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We considered the problem of estimating an average treatment effect for a target population using a survey sub-

sample. Our motivation was to generalize a treatment effect that was estimated in a subsample of the National

Comorbidity Survey Replication Adolescent Supplement (2001–2004) to the population of US adolescents. To ad-

dress this problem, we evaluated easy-to-implement methods that account for both nonrandom treatment assign-

ment and a nonrandom 2-stage selection mechanism. We compared the performance of a Horvitz-Thompson

estimator using inverse probability weighting and 2 doubly robust estimators in a variety of scenarios. We demon-

strated that the 2 doubly robust estimators generally outperformed inverse probability weighting in terms of mean-

squared error even under misspecification of one of the treatment, selection, or outcome models. Moreover, the

doubly robust estimators are easy to implement and provide an attractive alternative to inverse probability weighting

for applied epidemiologic researchers. We demonstrated how to apply these estimators to our motivating example.

causal inference; inverse probability weighting; survey; targeted maximum likelihood estimation

Abbreviations: ATE, average treatment effect; DRWLS, doubly robust, weighted least-squares; IPW, inverse probability weighted;

MSE, mean-squared error; NCS-A, National Comorbidity Survey Replication Adolescent Supplement; PATE, population average

treatment effect; TMLE; targeted maximum likelihood estimation.

Use of population-based cohorts and nationally represent-
ative surveys lends external validity to a study: Their inclu-
sion allows inferences to be made about the target population
of interest. In contrast, inferences drawn from studies that use
nonrepresentative samples may be valid for the study sample
but may not be generalizable. External validity (also known
as transportability (1)) of results derived from population-based
cohorts and surveys is threatened when estimation is performed
on a nonrandom subsample. Subsample effect estimates may
not be generalizable to the population if the selection probabil-
ities depended on effect modifiers and if subsample sampling
weights were not utilized (2, 3). In the present article, we com-
pare practical estimators of the population average treatment ef-
fect (PATE). These estimators simultaneously account for
nonrandomized treatment assignment and subsample selection
from a population-based cohort, thereby addressing internal
and external validity.

The present study was motivated by the problem of gener-
alizing a treatment effect estimated in a subsample that was
created using a 2-stage selection process. In the first stage,

adolescents were selected into a nationally representative sur-
vey of US adolescent mental health, the National Comorbid-
ity Survey Replication Adolescent Supplement (NCS-A) (4).
In the second stage, a subsample of these participants had
biomarker data measured. Our interest was in estimating
the effect of a nonrandomized treatment, (residence in a dis-
advantaged neighborhood) on cortisol slope (i.e., the rate of
decline in cortisol levels over the course of an interview). Our
scenario is different from the missing data pattern generally
considered in the causal inference and missing data literature
because we did not observe any data for individuals not in the
survey. Our goal was to harness the available data and the na-
tionally representative sample to generalize our results to the
US population of adolescents. This required accounting for
possible confounding due to the nonrandomized treatment
assignment and possible lack of external validity due to the
2-stage selection mechanism.

Previous research has suggested and evaluated methods
for generalizing results from randomized trials to target pop-
ulations (2, 3), but there little has been written that extends
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this to observational studies. Doubly robust methods, which
are consistent (i.e., converge to the true population average
effect as the sample size goes to infinity) under certain types
of model misspecification, have been used to adjust for nonran-
dom treatment assignment and/or nonrandom selection, right-
censoring, or missing data (5–13). However, implementation
of these estimators can be challenging. This may contribute
to the continued popularity of the simpler Horvitz-Thompson
inverse probability weighted (IPW) estimators, despite concerns
about their efficiency and robustness (14). A recent advance is
that targeted maximum likelihood estimation (TMLE) was im-
plemented in standard statistical software (11), thereby facilitat-
ing its accessibility. However, we know of no studies that have
used TMLE in the context of survey data with weights. Further-
more, although a discussion of these methods is taking place in
the biostatistics literature, it has yet to receive much attention in
the epidemiology literature.
We first present results from a simulation study inwhichwe

compare the performances of different estimators under cor-
rect model specification and various model misspecifications.
We compare 3 estimators: IPW; a doubly robust, weighted
least-squares (DRWLS) estimator; and a TMLE (15, 16).
We then demonstrate how to apply these methods to the moti-
vating example: using data from a subsample of the NCS-A
to estimate the effect of residence in a disadvantaged neigh-
borhood on cortisol slope in the target population of US
adolescents. We aim to provide practical guidance on how to
generalize average effect estimates from a survey subsample to
a target population in the presence of measured confounders,
effect heterogeneity, and nonrandom subsample selection.

METHODS

We consider a scenario in which individuals are selected
into a survey with known probabilities. Treatment informa-
tion and covariates are fully observed for all participants se-
lected into the survey, but outcome data are only available for
a subset of the survey sample. LetW be the vector of baseline
covariates, A be a binary (0/1) variable indicating treatment,
Δsvy be a binary variable indicating selection into the survey
sample, Δsub be a binary variable indicating selection into the
subsample, and Y be a continuous outcome of interest. In the
language of potential outcomes, Y1i is the outcome for indi-
vidual i under treatment A = 1; similarly, Y0i is the outcome
for individual i under treatment A = 0. The difference in these
potential outcomes is the individual treatment effect.
Our estimand of interest is the PATE, E(Y1 − Y0), with the

expectation taken across the target population (17). Other av-
erage treatment effects (ATEs) could be considered where the
expectation is taken with respect to different target popula-
tions, for example, the survey sample ATE, E(Y1 – Y0|Δsvy =
1), and the subsample ATE, E(Y1 – Y0|Δsub = 1). In Web
Appendix 1 (available at http://aje.oxfordjournals.org/), we
show identification for each ATE under the assumptions of
known survey sampling weights (a typical assumption in
the survey literature (18)), no unmeasured confounders, con-
sistency, and positivity.
We compare 3 methods for estimating the PATE. The R

code (RFoundation for Statistical Computing, Vienna, Austria)
necessary to implement each is provided in Web Appendix 2.

Inverse probability weighting estimation

The IPWestimator uses inverse probability of treatment and
selection weights that are obtained by multiplying inverse
probability of survey selection weights, inverse probability
of treatment weights, and inverse probability of subsample se-
lection weights, as shown in equation 1. Inverse probability of
survey selection weights are known and defined as follows:

wΔsvy¼1 ¼ 1
PðΔsvy ¼ 1jWÞ :

Inverse probability of treatment weights for each a in {0,1} are
defined as follows:

wA¼ajΔsvy¼1¼ IðA ¼ aÞ
PðA ¼ ajΔsvy ¼ 1;WÞ :

Inverse probability of subsample selection weights for each a
in {0,1} are defined as follows:

wΔsub¼1jA¼a;Δsvy¼1¼ IðΔsub ¼ 1Þ
PðΔsub ¼ 1jA ¼ a;Δsvy ¼ 1;WÞ :

For each a in {0,1}, define

wA¼a;Δsvy¼1;Δsub¼1 ¼ 1
PðΔsvy ¼ 1jWÞ ×

IðA ¼ aÞ
PðA ¼ ajΔsvy ¼ 1;WÞ

×
IðΔsub ¼ 1Þ

PðΔsub ¼ 1jA ¼ a;Δsvy ¼ 1;WÞ

¼ IðA ¼ a;Δsub ¼ 1;Δsvy ¼ 1Þ
PðA ¼ a;Δsub ¼ 1;Δsvy ¼ 1jWÞ :

ð1Þ
The aboveweights are inverse conditional probabilities, which
can be estimated using logistic regression. For example, P(A =
a|Δsvy = 1,W) can be estimated using predicted probabilities
from a logistic regression in which A is the outcome and W
is a vector of covariates among those in the survey. The IPW
estimator of the PATE is calculated using the aboveweights for
the r individuals in the subsample:

dPATE ¼
Pr

i¼1 Yiw
A¼1;Δsvy¼1;Δsub¼1
iPr

i¼1 w
A¼1;Δsvy¼1;Δsub¼1
i

�
Pr

i¼1 Yiw
A¼0;Δsvy¼1;Δsub¼1
iPr

i¼1 w
A¼0;Δsvy¼1;Δsub¼1
i

:

ð2Þ

Targeted maximum likelihood estimation

For the TMLE, we modified the implementation available
in the tmle package in R (11), as described inWebAppendix 2.
Additional details of TMLE implementation for estimating
an ATE with survey sample data are provided inWeb Appen-
dix 1. Below we summarize the main steps involved.

1. Obtain predicted values, Ŷ0, of the outcome conditional
on the treatment and covariates using a linear regression
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of Y as a function of A and W among participants for
whom Y is observed. Although we use a linear regression
for comparability with DRWLS estimation, described
below, it is also possible to use data-adaptive methods
(e.g., machine learning) and a variety of outcome types.

2. For every individual i, compute the covariate Hi ¼
Aiw

A¼1;Δsvy¼1;Δsub¼1
i � ð1� AiÞwA¼0;Δsvy¼1;Δsub¼1

i .
3. Compute the estimated coefficient β̂ in a regression of Y on

H usingŶ0 as an offset. Using G-computation, compute the
difference between the counterfactual outcomes predicted
by this regression under assignment to A = 1 and to A = 0
for each participant in the survey sample. The TMLE is cal-
culated as a weighted sum of this difference across the sur-
vey sample participants using the survey weights.

Readers unfamiliar with G-computation should read the in-
troduction by Snowden et al. (19). Briefly, G-computation
uses the marginal distribution of covariates in a standardiza-
tion procedure. This can be thought of as an extension of
standardizing mortality rates by the age distribution in a stan-
dard population—a common epidemiologic practice. One fits
a model of the outcome as a function of treatment and covar-
iates in the observed sample and then applies the model to the
distribution of covariates in the standard population to predict
the counterfactual outcomes for each individual.

Doubly robust, weighted least-squares estimation

The DRWLS estimator combines weighted regression
with G-computation. This estimator was first suggested by
Marshall Joffe, reported in an article by Robins et al. (14),
and it has been previously evaluated (5, 14). It uses the fol-
lowing steps:

1. UsewA¼a;Δsvy¼1;Δsub¼1 as weights in aweighted least-squares
linear regression of Y given A andW among participants in
the subsample. Using G-computation, predict counter-
factual outcomes standardized to the survey sample.

2. Use the counterfactual outcomes to estimate the survey
sample ATE.

3. Weight this estimate by the survey weights to estimate the
PATE.

TMLE and DRWLS estimators are doubly robust. In our ap-
plication, double robustness means that the estimators are
consistent if either the outcome model is correct or the com-
bined treatment-selection weightsw

A¼a;Δsvy¼1;Δsub¼1
i from equa-

tion 1 are correct.

SIMULATION STUDY

Overview and set-up

We consider a simplified case with 2 continuous covari-
ates: W = [W1, W2]′. Let the observed data O = (Δsvy = 1,
W, A, Δsub, ΔsubY). We assume Δsvy probabilities are known,
there are no unobserved confounders, and no additional inter-
mediate variables are observed between A and Y. Figure 1
depicts the data-generating mechanism.

The simulation is designed to be similar to the case study,
which is detailed further below. Figure 2 provides a diagram

of the complete data and the observed data. Under the causal
inference framework that we are using, it is assumed that the
observed data-generating process consists of several steps,
the specific order of which is necessary for the identification
result and corresponding methods implementation (20). First,
selection into the survey is determined, where the probability
of selection depends on W1. For researchers designing the
survey, W1 is known for all individuals in the population.
For all other analysts, W1 is not observed for those not se-
lected into the survey. Second, for all individuals selected
into the survey, we observe W2 and A, where the probability
of A = 1 depends on W2. Third, selection into the subsample
(Δsub) is determined, where the probability of selection de-
pends on W1 and W2. Fourth, for those in the subsample,
we observe 1 of 2 counterfactuals, Y0 or Y1, which correspond
to the treatment A actually received.We include a detailed de-
scription of the data-generating process and code to imple-
ment it in Web Appendix 3.

As seen in Figure 1, W2 acts as a confounder. W1 directly
modifies the treatment effect and is related to selection into
the survey and subsample. Figure 3 provides a summary of
imbalance in W1, W2, and Y across treatment groups and
W1,W2, and A across selection groups. A consistent estimate
of the subsample ATE requires adjustment for confounding
by W2. A consistent estimate of the PATE also requires ad-
justment for differential selection by W1.

The simulation reflects practical positivity violations (i.e.,
when subsets of the sample have large weights) similar to the
case study. Table 1 gives the treatment and selection weights
for both the simulation and the case study.

Weevaluatehowwell IPW,TMLE,andDRWLSestimators
perform in estimating the PATE when all models are
correctly specified and when 1 or more models are misspeci-
fied (see Table 2 for model specifications). We include mis-
specification of multiple models simultaneously but caution
that performance in these scenarios depends on the particulars

W1

W2

Δsvy

Δsub

A

Y

Figure 1. The data-generating mechanism used in our study. A,
treatment variable; Δsub, selection into the subsample variable; Δsvy,
selection into the survey variable; W1, summary baseline covariate;
W2, summary baseline covariate; Y, outcome variable.
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of the data-generating process and misspecifications (14).
Performance is evaluated by mean percent bias, mean vari-
ance, mean-squared error (MSE), and 95% confidence interval
coverage across the 1,000 simulations. For each simulation
iteration, variance and the 95% confidence interval are esti-
mated from 500 bootstrapped samples. The percentile method
is used for the confidence interval.

Results

Table 3 provides a summary of method performance. Gen-
erally, under correct and incorrect model specification,
DRWLS estimation outperforms TMLE and IPWestimation,
which corroborates the results of other simulations involving
practical positivity violations (5, 14). Under correct specification

Population
(n = 100,000)

Survey Sample
(n = 10,000)

Survey Subsample
(n = 5,000)

Complete Data Observed Data

Δsvy Δsub W A YA=0 YA=1 W A YA=0 YA=1

0 0 X X
X X

X X

1 0 X X
X X

X X
X X

1 1 X X
X X

X X
X

X X X

Figure 2. Simulation set-up. X in a box indicates that data was present. A, treatment variable; Δsub, selection into the subsample variable; Δsvy,
selection into the survey variable; W, the vector of summary baseline covariates; Y, outcome variable.
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Figure 3. Balance across A) treatment and B) selection groups in the simulation. The standardized mean difference is the difference in means
between the 2 groups standardized by the standard deviation in the first group.W1, summary baseline covariate;W2, summary baseline covariate;
Y, outcome variable.

740 Rudolph et al.

Am J Epidemiol. 2014;180(7):737–748



of all models, DRWLS estimation and TMLE perform simi-
larly and outperform IPWestimation in terms of variance and
MSE. This result reflects known efficiency problems with
IPWestimators that havebeen thoroughly discussed in the bio-
statistics literature but are perhaps less well known among ep-
idemiology audiences (14). TMLE and IPW estimators
perform similarly and worse than DRWLS estimators in
terms of percent bias and 95% confidence interval coverage
under correct model specification. This result may seem
surprising, and we discuss it further below.

The advantages of DRWLS estimation and TMLE over
IPW estimation are pronounced under misspecification of
the treatment or selection models. This result is expected,
because IPW estimation relies exclusively on the inverse
probability weights to account for nonrandom subsample
selection and nonrandom treatment assignment. In contrast,
because DRWLS estimators and TMLE are doubly robust,
they will be consistent under misspecification of the treat-
ment or subsample selection models if the outcome model
is correctly specified.

Under correct specification of all models, we expect esti-
mates from IPW, DRWLS, and TMLE to be consistent. How-
ever, in several studies (e.g., 5–7, 14, 21, 22), authors have
warned that both IPW estimators and doubly robust estimators
are sensitive in scenarios of practical positivity violations, as is
the case in this simulation. We may expect IPW estimation
to be the most sensitive to positivity violations, because
there is no outcome model to use for extrapolation. When
the outcome model is correctly specified, we expect the
DRWLS estimator and TMLE to outperform the IPWestima-
tor because of successful extrapolation using the outcome
model. This is true for DRWLS estimation but not for this im-
plementation of TMLE, which performs similarly to IPW
estimation in terms of percent bias and 95% confidence

interval coverage. This is because in fitting the model used
in G-computation, DRWLS estimation uses the combined
treatment-selection weights for the treatment and selection
conditions that were actually observed, whereas TMLE
uses the combined treatment-selection weights for the ob-
served and unobserved counterfactual treatment and selec-
tion conditions. If individuals usually receive their most
likely treatment and selection assignment, then using the
counterfactuals can result in greater positivity violations
and thus poorer performance of TMLE as compared with
DRWLS estimators.

We examined the extent to which there is a penalty for un-
necessary adjustment for nonrandom treatment assignment or
sample selection. We considered 2 scenarios for each of the
treatment and subsample selection models (Table 4). In this
limited simulation, there were no noticeable penalties for over-
adjustment. Table 5 shows the results from the more extreme
second scenario. Results from the first scenario were similar.

CASE STUDY

Overview and set-up

We now apply the estimators evaluated in the simulation to
generalize the effect of disadvantaged neighborhood residence
on cortisol slope to the population of US adolescents. The
NCS-A has been described previously (4, 23–25). Neighbor-
hood disadvantage was measured using an established scale
(26) that had been used previously with NCS-A residence
data geocoded to census tracts (27). Cortisol is a hormone
involved in the hypothalamic-pituitary-adrenal axis (28).
Salivary cortisol samples were taken immediately before
and after the survey interview. Cortisol slope was defined as
(preinterview level− postinterview level)/length of interview.

Table 1. Characteristics of Selection and Treatment Weightsa,b in the Simulation and Case Study, National

Comorbidity Survey Replication Adolescent Supplement, 2001–2004

Weight
Simulation Case Study

Mean (SD) Minimum Maximum Mean (SD) Minimum Maximum

wΔsvy¼1 1.009 (1.009) 0.020 20.300 0.948 (1.166) 0.041 13.460

wA¼1jΔsvy¼1jA ¼ 1 0.994 (0.607) 0.529 13.600 0.931 (0.878) 0.377 8.799

wA¼0jΔsvy¼1jA ¼ 0 0.998 (0.655) 0.491 16.580 1.020 (0.826) 0.641 19.180

wΔsub¼1jA¼1;Δsvy¼1jΔsub ¼ 1 1.009 (0.562) 0.339 7.148 0.995 (0.631) 0.332 5.914

wΔsub¼1jA¼0;Δsvy¼1jΔsub ¼ 1 1.003 (0.593) 0.280 6.044 1.002 (0.574) 0.401 5.598

wΔsub¼1;A¼1jΔsvy¼1jΔsub ¼ 1;A ¼ 1 0.992 (1.177) 0.182 22.620 0.883 (1.110) 0.152 14.560

wΔsub¼1;A¼0jΔsvy¼1jΔsub ¼ 1;A ¼ 0 0.995 (0.565) 0.269 7.907 1.069 (1.558) 0.315 24.860

wΔsub¼1;A¼1;Δsvy¼1jΔsub ¼ 1;A ¼ 1 1.023 (3.421) 0.006 84.080 1.079 (2.699) 0.009 34.380

wΔsub¼1;A¼0;Δsvy¼1jΔsub ¼ 1;A ¼ 0 0.993 (1.687) 0.0116 17.910 1.303 (2.990) 0.019 53.160

Abbreviations: A, treatment variable; Δsub, selection into the subsample variable; Δsvy, selection into the survey

variable.
a The simulation weights shown are the true weights. In the case study, the survey weights were assumed known

and the remaining weights were estimated.
b Weights were stabilized by including the marginal probability in the numerator to facilitate comparison. For

example, wA¼1jΔsvy¼1jA ¼ 1 ¼ meanðPðA ¼ 1jΔsvy ¼ 1;WÞÞ
PðA ¼ 1jΔsvy ¼ 1;WÞ :
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Cortisol samples were assayed for a subsample of 2,490 partic-
ipants because of budget limitations. Treatment and covariate
datawere available for all participants. Analysis of the relation-
ship between neighborhood disadvantage and cortisol slope
among the subsample of participants with cortisol data has
been previously reported (27). We excluded those adoles-
cents whose cortisol levels may not have been at risk to be
influenced by a stressful neighborhood environment (e.g.,
current smokers, drug users, persons taking birth control,
those using steroid inhalers) as well as 8 influential outliers,
for a total of 6,566 participants in the survey sample and
1,600 participants with cortisol measurements. Informed

assent and consent were obtained from each adolescent and
his/her parent or guardian. The Human Subjects Committees
of Harvard Medical School and the University of Michigan
approved recruitment and consent procedures.
Web Figure 1 depicts the extent to which 1) NCS-A par-

ticipants for whom we had cortisol measures compare to
participants without across possible confounding variables
and 2) NCS-A participants who lived in disadvantaged
neighborhoods compared with those from nondisadvantaged
neighborhoods. Participants for whom we did and did not
have cortisol measurements were similar except for age, av-
erage bedtime on the weekends, the amount of time during

Table 2. Model Specifications

Specification
Treatment

Model

Subsample

Selection Model

Outcome

Model

Correct specification A∼W2 Δsub∼W1 +W2 Y∼A +W2 +AW1

W2 = Sum(Z1:Z16) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16) W2 = Sum(Z1:Z16)

Moderately misspecified treatment A∼W2mod Δsub∼W1 +W2 Y∼A +W2 +AW1

W2mod = Sum(Z2:Z16) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16) W2 = Sum(Z1:Z16)

Majorly misspecified treatment A∼W1 Δsub∼W1 +W2 Y∼A +W2 +AW1

W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16) W2 = Sum(Z1:Z16)

Moderately misspecified outcome A∼W2 Δsub∼W1 +W2 Y∼A +W2mod +AW1

W2 = Sum(Z1:Z16) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16) W2mod = Sum(Z2:Z16)

Majorly misspecified outcomea A∼W2 Δsub∼W1 +W2 Y∼A +AW1

W2 = Sum(Z1:Z16) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16)

Majorly misspecified outcomea A∼W2 Δsub∼W1 +W2 Y∼A +W2 +W1

W2 = Sum(Z1:Z16) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16) W2 = Sum(Z1:Z16)

Moderately misspecified selection A∼W2 Δsub∼W1mod +W2 Y∼A +W2 +AW1

W2 = Sum(Z1:Z16) W1mod = Sum(Z2:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16) W2 = Sum(Z1:Z16)

Majorly misspecified selection A∼W2 Δsub∼W1 Y∼A +W2 +AW1

W2 = Sum(Z1:Z16) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16)

Misspecified treatment and selection A∼W1 Δsub∼W1 Y∼A +W2 +AW1

W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16)

Misspecified treatment and outcome A∼W1 Δsub∼W1 +W2 Y∼A +W2 +W1

W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16) W2 = Sum(Z1:Z16)

Misspecified selection and outcome A∼W2 Δsub∼W1 Y∼A +W2 +W1

W2 = Sum(Z1:Z16) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16)

Misspecified treatment, selection,
and outcome

A∼W1 Δsub∼W1 Y∼A +W2 +W1

W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6) W1 = Sum(Z1:Z6)
W2 = Sum(Z1:Z16)

Abbreviations: A, treatment variable; Δsub, selection into the subsample variable;W1, summary baseline covariate;

W2, summary baseline covariate; W1mod, misspecified summary baseline covariate; W2mod, misspecified summary

baseline covariate; Y, outcome variable; Z, individual baseline covariate that contributes to summary baseline

covariate.
a There were 2 versions of the majorly misspecified outcome model.
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the participant’s life his or her mother worked, and the inter-
view taking place in the summer. In contrast, participants
who lived in disadvantaged neighborhoods differed from

those in nondisadvantaged neighborhoods in terms of ex-
pected demographic variables like race, income, and mater-
nal educational level.

Table 3. Method Performance Under Correct Specification and Misspecification Across the 1,000 Simulations

Specification

IPW DRWLS TMLE

Mean
% Bias

Mean
Variance

95% CI
Coveragea

MSE
Mean
% Bias

Mean
Variance

95% CI
Coveragea

MSE
Mean
% Bias

Mean
Variance

95% CI
Coveragea

MSE

Correct specification −6.7 8.225 85.0 10.978 0.2 0.203 93.0 0.219 −8.4 0.252 77.9 0.402

Moderately misspecified
treatment

−30.3 7.708 79.3 10.692 −0.1 0.203 94.4 0.207 −7.2 0.234 81.7 0.334

Majorly misspecified
treatment

−176.0 5.154 15.8 55.133 0.0 0.202 94.4 0.206 −7.2 0.225 81.7 0.326

Moderately misspecified
outcome

−6.7 8.225 85.0 10.978 −0.8 0.266 94.5 0.282 −6.1 0.306 87.2 0.376

Majorly misspecified
outcomeb

−6.7 8.225 85.0 10.978 −3.4 1.031 91.0 1.168 −0.2 0.920 93.5 1.104

Majorly misspecified
outcomeb

−6.7 8.225 85.0 10.978 −13.1 2.247 79.8 3.285 3.4 10.441 85.5 14.800

Moderately misspecified
selection

−197.6 3.677 9.0 66.382 −0.2 0.193 94.9 0.193 −7.2 0.218 81.0 0.320

Majorly misspecified
selection

−6.8 5.701 87.8 6.23 −0.1 0.201 94.2 0.208 −7.2 0.23 80.3 0.329

Majorly misspecified
treatment and selection

−169.2 4.174 15.1 50.242 −0.8 0.198 94.5 0.203 −7.7 0.22 80.8 0.326

Majorly misspecified
treatment and outcome

−176 5.154 15.8 55.133 −10.1 2.359 83.4 3.039 −14.9 9.796 84.6 14.64

Majorly misspecified
selection and outcome

−6.8 5.701 87.8 6.23 −15.3 2.148 80.8 3.009 −68.7 9.697 89.4 23.395

Majorly misspecified
treatment, selection,
and outcome

−169.2 4.174 15.1 50.242 −15.1 2.339 82.3 3.235 −6.6 8.986 85.9 13.278

Abbreviations: DRWLS, doubly robust weighted least-squares estimator; IPW, inverse probability weighted estimator; MSE, mean-squared error;

TMLE, targeted maximum likelihood estimator.
a The 95% confidence interval coverage is percentage of simulations for which the 95% confidence interval contains the true population average

treatment effect.
b There were 2 versions of the majorly misspecified outcome model.

Table 4. Model Misspecification: Overadjustment

Description Treatment Model Subsample Selection Model Outcome Model

Moderate treatment overadjustment

True model Random Δsub∼W1 +W2 Y∼A +W2 +AW1

Misspecified model A∼W2 Δsub∼W1 +W2 Y∼A +W2 +AW1

Major treatment overadjustment

True model Random Δsub∼W1 +W2 Y∼A +W2 +AW1

Misspecified model A∼W2 +W2
2 Δsub∼W1 +W2 Y∼A +W2 +AW1

Moderate selection overadjustment

True model A∼W2 Δsub∼W1 Y∼A +W2 +AW1

Misspecified model A∼W2 Δsub∼W1 +W2 Y∼A +W2 +AW1

Major selection overadjustment

True model A∼W2 Random Y∼A +W2 +AW1

Misspecified model A∼W2 Δsub∼W1 +W2 Y∼A +W2 +AW1

Abbreviations: A, treatment variable; Δsub, selection into the subsample variable;W1, summary baseline covariate;

W2, summary baseline covariate; Y, outcome variable.
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The survey weights and estimated inverse probability of
treatment and selection weights for these case study data are
shown in Table 1. Positivity violations can be a substantial
issue in observational studies (29, 30), and we see evidence
of practical positivity violations here. The survey weights
are given and assumed known (25). Unlike in the simulation,
we do not know the true treatment and selection models.
Consequently, it is likely that multiple models are misspeci-
fied with the degree of misspecification unknown. For de-
tails on model specification and weight estimation, see Web
Appendix 4.

Results

Figure 4 plots the estimates and 95% confidence intervals
for the expected effect of living in a disadvantaged neigh-
borhood on cortisol slope using different methods. The 95%
confidence intervals were calculated with the percentile method
using 1,000 bootstrapped samples. Results when the 8 outliers
were included are shown inWeb Figure 2. The relative perform-
ance of the estimators was similar.
We first present simpler methods in which we adjust for

none or only some of the sources of nonrandomness. These
methods may be biased for the primary estimand of interest—
the PATE—but may consistently estimate other estimands,
specifically, the survey sample ATE or the subsample ATE.
Under the naïve approach, there is no bias correction. The

inverse probability of treatment weighted estimator adjusts
for nonrandom assignment of the treatment only. If the treat-
ment model is correctly specified, the inverse probability of
treatment weighted estimate will be consistent for the NCS-A
subsample ATE but may be biased for the PATE. The inverse
probability of treatment and survey sample selectionweighted
estimator adjusts for nonrandom treatment assignment and
selection into the survey. If there is nonrandom subsample
selection, it may be biased for the population and survey sam-
ple ATEs. The inverse probability of treatment and subsample

selection weighted estimator adjusts for nonrandom treat-
ment assignment and nonrandom subsample selection. If the
2 models are correctly specified, the inverse probability of
treatment and subsample selection weighted estimator will
consistently estimate the survey sample ATE but may be bi-
ased for the PATE. In the presence of treatment effect hetero-
geneity when subsample selection probabilities depend on
effectmodifiers, the subsampleATE, surveysampleATE, and
PATE may differ. We see evidence of this in Figure 4. Al-
though the estimates of the subsample ATE and survey sample
ATE appear similar, they are slightly more negative than the
estimate of the PATE.
The IPW, TMLE, and DRWLS estimators adjust for non-

random assignment of the treatment, nonrandom selection
into the survey sample, and nonrandom selection into the
subsample. Under correct model specification, these methods
are consistent estimators of the PATE. TMLE and DRWLS es-
timators have the additional advantage of double robustness.
Using DRWLS estimation, we conclude that the cortisol rate
difference comparing US adolescents in disadvantaged versus
nondisadvantaged neighborhoods likely falls between −3.68
and −0.06 × 10−2 ng/mL/hour.
The wider TMLE 95% confidence interval relative to the

IPW95% confidence interval may seem surprising, given that
TMLE was more efficient than IPW estimation in the simu-
lation under correct model specification and under most
model misspecifications. However, in scenarios in which the
outcome regression model was misspecified to exclude treat-
ment effect heterogeneity (either alone or in addition to other
misspecified models, including the realistic scenario in which
allmodels aremisspecified), TMLEwas notmore efficient than
IPW estimation. In these scenarios, the TMLE confidence in-
terval was wider than the IPW and DRWLS confidence inter-
vals by amounts that were the same as or more extreme than
those from the case study in several hundred of the 1,000 sim-
ulation draws. This reflects the fact that under practical posi-
tivity violations and model misspecification, TMLE is not

Table 5. Results Under Misspecification of the Treatment and Selection Models Across the 1,000 Simulations

Estimatora
Treatment Model Selection Model

Mean %
Bias

Mean
Variance

95% CI
Coverageb

MSE
Mean %
Bias

Mean
Variance

95% CI
Coverageb

MSE

Correct specification

IPW −1.887 6.625 88.8 7.330 −1.330 2.358 93.5 2.353

DRWLS −0.036 0.195 95.1 0.197 −0.731 0.179 94.5 0.178

TMLE −6.554 0.227 82.6 0.296 −2.696 0.178 92.3 0.192

Overadjustment

IPW −1.967 6.619 89.4 7.291 −1.855 2.208 93.0 2.269

DRWLS −0.037 0.195 95.1 0.197 −0.733 0.179 94.5 0.178

TMLE −6.554 0.227 82.5 0.296 −2.699 0.178 92.2 0.192

Abbreviations: DRWLS, doubly robust weighted least squares estimator; IPW, inverse probability weighted

estimator; MSE, mean-squared error; TMLE, targeted maximum likelihood estimator.
a Adjustment when the treatment and selection mechanisms are completely random.
b The 95% confidence interval coverage is percentage of simulations for which the 95% confidence interval

contains the true population average treatment effect.
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necessarily expected to have a smaller confidence interval
width than does IPW estimation.

Just as we assess whether there are penalties for unnecessary
adjustment for nonrandom treatment and nonrandom sub-
sample selection in the simulation study (see Table 5), we com-
pare case study results using more parsimonious and less
parsimoniousmodels.Whenmore parsimonious subsample se-
lection models are used, the confidence interval of each of the
estimators slightly narrows but relative performance stays the
same. Interval width is insensitive to parsimony in the treat-
ment model (see Web Appendix 5 and Web Figure 3).

DISCUSSION

We evaluated estimators of the PATE in the presence
of treatment effect heterogeneity, nonrandom treatment as-
signment, a 2-stage selection process, and practical posi-
tivity violations. Using a simulation study, we found that a

DRWLS estimator and a TMLE have lower MSE than an
IPW estimator under correct model specification and in all
but 2 model misspecification scenarios. DRWLS estimation
had the lowest percent bias and variance and best confidence
interval coverage under correct model specification and in
most model misspecification scenarios. We derived the effi-
cient influence function and presented a TMLE that incorpo-
rated survey sampling weights in Web Appendix 1, which
can be easily implemented using the available tmle package
in R (code presented in Web Appendix 2).

We agree with others (2, 3, 6, 14) that estimating an aver-
age effect standardized to a population of interest is a practi-
cal goal. It can increase the interpretability and applicability
of a study’s conclusions, provided one recognizes the as-
sumptions and limitations involved. First, a PATE will not
provide information about treatment effect heterogeneity.
Second, estimation can be difficult in the presence of posi-
tivity violations. In cases in which the weights are highly
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Figure 4. Illustrative example: average effect estimates and 95% confidence intervals using data from the National Comorbidity Survey Replica-
tion Adolescent Supplement (2001–2004) subsample. The inverse probability of treatment weighted estimator (IPTW) estimates the average treat-
ment effect in the survey subsample. The inverse probability of treatment and survey sample selection weighted estimator (IPTSvyW) also estimates
the average treatment effect in the survey subsample. The inverse probability of treatment and subsample selection weighted estimator (IPTSubW)
estimates the average treatment effect in the survey sample. The inverse probability weighted (IPW) estimator, doubly robust, weighted least-
squares (DRWLS) estimator, and targeted maximum likelihood estimator (TMLE) estimate the population average treatment effect.
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variable, a sensitivity analysis that varies model specifica-
tions is recommended (14), and there exist methods to iden-
tify possible resulting biases (22, 31). Nonparametric
methods of model specification may improve robustness to
model misspecification (32).
Our demonstration of the poor performance of an IPW

estimator is not new. IPW estimators have well-known effi-
ciency problems and can be biased because of structural or
practical positivity violations (14). Much has been published
on this in the biostatistics literature (e.g., 7, 14), but IPW es-
timation continues to bewidely used by epidemiologists, per-
haps because it is straightforward to implement in standard
statistical software. We hope demonstrating the similarly
straightforward implementation of DRWLS estimation and
TMLE coupled with their superior performance over IPWes-
timation in terms ofMSEwill cause use of these estimators to
gain popularity.
We evaluated the robustness of our simulation results in a

series of sensitivity analyses. First, we truncated the most
extreme 2% of treatment and selection weights. This may
lessen both bias and variance that are due to extreme weights,
though it may also increase bias due to misspecification (22,
33). Generally, this resulted in a higher percent bias across
estimators (bias was particularly high for IPW), smaller var-
iance, larger MSE for IPW estimation, and lower MSE for
DRWLS estimation and TMLE. Optimal truncation strate-
gies have been examined (34); identifying the best one for
the data-generating mechanism considered here is an area
for future work. Second, we reran the simulations after re-
moving positivity violations in the data-generating distribu-
tions. This resulted in consistent estimates, 95% confidence
interval coverage of approximately 95%, and substantially
lower variance and MSE across estimators when the models
were correctly specified. In this case, TMLE and DRWLS es-
timators clearly outperformed the IPW estimator. Third, we
modified the data-generating mechanism so that both W1

andW2 were associated with probability of treatment and prob-
ability of selection. Performance of the DRWLS estimator was
similar and performance of the IPW estimator and TMLE
worsened because of greater positivity violations. Fourth, we
repeated simulations under no effect heterogeneity. Weights
were unchanged in this scenario, but finite sample bias im-
proved because of less data sparsity. Percent bias and confi-
dence interval coverage improved for IPW estimation and
TMLE. Variance and MSE improved for all estimators.
In our simulation and example, we considered a scenario in

which the full set of covariates was measured in the larger
survey sample and selection into the subsample only affected
missingness of the outcome variable. One could also conceive
of scenarios in which the general missing data pattern (due
to nonresponse, sample selection, or right-censoring) extends
to some subset of covariates. We explain how such a scenario
would alter our assumptions and estimator performance in
Web Appendix 6.
Our simulation study has some limitations. First, simulations

can only give a rough approximation of the sampling distribu-
tion of the estimators (14). Second, there are a dozen or more
estimators that could have been assessed and compared, includ-
ing other implementations of TMLE (6, 13, 35). We chose to
focus on a smaller set of estimators that are particularly

straightforward to implement and used the implementation of
TMLE that is available in the R software package (11). Other
estimators and TMLE implementations may have outper-
formed those we considered, in particular the TMLE imple-
mentation, in which the weights are incorporated into a
weighted logistic regressionmodel for the updated outcome ex-
pectation instead of as part of covariate H (defined in step 2 of
the TMLE description) (36). Future work should develop
easy-to-use software packages that implement these estimators.
Third, the approach shown in this article is not a fully design-
based survey analysis. For example, we ignored survey sam-
pling strata in our bootstrapping procedure. This is another
area for future work.
In conclusion, we compared estimators of an average effect

standardized to a target population in the presence of nonran-
dom treatment assignment, a 2-stage selection process, treat-
ment effect heterogeneity, and practical positivity violations.
This scenario can apply to generalizing results from a survey
subsample to a specified target population (2, 3). We demon-
strated that the DRWLS estimator and TMLE outperform
an IPWestimator in terms ofMSE and that DRWLS estimation
generally performs best in terms of percent bias, variance, and
confidence interval coverage in our practical positivity violation
scenario, even under misspecification of one or more of the
treatment, selection, or outcome models. Moreover, DRWLS
estimation and TMLE are easy to implement. Lastly, we dem-
onstrated how a DRWLS estimator and TMLE can be applied
to everyday research questions, providing an attractive alterna-
tive to IPW estimation for applied epidemiologic researchers.
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