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Background. Systemic inflammation has been linked to a failure to normalize CD4+ T-cell numbers in treated
human immunodeficiency virus (HIV) infection. Although inflammatory cytokines such as interleukin 6 (IL-6) are
predictors of disease progression in treated HIV infection, it is not clear how or whether inflammatory mediators
contribute to immune restoration failure.

Methods. We examined the in vitro effects of IL-6 and interleukin 1β (IL-1β) on peripheral blood T-cell cycling
and CD127 surface expression.

Results. The proinflammatory cytokine IL-1β induces cell cycling and turnover of memory CD4+ T cells, and IL-
6 can induce low-level cycling of naive T cells. Both IL-1β and IL-6 can decrease T-cell surface expression and RNA
levels of CD127, the interleukin 7 receptor α chain (IL-7Rα). Preexposure of healthy peripheral blood mononuclear
cells (PBMCs) to IL-6 or IL-1β attenuates IL-7–induced Stat5 phosphorylation and induction of the prosurvival
factor Bcl-2 and the gut homing integrin α4β7. We found elevated expression of IL-1β in the lymphoid tissues of
patients with HIV infection that did not normalize with antiretroviral therapy.

Conclusions. Induction of CD4+ T-cell turnover and diminished T-cell responsiveness to IL-7 by IL-1β and IL-6
exposure may contribute to the lack of CD4+ T-cell reconstitution in treated HIV-infected subjects.
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In successfully treated human immunodeficiency virus
(HIV) infection, chronic inflammation often persists
and has been identified as a major predictor of morbidity

and mortality [1, 2]. Moreover, in treated patients with
controlled viremia, immune activation and elevated plas-
ma markers of inflammation have been associated with
poor CD4+ T-cell restoration [3, 4]; yet the mechanistic
link between persistent immune activation, inflamma-
tion, and CD4+ T-cell restoration failure is unknown.

Earlier studies of patients with immune restoration
failure found a link between higher indices of inflam-
mation with morbidities and mortalities despite antire-
troviral therapy (ART)–induced viral suppression [1, 5,
6]. It is not clear, however, whether the relationship be-
tween inflammation and immune failure is causal, and
if it is, the mechanisms whereby inflammation might
promote persistent CD4+ T-cell restoration failure (or
vice versa) are not defined.
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An increase in T-cell turnover is characteristic of untreated
HIV infection [5–7], and recent data demonstrate elevated fre-
quencies of cycling CD4+ (but not CD8+) T cells in treated
HIV-infected patients with immune restoration failure [3, 8].
Loss of CD127, the interleukin 7 receptor α chain (IL-7Rα),
and an imputed failure of homeostatic CD4+ T-cell expansion
in response to IL-7 have also been identified in treated HIV in-
fection [9, 10] and may contribute to CD4+ T-cell restoration
failure [11].

This work asked whether inflammatory cytokines might con-
tribute to CD4+ T-cell restoration failure in treated HIV infec-
tion. By treating peripheral blood mononuclear cells (PBMCs)
from healthy subjects with the inflammatory cytokines interleu-
kin 6 (IL-6) or interleukin 1β (IL-1β), we could recapitulate
much of the immunophenotype seen in patients with immune
restoration failure—decreased expression of CD127 [11, 12] and
increased T-cell cycling, especially of memory CD4+ T cells [3,
6, 8, 13]. Importantly, IL-1β is expressed throughout all lymph
node (LN) compartments in HIV-infected viremic patients and,
while reduced with ART, still remains elevated, compared with
levels in uninfected controls, providing in vivo support for our
in vitro findings.

MATERIALS AND METHODS

Ethics Statement
All subjects provided written informed consent, in accordance
with the Declaration of Helsinki. Patient studies were approved
by the University Hospitals/Case Medical Center Institutional
Review Board.

Cell Culture
PBMCs were purified by centrifugation over Ficoll-Hypaque
(GE Healthcare, Sweden) and cultured in complete Roswell
Park Memorial Institute 1640 medium with 10% fetal bovine
serum (FBS), 1% penicillin/streptomycin, 1% L-glutamine,
and 1% sodium pyruvate at 37°C and 5% CO2. Where indicated,
PBMCs were stimulated in the presence of recombinant human
IL-6 (R&D Systems, Minneapolis, MN), recombinant human
IL-1β (R&D Systems), or recombinant human IL-7 (Cytheris,
Issy-les-Moulineaux, France). Both IL-6 and IL-1β induced
Ki67 optimally at 10 ng/mL. IL-6 could downregulate T-cell
CD127 surface expression at concentrations as low as 10 pg/
mL, with optimal downregulation at a concentration of 1 ng/
mL, and the maximal effect was seen at 2 days (data not
shown). Maximal downregulation of CD127 expression by IL-
1β was reached at a concentration of 10 ng/mL and at 2 days.

Flow Cytometry
Viable cells were gated using LIVE/DEAD-Aqua or yellow via-
bility dye (Invitrogen, Grand Island, NY). Lymphocytes were
identified by forward and side scatter, and T-cell phenotype

was assessed using the following fluorochrome-conjugated
monoclonal antibodies: anti-CD3 peridinin chlorophyll pro-
tein, anti-CD8 allophycocyanin (APC)–Cy7, anti-CD127 fluo-
rescein isothiocyanate (FITC), anti-CD45RA phycoerythrin
(PE)–Cy7, anti-CD27 APC, anti-CD197 Alexa Fluor 700 (all
from BD Biosciences, San Jose, CA), and anti-CD4 Pacific
Blue (Biolegend, San Diego, CA). Anti-α4β7 antibody was ob-
tained from the National Institutes of Health AIDS Research
and Reference Reagent Program and was conjugated using an
R-PE antibody conjugation kit (Abd Serotec, Oxford, United
Kingdom). Cells were stained for 20 minutes in the dark at
room temperature, washed, fixed in phosphate-buffered saline
containing 2% formaldehyde, and acquired on an LSRII flow
cytometer (Becton Dickinson, San Jose, CA). For detection of
intracellular Ki67 and Bcl2, cells were surface stained, fixed,
and permeabilized with a saponin-based buffer (BD Biosciences),
followed by incubation with anti-Ki67-PE and anti-Bcl2-FITC
(BD Biosciences, San Jose, CA) for 40 minutes on ice. For detec-
tion of phospho-epitopes, fixed cells were permeabilized with a
methanol-based buffer (BD Biosciences) and stained with anti-
phospho-Akt-PE (S473) and anti-phospho-Stat5 Alexa Fluor
647 (Y694) (BD Biosciences). Data were analyzed using FACSDI-
VA (version 6.2, BD Biosciences, San Diego, CA) or FlowJo soft-
ware. Maturation subsets were determined based on CD45RA,
CD27, and CCR7 expression.

CD127 RNA Measurement by Real-Time Quantitative
Polymerase Chain Reaction (PCR)
Using a cocktail of antibodies targeting CD8, CD14, CD15,
CD16, CD19, CD25, CD34, CD36, CD45RO, CD56, CD123,
TCRγ/δ, HLA-DR, and glycophorin A, followed by magnetic
bead separation (Miltenyi, Auburn, CA), naive CD4+ T cells
were separated by negative selection from PBMCs treated for
2 days with IL-6 or IL-1β. Naive CD4+ T-cell purity was consis-
tently >90%. Naive CD4+ T cells were lysed in RLT buffer (Qia-
gen, Valencia, CA) and stored at −80°C. RNAwas isolated with
an RNeasy mini kit (Qiagen) and was reverse transcribed using
the High-Capacity RNA-to-cDNA kit (Applied Biosystems,
Grand Island, NY). Complementary DNA was amplified by
StepOnePlus (Applied Biosystems, Carlsbad, CA) real-time
quantitative PCR in the presence of SYBR Green (Applied
Biosystems). Primers for IL-7 receptor transcripts were 5′-
AAAGTTTTAATGCACGAT-3′ and 5′-TGTGCTGGATAAA
TTCACATGC-3′. Gene expression was normalized to 18S ribo-
somal RNA, using primers obtained from Applied Biosystems
(part 4 308 329).

CFSE Dye Dilution
Cell division was assessed by labeling PBMCs with CFSE dye
(Molecular Probes Invitrogen, Grand Island, NY) for 10 min-
utes at 37°C. Staining was quenched by the addition of FBS
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for 5 minutes on ice. Cells were then washed and cultured as
described above.

Immunohistochemistry and Quantitative Image Analysis
Immunohistochemical staining using rabbit anti-human
mature IL-1β (ab2105; Abcam) was performed using a biotin-
free polymer approach (Rabbit Polink-1, Golden Bridge Inter-
national) on 5-µm tissue sections mounted on glass slides,
dewaxed, and rehydrated with double-distilled water. Antigen
retrieval was performed by heating sections in 0.01% citraconic
anhydride at 122°C for 30 seconds. Slides were stained with op-
timal conditions determined empirically on an IntelliPATH au-
tostainer (Biocare Medical) that consisted of a blocking step
(Tris-buffered saline [TBS] with 0.05% Tween-20 and 0.5% ca-
sein) for 10 minutes and an endogenous peroxidase block, using
1.5% (v/v) H2O2 in TBS (pH 7.4), for 10 minutes. Rabbit anti-
human mature IL-1β was diluted in blocking buffer and

incubated for 1 hour at room temperature. Tissue sections were
washed, and the Rabbit Polink-1 staining system (Golden Bridge
International) was applied for 30 minutes at room temperature.
Sections were developed with Impact 3,3′-diaminobenzidine
(Vector Laboratories), counterstained with hematoxylin, and
mounted in Permount (Fisher Scientific). Stained slides were
scanned at high magnification (200×) with ScanScope CS System
(Aperio Technologies), yielding high-resolution data for the en-
tire tissue section. Representative regions of interest (500 µm2)
were identified and high-resolution images extracted from
whole-tissue scans. The percentage of the LN area that stained
for IL-1β was quantified using Photoshop CS5 and Fovea tools.

Statistics
Continuous variables were compared between groups, using
the Mann–Whitney U test (GraphPad Prism software, version
5.04). P values of <.05 were considered nominally significant.

Figure 1. Interleukin 6 (IL-6) and interleukin 1β (IL-1β) induce cell cycle initiation in T cells. A, Peripheral blood mononuclear cells from a healthy subject
were stimulated with IL-6 (10 ng/mL), IL-1β (10 ng/mL), or interleukin 7 (IL-7; 2 ng/mL) for 7 days. After 7 days, cells were washed, stained for intranuclear
Ki67, and examined by flow cytometry. B, Summary data of Ki67 induction by IL-6 (n = 10) and IL-1β (n = 11). Group data were compared using the Mann–
Whitney U test. C, IL-1β–induced cycling is highest in memory T cells; IL-6-induces cycling in naive T cells. Central memory, CD45RA−CCR7+CD27+; effector
memory, CD45RA−CCR7−CD27−; naive, CD45RA+CCR7+CD27+.
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RESULTS

Both IL-1β and IL-6 Exposure Can Drive CD4+ T Cells Into Cell
Cycle

Microbial products such as lipopolysaccharide (LPS) have been
strongly linked to immune activation in HIV infection [14, 15],
and these elements are recognized to induce proinflammatory
cytokines such as IL-6 and IL-1β. To begin to understand the
impact of proinflammatory cytokines on T-cell activation and
dysfunction in HIV-infected patients, PBMCs from healthy
subjects were stimulated with IL-1β (10 ng/mL), IL-6 (10 ng/
mL), or, as a positive control, IL-7 (2 ng/mL) for 7 days and ex-
amined for intranuclear Ki67. As peak induction of Ki67 by IL-
7 was demonstrable after 7 days, we used this duration of culture
to test the effects of inflammatory cytokines on cell cycling.

Whereas IL-7 induced dramatic increases in cycling of both
CD4+ and CD8+ T cells, IL-1β induced cycling preferentially
among CD4+ T cells, and although the increase in cycling in-
duced by IL-1β was substantial, the effect was more subtle

after IL-6 exposure (Figure 1A and 1B). Although there was
some variability among subjects, the aggregate induction of
cycling by IL-1β was significant (P = .0002), whereas the effect
of IL-6 was not (P = .1399). As expected, the cells induced to
express Ki67 after exposure to IL-7 included naive, central
memory, and effector memory CD4+ and CD8+ T cells (Fig-
ure 1C). In contrast, cells expressing Ki67 after IL-1β exposure
were primarily central and effector memory CD4+ T cells (Fig-
ure 1C). Low-level cycling was induced by IL-6 in naive CD4+

and CD8+ T cells (Figure 1C).

Cell Cycle Entry Induced by IL-7 or IL-1β Results in Cellular
Proliferation, as Detected by Dilution of CFSE Dye
Induction of Ki67 expression is considered evidence of cell cycle
entry [16]. Earlier work by others [6] and by our group [17] in-
dicates that in vivo cell cycle entry in HIV infection is associated
with an accelerated cellular turnover. To evaluate the effects of
inflammatory cytokines on T-cell proliferation, CFSE-labeled
PBMCs from healthy controls were stimulated with IL-1β,

Figure 2. Inflammatory cytokines drive cell proliferation. A, Peripheral blood mononuclear cells from a healthy control were stained with CFSE dye and
cultured for 7 days with interleukin 6 (IL-6; 10 ng/mL), interleukin 1β (IL-1β; 10 ng/mL), or interleukin 7 (IL-7; 2 ng/mL). After 7 days, cells were washed,
stained for surface markers, and acquired by flow cytometry. B, Summary data of 3 experiments.
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Figure 2 continued. C, Proliferation of CD4+ T-cell maturation subsets. IL-7–induced proliferation is seen in all CD4+ T-cell maturation subsets, whereas IL-
1β–induced proliferation is seen almost exclusively in memory T cells. Data shown are representative of 6 experiments, using 4 different subjects. D,
Proliferation of CD8+ T-cell maturation subsets. Data shown are representative of 6 experiments, using 4 different subjects. Maturation subsets were
determined as outlined in Figure 1.
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IL-6, or IL-7 to track cellular division. As expected, IL-7 in-
duced substantial dye dilution, reflective of cellular division,
in CD4+ and CD8+ T cells (Figure 2A and 2B). IL-1β induced
proliferation of CD4+ T cells and, to a lesser degree, prolifera-
tion of CD8+ T cells, whereas IL-6 induced negligible cell divi-
sion (Figure 2A and 2B). Interestingly, dye dilution induced by
IL-1β resulted in most dividing cells undergoing >4 rounds of
division, whereas proliferation induced by IL-7 appeared more
controlled, with distinct populations undergoing 1 to >4 rounds
of division. This suggests that cells induced to expand after
IL-1β exposure may more readily become “exhausted” because
of many rounds of division. This apparent differential regula-
tion is even more demonstrable when we examined the matura-
tion phenotypes of T cells that had divided in response to these
cytokines (Figure 2C and 2D). Naive, central memory, and
effector memory CD4+ (Figure 2C) and CD8+ (Figure 2D)
T cells underwent 1, 2, 3, or 4 rounds of proliferation after stim-
ulation with IL-7, whereas the many rounds of proliferation
induced by IL-1B were restricted predominantly to central
and effector memory CD4+ T cells (Figure 2C and 2D).

IL-1β and IL-6 Downregulate CD127 on CD4+ T Cells In Vitro
In mice, exposure to IL-6 in vitro downregulates T-cell CD127
expression [18]. This appears to be the case in humans, as well,
because exposure of PBMCs to IL-6 for 2 days significantly
decreased CD127 surface expression on CD4+ T cells but not
on CD8+ T cells (Figure 3A). Similar findings were seen when
purified T cells were exposed to IL-6, suggesting a direct
effect (not shown). Within PBMCs, CD4+ T cells but not
CD8+ T cells also downregulated CD127 upon exposure to
IL-1β (Figure 3B). The IL-6 effect on CD127 downregulation
was restricted to naive CD4+ T cells (Figure 3C), whereas
IL-1β tended to affect naive and central memory CD4+

T cells, but this was not significant when the populations
were analyzed separately (Figure 3D). CD127 is regulated
both transcriptionally and posttranslationally [19]; we next
asked whether reductions in CD127 surface expression were
associated with reductions at the messenger RNA (mRNA)
level. CD127 mRNA was reduced in naive CD4+ T cells in
PBMCs treated with IL-1β or IL-6 (Figure 3E ). Thus, IL-1β
and IL-6 each can downregulate CD127 surface expression in

Figure 3. Interleukin 6 (IL-6) and interleukin 1β (IL-1β) downregulate CD127 surface expression on CD4+ T cells. Representative and summaries of CD127
surface expression assessed on CD4+ and CD8+ T cells in peripheral blood mononuclear cells (PBMCs) treated for 2 days in the presence or absence of 1 ng/
mL IL-6 (A) or 10 ng/mL IL-1β (B). Representative and summaries of CD127 surface expression in CD4+ T-cell subsets assessed in PBMCs treated in the
presence or absence of 1 ng/mL IL-6 (C) or 10 ng/mL of IL-1β (D) for 2 days. E, CD127 messenger RNA expression normalized to 18S ribosomal RNA, as
assessed by real-time polymerase chain reaction analysis, in naive CD4+ T cells separated from PBMCs treated for 2 days with or without IL-6 or IL-1β. Data
shown represent means and SD of 3 experiments. Statistical comparisons were performed using the Wilcoxon signed rank test.
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CD4+ T cells, and this is due at least in part to decreased mRNA
levels.

Preexposure to Either IL-1β or IL-6 Impairs T-Cell Responses
to IL-7
To ascertain whether the downregulation of CD127 was associat-
ed with impairment in responsiveness to IL-7, we assessed IL-7–
induced phosphorylation of Stat5 and Akt in PBMCs pretreated
with IL-6 or IL-1β. Although IL-7–induced Stat5 phosphoryla-
tion was unaffected in CD4+ and CD8+ T cells at 15 minutes
or 2 days (not shown), maintenance of the p-Stat5 signal was di-
minished at 5 days after IL-7 stimulation in CD4+ and CD8+ T
cells pretreated with IL-1β or IL-6 for 2 days (Figure 4A). Neither
IL-1β nor IL-6 affected the IL-7–induced p-Akt signal in either
CD4+ or CD8+ T cells (not shown).

CD4+ T-cell repopulation of the gut is impaired in treated
HIV infection through mechanisms thought to be related to
trafficking defects [20]. Since IL-7 signaling induces a gut-homing
phenotype through upregulation of α4β7 integrin [21], we asked

whether IL-6 or IL-1β can interfere with this process. IL-1β or
IL-6 preexposure attenuated the upregulation of α4β7 on CD4+

and CD8+ T cells 5 days after exposure to IL-7 (but not after 2
days; Figure 4B). Attenuation appeared to be specific for CD127
signaling, because pretreatment with IL-1β or IL-6 had no effect
on expression of α4β7 on T cells induced by retinoic acid (not
shown). Bcl2 is a prosurvival protein that is upregulated by IL-7
and can inhibit cytochrome c release and subsequent apoptosis
[22]. Preexposure of PBMCs to IL-6 or IL-1β for 2 days attenu-
ated the upregulation of Bcl2 seen after 7 days exposure to IL-7
(Figure 4C). Thus, in vitro exposure to IL-1β or IL-6 impairs T-
cell responsiveness to IL-7.

Elevated Inflammatory Cytokine Expression in HIV Infection
While numerous groups have found elevated levels of IL-6 in
the plasma of HIV-infected subjects both before and after
ART initiation [1–3, 23–26], information regarding systemic
levels of IL-1β is scant [27–29]. Plasma levels of IL-1β were
barely detectible, at <1 pg/mL, in both HIV-infected, treated

Figure 4. Interleukin 6 (IL-6) and interleukin 1β (IL-1β) impair T-cell responses to interleukin 7 (IL-7). Peripheral blood mononuclear cells (PBMCs) from a
healthy donor were treated in medium alone or supplemented with 1 ng/mL IL-6 or 10 ng/mL IL-1β for 2 days, followed by addition of 5 ng/mL IL-7. A, Stat-5
phosphorylation was measured 5 days after IL-7 addition. Representative and summary of 7 independent experiments are shown as means and standard
errors. B, Surface staining for the α4β7 heterodimer 5 days after IL-7 addition. C, PBMCs from healthy donors were treated in medium alone or supple-
mented with 10 ng/mL IL-6 or 10 ng/mL IL-1β for 2 days, and intracellular Bcl2 expression was measured in CD4+ and CD8+ T cells 7 days after addition of
IL-7 (2 ng/mL).
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patients and uninfected controls (not shown). We therefore ex-
amined LNs of patients and controls for expression of IL-1β.
Characteristics of these subjects are shown in Table 1. Expres-
sion of mature IL-1β protein was increased in each of 5 LN sam-
ples from untreated, HIV-infected, viremic subjects when
compared to levels in 6 healthy control LNs (Figure 5B). Mature
IL-1β was expressed within all anatomical sites of the LNs in
HIV-infected patients but most prominently within medullary
cords, sinuses, and the T-cell zone (Figure 5A). Although IL-1β
expression was reduced in patients receiving combination ART,
it remained significantly elevated, compared with levels in LNs
from healthy controls (Figure 5), and all but one of 8 treated
patients had IL-1β levels exceeding the median of controls.

DISCUSSION

Despite control of viremia, immune activation and inflammation
persist in a significant proportion of otherwise effectively treated
HIV-infected persons [3]. Among those in whom levels of circu-
lating CD4+ T cells do not increasing to “normal,” activation and
inflammation indices are especially elevated and are strongly

linked tomorbidity andmortality [3,24,30–32].Here, we attempt
to explore the relationship between heightened inflammation and
CD4+ T-cell restoration failure and demonstrate the in vitro ef-
fects of 2 inflammatory cytokines, IL1β and IL6, on T-cell turn-
over and responsiveness to homeostatic signals.

Untreated HIV infection is characterized by increased T-cell
cycling and turnover [5, 6, 13, 17]. With control of viremia,
CD4+ and CD8+ T-cell cycling is typically diminished; however,
cycling and turnover remains elevated in memory CD4+ T cells
among subjects with CD4+ T-cell restoration failure [3, 6]. The
drivers of cycling in this setting are not well characterized.
Here, we show that IL-1β and, to a lesser degree, IL-6 can drive
CD4+ T cells into cell cycle and, in the case of IL-1β, to proliferate.
Interestingly, the cycling and proliferation induced by these in-
flammatory cytokines is distinguishable from the proliferation in-
duced by the homeostatic cytokine IL-7. IL-7 induces cells to
undergo distinct rounds of division that is seen in all CD4+ and
CD8+ T-cell maturation subsets, whereas cycling and proliferation
driven by the inflammatory cytokine IL-1β occurs predominantly
among memory CD4+ T cells and typically results in at least 5
rounds of proliferation in almost all cells that divide.

This is the first work that demonstrates an effect of inflam-
matory cytokines in driving human T-cell turnover. An in
vivo study in mice demonstrated enhanced memory T-cell ex-
pansion in response to antigenic stimulation if IL-1β was coad-
ministered [33], and partially purified IL-1β could enhance the
antigen induced proliferation of human T cells [34].

IL-7 is essential in the maintenance of T-cell homeostasis
[19]. In HIV infection, systemic levels of IL-7 are increased, es-
pecially as circulating CD4+ T-cell numbers fall [10, 35–37]. Yet
despite elevated levels of IL-7, responsiveness to IL-7 is likely
impaired in HIV infection. Decreased expression of CD127 is
demonstrable on both CD4+ and CD8+ T cells in both viremic
HIV infection and in subjects with treatment-controlled vire-
mia [9, 10, 12, 37–40], and in some studies it is linked to
CD4+ T-cell restoration failure [9, 10, 12]. In lymphoid tissues,
access to IL-7 also may be impaired, because the fibroblastic re-
ticular cell network—a conduit for the trafficking of cytokines—
is often disrupted by the deposition of collagen and resultant
fibrosis [41–43]. We show here that exposure of PBMCs to
IL-1β or IL-6 downregulates CD127 on CD4+ T cells but not
on CD8+ T cells and that this effect is likely mediated at least in
part at the level of RNA expression. The mechanism of these
effects is not clear. The effect of IL-6 on CD127 expression may
be mediated through Stat3 signaling because a Stat3 inhibitor
(ethyl-1-(4-cyano-2,3,5,6-tetrafluorophenyl)-6,7,8-trifluoro-4-
oxo-1,4-dihydroquinoline-3-carboxylate) could block IL-6–
mediated CD127 downregulation (data not shown). CD127
gene expression can be promoted by guanine and adenine bind-
ing protein and repressed by growth factor independence 1 [19].
The roles of these factors in IL-6– and IL-1β–mediated CD127
downregulation remain to be determined.

Table 1. Clinical Characteristics of the 6 Healthy Controls and 13
Human Immunodeficiency Virus (HIV)–Infected Subjects Whose
Lymph Nodes Were Examined in This Study

Subject,
by Group

ART
Status

IL-1β
Staining, %

of LN

CD4+ T-Cell
Count,

Cells/mm3

Plasma HIV
RNA,

Copies/mL

HIV infected, ART recipient

1 Treated 2.70 726 159
2 Treated 0.48 470 20

3 Treated 1.53 132 20

4 Treated 11.19 311 20
5 Treated 2.44 495 20

6 Treated 0.85 920 20

7 Treated 3.97 980 20
8 Treated 1.51 485 31

Healthy control

1 NA 0.27 ND ND
2 NA 0.64 ND ND

3 NA 0.22 ND ND

4 NA 0.22 ND ND
5 NA 1.35 ND ND

6 NA 1.65 ND ND

HIV infected, viremic
1 Untreated 4.23 476 1927

2 Untreated 27.62 500 6109

3 Untreated 14.47 521 1862
4 Untreated 6.45 950 13 888

5 Untreated 11.44 ND ND

Abbreviations: ART, antiretroviral therapy; IL-1β, interleukin 1β; LN, lymph node;
NA, not applicable; ND, not done.
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IL-7–induced Stat5 phosphorylation is impaired ex vivo in
both viremic HIV-infected patients and in HIV-infected ART re-
cipients [44, 45]. Because this might be related to decreased ex-
pression of CD127 or a downstream impairment of IL-7
responsiveness, we asked whether exposure of T cells to IL-1β
or IL-6 decreases functional responses to IL-7 in vitro. We
found that preexposure to IL-1β or IL-6 did not impair the initial
induction of IL-7–mediated Stat5 phosphorylation. Yet the ability
of T cells to sustain this signal was significantly diminished 5 days
after IL-7 addition. IL-7 signaling promotes the expression of the
prosurvival factor Bcl2 and the gut-homing integrin α4β7 on
T cells, and we demonstrated that the impairment of IL-7 signal-
ing is also associated with diminished induction of Bcl2 and α4β7
in response to IL-7 when cells are preexposed to IL-6 or IL-1β in
vitro. These effects may mirror what has been seen in HIV infec-
tion, because levels of Bcl2 were lower in T cells from viremic
HIV-positive patients [9, 10], as was the IL-7–induced upregula-
tion of Bcl2 [9]. Although these inflammatory cytokines

decreased CD127 expression, the attenuated IL-7 responsiveness
was not solely attributable to loss of CD127 expression, because
responses to IL-7 were blunted in both CD4+ and CD8+ T cells
despite a relative preservation of CD127 surface expression on
CD8+ T cells after exposure to these inflammatory cytokines.
The mechanism for this effect is unclear, but it is plausible that
exposure to these inflammatory cytokines may impair signaling
events downstream of receptor ligation.

These in vitro effects of IL-1β and IL-6 recapitulate many of
the T-cell phenotypes of immune failure in treated HIV infec-
tion, such as increased cycling of memory CD4+ (but not CD8+)
T cells [3], diminished IL-7 receptor expression on CD4+ T cells
[9, 11, 38], and a failure of IL-7 responsiveness even among
CD127+ T cells [9, 11, 45].

Although evidence of reduced α4β7 integrin surface expres-
sion in treated HIV-infected subjects is lacking, the failure of
gut T-cell restoration in treated HIV infection may be attribut-
able to defective T-cell homing to this site [20]. It is plausible

Figure 5. Interleukin 1β (IL-1β) is expressed in lymph nodes from human immunodeficiency virus (HIV)–infected patients and is decreased but not nor-
malized in patients who received antiretroviral therapy (ART). A, Mature IL-1β stained lymph node (LN) sections from 2 healthy controls, 2 viremic HIV-
positive patients, and 2 HIV-positive patients receiving ART (100× original magnification; insets, 200×). B, Summary data of LN IL-1β staining from 6 healthy
controls, 5 untreated HIV-infected viremic patients, and 8 HIV-positive ART-treated patients.
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that reduced α4β7 expression on T cells may play a role in this
defect, because induction of α4β7 expression on T cells from
patients with immune failure who were treated with IL-7 is as-
sociated with gut T-cell repopulation and decreases in plasma
sCD14 and D-dimer levels [46].

These findings support a model wherein the inflammatory
environment that characterizes immune failure in treated HIV
infection also may contribute to immune pathogenesis via ac-
celerating CD4+ T-cell turnover, impairing homeostatic re-
sponses, and impairing restoration of gut T-cell numbers.
Although it is well documented that systemic levels of IL-6
are elevated in both treated and untreated HIV infection, we
have failed to demonstrate an increase in plasma levels of
IL-1β in HIV-infected subjects (not shown). Yet our earlier
studies showed increased spontaneous expression of IL-1β in
histocultures of LNs from HIV-infected subjects [47], and
Doitsh et al have found that abortive infection in the HIV-
positive lymphoid tissues is linked to increases in IL-1β expres-
sion [48]. In the current study, we confirmed the presence of
elevated LN IL-1β expression by immunohistochemical analysis
during untreated HIV infection and showed that this typically
persists even after therapy. The biologic relevance of this finding
is supported by the frequent demonstration of a peripheral
blood transcriptional signature of inflammasome activation in
patients with CD4+ T-cell restoration failure [49].

These findings suggest that strategies targeting the expression
or function of the proinflammatory cytokines IL-1β and IL-6
may have use in treated HIV infection, not only in preventing
the clinical complications linked to inflammation, but perhaps
also in enhancing CD4+ T-cell restoration. Agents targeting
these elements have been approved for treatment of rheumato-
logic conditions, and in those settings, their toxicities, including
risks for infectious complications, are recognized. Whether
these targeted immunosuppressive interventions are safer or
more effective than more broadly immunosuppressive ap-
proaches in HIV infection will require attention to the design
and monitoring of clinical intervention studies.
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