which provably converges on

optimal plans. On a cognitive and neuroscientific level, the theory provides a unifying framework

for several different forms of goal-directed action selection, placing emphasis on a novel form,

within which orbitofrontal reward representations directly drive policy selection.

1 Goal-directed action control

In the study of human and animal behavior, it is a long-standing idea that reward-based

decision making may rely on two qualitatively different mechanisms. In habit-based

decision making, stimuli elicit reflex-like responses, shaped by past reinforcement [1]. In

goal-directed or purposive decision making, on the other hand, actions are selected based on

a prospective consideration of possible outcomes and future lines of action [2]. Over the past

twenty years or so, the attention of cognitive neuroscientists and computationally minded

psychologists has tended to focus on habit-based control, due in large part to interest in

potential links between dopaminergic function and temporal-difference algorithms for

reinforcement learning. However, a resurgence of interest in purposive action selection is

now being driven by innovations in animal behavior research, which have yielded powerful
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new behavioral assays [3], and revealed specific effects of focal neural damage on goal-

directed behavior [4].

In discussing some of the relevant data, Daw, Niv and Dayan [5] recently pointed out the

close relationship between purposive decision making, as understood in the behavioral

sciences, and model-based methods for the solution of Markov decision problems (MDPs),

where action policies are derived from a joint analysis of a transition function (a mapping

from states and actions to outcomes) and a reward function (a mapping from states to

rewards). Beyond this important insight, little work has yet been done to characterize the

computations underlying goal-directed action selection (though see [6, 7]). As discussed

below, a great deal of evidence indicates that purposive action selection depends critically

on a particular region of the brain, the prefrontal cortex. However, it is currently a critical,

and quite open, question what the relevant computations within this part of the brain might

be.

Of course, the basic computational problem of formulating an optimal policy given a model

of an MDP has been extensively studied, and there is no shortage of algorithms one might

consider as potentially relevant to prefrontal function (e.g., value iteration, policy iteration,

backward induction, linear programming, and others). However, from a cognitive and

neuroscientific perspective, there is one approach to solving MDPs that it seems particularly

appealing to consider. In particular, several researchers have suggested methods for solving

MDPs through probabilistic inference [8-12]. The interest of this idea, in the present

context, derives from a recent movement toward framing human and animal information

processing, as well as the underlying neural computations, in terms of structured

probabilistic inference [13, 14]. Given this perspective, it is inviting to consider whether

goal-directed action selection, and the neural mechanisms that underlie it, might be

understood in those same terms.

One challenge in investigating this possibility is that previous research furnishes no ‘off-the-

shelf’ algorithm for solving MDPs through probabilistic inference that both provably yields

optimal policies and aligns with what is known about action selection in the brain. We

endeavor here to start filling in that gap. In the following section, we introduce an account of

how goal-directed action selection can be performed based on probabilisitic inference,

within a network whose components map grossly onto specific brain structures. As part of

this account, we introduce a new algorithm for solving MDPs through Bayesian inference,

along with a convergence proof. We then present results from a set of simulations

illustrating how the framework would account for a variety of behavioral phenomena that

are thought to involve purposive action selection.

2 Computational model

As noted earlier, the prefrontal cortex (PFC) is believed to play a pivotal role in purposive

behavior. This is indicated by a broad association between prefrontal lesions and

impairments in goal-directed action in both humans (see [15]) and animals [4]. Single-unit

recording and other data suggest that different sectors of PFC make distinct contributions. In

particular, neurons in dorsolateral prefrontal cortex (DLPFC) appear to encode task-specific
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mappings from stimuli to responses (e.g., [16]): “task representations,” in the language of

psychology, or “policies” in the language of dynamic programming. Although there is some

understanding of how policy representations in DLPFC may guide action execution [15],

little is yet known about how these representations are themselves selected. Our most basic

proposal is that DLPFC policy representations are selected in a prospective, model-based

fashion, leveraging information about action-outcome contingencies (i.e., the transition

function) and about the incentive value associated with specific outcomes or states (the

reward function). There is extensive evidence to suggest that state-reward associations are

represented in another area of the PFC, the orbitofrontal cortex (OFC) [17, 18]. As for the

transition function, although it is clear that the brain contains detailed representations of

action-outcome associations [19], their anatomical localization is not yet entirely clear.

However, some evidence suggests that the enviromental effects of simple actions may be

represented in inferior fronto-parietal cortex [20], and there is also evidence suggesting that

medial temporal structures may be important in forecasting action outcomes [21].

As detailed in the next section, our model assumes that policy representations in DLPFC,

reward representations in OFC, and representations of states and actions in other brain

regions, are coordinated within a network structure that represents their causal or statistical

interdependencies, and that policy selection occurs, within this network, through a process

of probabilistic inference.

2.1 Architecture

The implementation takes the form of a directed graphical model [22], with the layout

shown in Figure 1. Each node represents a discrete random variable. State variables (s),

representing the set of m possible world states, serve the role played by parietal and medial

temporal cortices in representing action outcomes. Action variables (a) representing the set

of available actions, play the role of high-level cortical motor areas involved in the

programming of action sequences. Policy variables (π), each repre-senting the set of all

deterministic policies associated with a specific state, capture the representational role of

DLPFC. Local and global utility variables, described further below, capture the role of OFC

in representing incentive value. A separate set of nodes is included for each discrete time-

step up to the planning horizon.

The conditional probabilities associated with each variable are represented in tabular form.

State probabilities are based on the state and action variables in the preceding time-step, and

thus encode the transition function. Action probabilities depend on the current state and its

associated policy variable. Utilities depend only on the current state. Rather than

representing reward magnitude as a continuous variable, we adopt an approach introduced

by [23], representing reward through the posterior probability of a binary variable (u). States

associated with large positive reward raise p(u) (i.e, p(u=1|s)) near to one; states associated

with large negative rewards reduce p(u) to near zero. In the simulations reported below, we

used a simple linear transformation to map from scalar reward values to p(u):

(1)
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In situations involving sequential actions, expected returns from different time-steps must be

integrated into a global representation of expected value. In order to accomplish this, we

employ a technique proposed by [8], introducing a “global” utility variable (uG). Like u, this

is a binary random variable, but associated with a posterior probability determined as:1

(2)

where N is the number of u nodes. The network as whole embodies a generative model for

instrumental action. The basic idea is to use this model as a substrate for probabilistic

inference, in order to arrive at optimal policies. There are three general methods for

accomplishing this, which correspond three forms of query. First, a desired outcome state

can be identified, by treating one of the state variables (as well as the initial state variable) as

observed (see [9] for an application of this approach). Second, the expected return for

specific plans can be evaluated and compared by conditioning on specific sets of values over

the policy nodes (see [5, 21]). However, our focus here is on a less obvious possibility,

which is to condition directly on the utility variable uG, as explained next.

2.2 Policy selection by probabilistic inference: an iterative algorithm

Cooper [23] introduced the idea of inferring optimal decisions in influence diagrams by

treating utility nodes into binary random variables and then conditioning on these variables.

Although this technique has been adopted in some more recent work [9, 12], we are aware

of no application that guarantees optimal decisions, in the expected-reward sense, in multi-

step tasks. We introduce here a simple algorithm that does furnish such a guarantee. The

procedure is as follows: (1) Initialize the policy nodes with any set of non-deterministic

priors. (2) Treating the initial state and uG as observed variables (uG = 1),2 use standard

belief propagation (or a comparable algorithm) to infer the posterior distributions over all

policy nodes. (3) Set the prior distributions over the policy nodes to the values (posteriors)

obtained in step 2. (4) Go to step 2. The next two sections present proofs of monotonicity

and convergence for this algorithm.

2.2.1 Monotonicity—We show first that, at each policy node, the probability associated

with the optimal policy will rise on every iteration. Define π* as follows:

(3)

where π+ is the current set of probability distributions at all policy nodes on subsequent

time-steps. (Note that we assume here, for simplicity, that there is a unique optimal policy.)

The objective is to establish that:

(4)

where t indexes processing iterations. The dynamics of the network entail that

1Note that temporal discounting can be incorporated into the framework through minimal modifications to Equation 2.
2In the single-action situation, where there is only one u node, it is this variable that is treated as observed (u = 1).
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(5)

where π represents any value (i.e., policy) of the decision node being considered.

Substituting this into (4) gives

(6)

From this point on the focus is on a single iteration, which permits us to omit the relevant

subscripts. Applying Bayes’ law to (6) yields

(7)

Canceling, and bringing the denominator up, this becomes

(8)

Rewriting the left hand side, we obtain

(9)

Subtracting and further rearranging:

(10)

(11)

(12)

Note that this last inequality (12) follows from the definition of π*.

Remark: Of course, the identity of π* depends on π+. In particular, the policy π* will only

be part of a globally optimal plan if the set of choices π+ is optimal. Fortunately, this

requirement is guaranteed to be met, as long as no upper bound is placed on the number of

processing cycles. Recalling that we are considering only finite-horizon problems, note that

for policies leading to states with no successors, π+ is empty. Thus π* at the relevant policy

nodes is fixed, and is guaranteed to be part of the optimal policy. The proof above shows

that π* will continuously rise. Once it reaches a maximum, π* at immediately preceding
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decisions will perforce fit with the globally optimal policy. The process works backward, in

the fashion of backward induction.

2.2.2 Convergence—Continuing with the same notation, we show now that

(13)

Note that, if we apply Bayes’ law recursively,

(14)

Thus,

(15)

and so forth. Thus, what we wish to prove is

(16)

or, rearranging,

(17)

Note that, given the stipulated relationship between p(π) on each processing iteration and

p(π | uG) on the previous iteration,

(18)

With this in mind, we can rewrite the left hand side product in (17) as follows:

(19)

Note that, given (18), the numerator in each factor of (19) cancels with the denominator in

the subsequent factor, leaving only p(uG|π*) in that denominator. The expression can thus be

rewritten as
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(20)

The objective is then to show that the above equals p(π*). It proceeds directly from the

definition of π* that, for all π other than π*,

(21)

Thus, all but one of the terms in the sum above approach zero, and the remaining term

equals p1(π*). Thus,

(22)

3 Simulations

3.1 Binary choice

We begin with a simulation of a simple incentive choice situation. Here, an animal faces two

levers. Pressing the left lever reliably yields a preferred food (r = 2), the right a less

preferred food (r = 1). Representing these contingencies in a network structured as in Fig. 1

(left) and employing the iterative algorithm described in section 2.2 yields the results in

Figure 2A. Shown here are the posterior probabilities for the policies press left and press

right, along with the marginal value of p(u = 1) under these posteriors (labeled EV for

expected value). The dashed horizontal line indicates the expected value for the optimal

plan, to which the model obviously converges.

A key empirical assay for purposive behavior involves outcome devaluation. Here, actions

yielding a previously valued outcome are abandoned after the incentive value of the

outcome is reduced, for example by pairing with an aversive event (e.g., [4]). To simulate

this within the binary choice scenario just described, we reduced to zero the reward value of

the food yielded by the left lever (fL), by making the appropriate change to p(u|fL). This

yielded a reversal in lever choice (Fig. 2B).

Another signature of purposive actions is that they are abandoned when their causal

connection with rewarding outcomes is removed (contingency degradation, see [4]). We

simulated this by starting with the model from Fig. 2A and changing conditional

probabilities at s for t=2 to reflect a decoupling of the left action from the fL outcome. The

resulting behavior is shown in Fig. 2C.

3.2 Stochastic outcomes

A critical aspect of the present modeling paradigm is that it yields reward-maximizing

choices in stochastic domains, a property that distinguishes it from some other recent
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approaches using graphical models to do planning (e.g., [9]). To illustrate, we used the

architecture in Figure 1 (left) to simulate a choice between two fair coins. A ‘left’ coin

yields $1 for heads, $0 for tails; a ‘right’ coin $2 for heads but for tails a $3 loss. As

illustrated in Fig. 2D, the model maximizes expected value by opting for the left coin.

3.3 Sequential decision

Here, we adopt the two-step T-maze scenario used by [24] (Fig. 3A). Representing the task

contingencies in a graphical model based on the template from Fig 1 (right), and using the

reward values indicated in Fig. 3A, yields the choice behavior shown in Figure 3B.

Following [24], a shift in motivational state from hunger to thirst can be represented in the

graphical model by changing the reward function (R(cheese) = 2, R(X) = 0, R(water) = 4,

R(carrots) = 1). Imposing this change at the level of the u variables yields the choice

behavior shown in Fig. 3C. The model can also be used to simulate effort-based decision.

Starting with the scenario in Fig. 2A, we simulated the insertion of an effort-demanding

scalable barrier at S2 (R(S2) = -2) by making appropriate changes p(u|s). The resulting

behavior is shown in Fig. 3D.

A famous empirical demonstration of purposive control involves detour behavior. Using a

maze like the one shown in Fig. 4A, with a food reward placed at s5, Tolman [2] found that

rats reacted to a barrier at location A by taking the upper route, but to a barrier at B by taking

the longer lower route. We simulated this experiment by representing the corresponding

transition and reward functions in a graphical model of the form shown in Fig. 1 (right),3

representing the insertion of barriers by appropriate changes to the transition function. The

resulting choice behavior at the critical juncture s2 is shown in Fig. 4.

Another classic empirical demonstration involves latent learning. Blodgett [25] allowed rats

to explore the maze shown in Fig. 5. Later insertion of a food reward at s13 was followed

immediately by dramatic reductions in the running time, reflecting a reduction in entries into

blind alleys. We simulated this effect in a model based on the template in Fig. 1 (right),

representing the maze layout via an appropriate transition function. In the absence of a

reward at s12, random choices occurred at each intersection. However, setting R(s13) = 1

resulted in the set of choices indicated by the heavier arrows in Fig. 5.

4 Relation to previous work

Initial proposals for how to solve decision problems through probabilistic inference in

graphical models, including the idea of encoding reward as the posterior probability of a

random utility variable, were put forth by Cooper [23]. Related ideas were presented by

Shachter and Peot [12], including the use of nodes that integrate information from multiple

utility nodes. More recently, Attias [11] and Verma and Rao [9] have used graphical models

to solve shortest-path problems, leveraging probabilistic representations of rewards, though

not in a way that guaranteed convergence on optimal (reward maximizing) plans. More

closely related to the present research is work by Toussaint and Storkey [10], employing the

3In this simulation and the next, the set of states associated with each state node was limited to the set of reachable states for the
relevant time-step, assuming an initial state of s1.
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EM algorithm. The iterative approach we have introduced here has a certain resemblance to

the EM procedure, which becomes evident if one views the policy variables in our models as

parameters on the mapping from states to actions. It seems possible that there may be a

formal equivalence between the algorithm we have proposed and the one reported by [10].

As a cognitive and neuroscientific proposal, the present work bears a close relation to recent

work by Hasselmo [6], addressing the prefrontal computations underlying goal-directed

action selection (see also [7]). The present efforts are tied more closely to normative

principles of decision-making, whereas the work in [6] is tied more closely to the details of

neural circuitry. In this respect, the two approaches may prove complementary, and it will be

interesting to further consider their interrelations.
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Fig 1.
Left: Single-step decision. Right: Sequential decision. Each time-slice includes a set of m

policy nodes.
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Fig 2.
Simulation results, binary choice.
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Fig 3.
Simulation results, two-step sequential choice.

Botvinick and An Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2014 September 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig 4.
Simulation results, detour behavior. B: No barrier. C: Barrier at A. D: Barrier at B.
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Fig 5.
Latent learning.

Botvinick and An Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2014 September 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


