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Abstract

Penalized regression methods are becoming increasingly popular in genome-wide association

studies (GWAS) for identifying genetic markers associated with disease. However, standard

penalized methods such as LASSO do not take into account the possible linkage disequilibrium

between adjacent markers. We propose a novel penalized approach for GWAS using a dense set of

single nucleotide polymorphisms (SNPs). The proposed method uses the minimax concave

penalty (MCP) for marker selection and incorporates linkage disequilibrium (LD) information by

penalizing the difference of the genetic effects at adjacent SNPs with high correlation. A

coordinate descent algorithm is derived to implement the proposed method. This algorithm is

efficient in dealing with a large number of SNPs. A multi-split method is used to calculate the p-

values of the selected SNPs for assessing their significance. We refer to the proposed penalty

function as the smoothed MCP and the proposed approach as the SMCP method. Performance of

the proposed SMCP method and its comparison with LASSO and MCP approaches are evaluated

through simulation studies, which demonstrate that the proposed method is more accurate in

selecting associated SNPs. Its applicability to real data is illustrated using heterogeneous stock

mice data and a rheumatoid arthritis.
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1. INTRODUCTION

With the rapid development of modern genotyping technology, genome-wide association

studies (GWAS) have become an important tool for identifying genetic factors underlying

complex traits. From a statistical standpoint, identifying SNPs associated with a trait can be

formulated as a variable selection problem in a sparse, high-dimensional model. The

traditional multivariate regression methods are not directly applicable to GWAS because the

number of SNPs in an association study is usually much larger than the sample size.

The LASSO (least absolute shrinkage and selection operator) provides a computationally

feasible way for variable selection in high-dimensional settings [14]. Recently, this approach

has been applied to GWAS for selecting important SNPs [19]. It has been shown that the

LASSO is selection consistent if the predictors meet the irrepresentable condition [23]. This

condition is stringent, and there is no known mechanism to verify it in GWAS. Zhang and

Huang [22] studied the sparsity and bias of LASSO in high-dimensional linear regression

models. It is shown that under reasonable conditions, the LASSO selects a model with the

correct order of dimensionality. However, the LASSO tends to over-select unimportant

variables. Therefore, direct application of the LASSO to GWAS tends to generate findings

with high false positive rates. Another limitation of the LASSO is that, if there is a group of

variables among which the pairwise correlations are high, then the LASSO tends to select

only one variable from the group and does not care which one is selected [25].

Several methods that attempt to improve the performance of LASSO have been proposed.

The adaptive LASSO [24] uses adaptive weights on penalties so that the oracle properties

hold under mild regularity conditions. In the case that the number of predictors is much

larger than the sample size, adaptive weights cannot be initiated easily. The elastic net

method [25] can effectively deal with certain correlation structures in the predictors by using

a combination of ridge and LASSO penalties. Fan and Li [4] introduced a smoothly clipped

absolute deviation (SCAD) method. Zhang [21] proposed a flexible minmax concave

penalty (MCP) which attenuates the effect of shrinkage that leads to bias. Both SCAD and

MCP belong to the family of quadratic spline penalties, and both lead to oracle selection

results [21]. The MCP has a simpler form and requires weaker conditions for the oracle

properties. We refer to [21] and [10] for detailed discussion.

However, the existing penalization methods for variable selection do not take into account

the specifics of SNP data. SNPs are naturally ordered along the genome with respect to their

physical positions. In the presence of linkage disequilibrium (LD), adjacent SNPs are

expected to show similar strength of association. Making use of the LD information from

adjacent SNPs is highly desirable as it may help better delineate association signals while

reducing randomness observed in single SNP analysis. Fused LASSO [15], which penalizes

differences of adjacent coefficients, is not appropriate for this purpose, since the effect of

association for a SNP (as measured by its regression coefficient) is only identifiable up to its

absolute value—a homozygous genotype can be equivalently coded as either 0 or 2

depending on the choice of reference allele.
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We propose a new penalized regression method for identifying important SNPs in GWAS.

The proposed method uses a novel penalty, which we shall refer to as the smoothed

minimax concave penalty or SMCP, for sparsity and smoothness in absolute values (of

regression coefficients). The SMCP is a combination of the MCP and a penalty consisting of

the squared differences of the absolute effects of adjacent markers. The MCP promotes

sparsity in the model and selects important SNPs. The penalty for the squared differences of

absolute effects takes into account the natural ordering of SNPs and adaptively incorporates

the LD information between adjacent SNPs. It explicitly uses correlation between adjacent

markers and penalizes the differences of genetic effects at adjacent SNPs with high

correlations. We derive a coordinate descent algorithm for implementing the SMCP method.

We use a resampling method for computing the p-values of selected SNPs to assess their

significance.

The rest of the paper is organized as follows. Section 2 introduces the proposed SMCP

method. Section 3 presents a genome-wide screening incorporating the proposed SMCP

method. Section 4 describes a coordinate descent algorithm for estimating model parameters

and discusses the selection of tuning parameters and calculation of p-value. Section 5

conducts simulation and compares with LASSO and MCP. Section 6 applies the proposed

method to two real data sets. Finally, Section 7 provides a summary and discusses some

related issues.

2. THE SMCP METHOD

For the purpose of SNP selection, we use the MCP, which is defined as

Here λ1 is a penalty parameter, and γ is a regularization parameter that controls the

concavity of ρ. x+ = x1{x≥0}. The MCP can be easily understood by considering its

derivative, which is

where sgn(t) = −1, 0, or 1 if t < 0, = 0, or > 0, respectively. As |t| increases from 0, MCP

begins by applying the same rate of penalization as LASSO, but continuously relaxes that

penalization until |t| > γλ1, a condition under which the rate of penalization drops to 0. It

provides a continuum of penalties where the LASSO penalty corresponds to γ = ∞ and the

hard-thresholding penalty corresponds to γ → 1+. We note that other penalties, such as

LASSO or SCAD, can also be used to replace MCP. We choose MCP because it possesses

all the desirable properties of a penalty function and is computationally simple [10, 21].

Let p be the number of SNPs, and βj be the effect of the jth SNP in a working model that

describes the relationship between phenotype and markers. Assume that the SNPs are

ordered according to their physical locations on the chromosomes. Adjacent SNPs in high
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LD are expected to have similar strength of association with the phenotype. To adaptively

incorporate LD information, we propose the following penalty that encourages smoothness

in |β|s at neighboring SNPs:

(1)

where the weight ζj is a measure of LD between SNPs j and j+1. This penalty encourages |βj|

and |βj+1| to be similar to an extent inversely proportional to the LD strength between the

corresponding SNPs. Adjacent SNPs in weak LD are allowed to have larger differences in

their |β|s than if they are in stronger LD. The effect of this penalty is to encourage

smoothness in |β|s for SNPs in strong LD. By using this penalty, we expect a better

delineation of the association pattern in LD blocks that harbor disease variants while

reducing randomness in |β|s in LD blocks that do not. Note that there is no monotone

relationship between ζ and the physical distance between two SNPs. While it is possible to

use other LD measures, we choose ζj to be the absolute value of lag one autocorrelation

coefficient between the genotype scores of SNPs j and j+1. The values of ζj for the

rheumatoid arthritis data used by Genetic Analysis Workshop 16, the data set to be used in

our numerical study, are plotted for chromosome 6 (Fig. 1(a)). The proportion that ζj > 0.5

over non-overlapping 100-SNP windows is also plotted (Fig. 1(b)).

Denote β = (β1, …, βp)′. Denote g(β) as the loss function based on a working model for the

relationship between the phenotype and markers. For given penalty parameters λ1 and λ2,

the SMCP estimate β̂ is defined as the minimizer of the objective function

(2)

The SNPs corresponding to βĵ ≠ 0 are selected as being potentially associated with response.

3. GENOME-WIDE SCREENING INCORPORATING LD

A basic method for GWAS is to conduct genome-wide screening of a large number of dense

SNPs individually and look for those with significant associations with phenotype. Although

several important considerations, such as adjustment for multiple comparisons and possible

population stratification, need to be taken into account in the analysis, the essence of

existing genome-wide screening approaches is single-marker based analysis without

considering the structure of SNP data. In particular, the possible LD between two adjacent

SNPs is not incorporated in analysis.

Our proposed SMCP method can be used for screening a dense set of SNPs incorporating

the LD information in a natural way. To be specific, here we consider the standard case-

control design for identifying SNPs that are potentially associated with response. Let the

phenotype be scored as 1 for cases and −1 for controls. Let nj be the number of subjects

whose genotypes are non-missing at SNP j. The standardized phenotype of the ith subject
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with non-missing genotype at SNP j is denoted by yij. The genotype at SNP j is scored as 0,

1, or 2 depending on the number of copies of a reference allele in a subject. Let xij denote

the standardized genotype score satisfying Σi xij = 0 and .

Consider the penalized criterion

(3)

Here the loss function is

(4)

We note that switching the reference allele used for scoring the genotypes changes the sign

of βj, but |βj| remains the same. It may be counter-intuitive to use a quadratic loss in (4) for

case-control designs. However, it may actually be sensible. Regardless how the phenotype is

scored, the least squares regression slope at SNP j (i.e., a regular single SNP analysis) equals

where φj is the proportion of cases computed from the subjects with non-missing genotype,

and p̂1j and p̂2j are the allele frequencies of SNP j in cases and controls, respectively. This

shows that βj in the squared loss function (4) can be interpreted as the effect size of SNP j. In

the classification literature, quadratic loss has also been used for indicator response variables

[7].

An alternative loss function for binary phenotype would be the sum of negative marginal

log-likelihood functions based on working logistic regression models. We have found that

the selection results using this loss function are in general similar to those based on (4). In

addition, the computational implementation of the coordinate descent algorithm described in

the next section using the loss function (4) is much more stable and efficient and can easily

handle tens of thousands of SNPs.

4. COMPUTATION

In this section, we first present a coordinate descent algorithm for the proposed SMCP

method. Then we discuss methods of selecting tuning parameters and evaluating p-values

for the selected SNPs.
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4.1 Coordinate descent algorithm

In this section, we derive a coordinate descent algorithm for computing the solution to (3).

This algorithm was originally proposed for criteria with convex penalties such as LASSO [8,

20]. It has been proposed to calculate nonconvex penalized regression estimates [3, 10]. This

algorithm optimizes a target function with respect to one parameter at a time and iteratively

cycles through all parameters until convergence. It is particularly suitable for problems such

as SMCP that have a simple closed form solution in a single dimension but lack a closed

form solution in higher dimensions.

We wish to minimize the objective function Ln(β) in (3) with respect to βj while keeping all

other βk, k ≠ j, fixed at their current estimates. Thus only the terms involving βj in Ln matter.

That is, this problem is equivalent to minimizing R(βj) defined as

where C is a term free of βj, β̃
j+1 and β̃

j−1 are the current estimates of βj+1 and βj−1,

respectively, and aj, bj, and cj are determined as follows:

• For |βj| < γλ1,

and

(5)

• For |βj| ≥ γλ1,

(6)

while bj remains the same as in the previous situation.

Note that function R(βj) is defined for j ≠ 1 or p. It can be defined for j = 1 by setting βj̃−1 =

0 and for j = p by setting β̃
j+1 = 0 in the above two situations.

Minimizing R(βj) with respect to βj is equivalent to minimizing , or

equivalently,
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(7)

The first term is convex in βj if aj > 0. In the case |βj| ≥ γλ1, aj > 0 is trivially true. In the

case |βj| < γλ1, aj > 0 holds when γ > 1.

Let β̂
j denote the minimizer of R(βj). It has the following explicit expression:

(8)

This is because if cj > 0, minimizing (7) becomes a regular one dimensional LASSO

problem. β̂
j is the soft-threshold operator. If cj < 0, it can be shown that βĵ and bj are of

opposite signs. If bj ≥ 0, expression (7) becomes

Hence β̂
j = −(bj − cj)/2aj < 0. If bj < 0, then |β̂

j| = β̂
j and β̂

j = − (bj + cj)/2aj > 0. In summary,

expression (8) holds in all situations.

The novel penalty (1) affects both aj and cj. Both 2aj and cj are linear in λ2. As λ2 increases,

2aj increases at the rate ∂(2aj)/∂λ2 = ζj−1 + ζj, while cj decreases at the rate ∂cj /∂λ2 = |βj̃+1|ζj

+ |β̃
j−1|ζj−1. In the case of |bj| − cj ≥ 0, these are the rates of change for the denominator and

numerator of |β̂ j| = (|bj| − cj)+/(2aj). The change in |β̂
j| is more complicated as it involves the

intercepts of its numerator and denominator. In terms of |β̃
j+1| and |βj̃−1|, β̂

j is larger when

these two values are larger. Since bj does not depend on λ2, as λ2 increases, more SNPs will

satisfy |bj| − cj ≥ 0 and thus be selected.

We note that aj and bj do not depend on βj. They only need to be computed once for each

SNP. Only cj needs to be updated after all βj s are updated. In the special case of λ2 = 0, the

SMCP method becomes the MCP method. Then even cj no longer depends on βj̃−1 and β̃
j+1:

cj = λ1 if |βj| < γλ1, and cj = 0 otherwise. Expression (8) gives the explicit solution for βj.

Generally, an iterative algorithm is required to estimate these parameters. Let

 be the initial value of the estimate of β. The proposed coordinate

descent algorithm proceeds as follows:

1. Compute aj and bj for j = 1, …, p.

2. Set s = 0.

3. For j = 1, …, p,

a. Compute cj according to expressions (5) or (6).
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b.
Update  according to expression (8).

4. Update s ← s + 1.

5. Repeat Steps 3 and 4 until the estimate of β converges.

In practice, the initial values , j = 1, …, p are set to be 0. Each βj is then updated in turn

using the coordinate descent algorithm described above. One iteration completes when all βj

s are updated. In our experience, convergence is typically reached after about thirty

iterations.

Convergence of this algorithm follows from Theorem 4.1(c) of [16]. This can be shown as

follows. The objective function can be written as  where

and fj (βj) = ρ(|βj|; λ1, γ). Since f is regular in the sense of (5) in [16] and  is

separable, the coordinate descent solution converges to a coordinatewise minimum of f,

which is also a stationary point of f.

Now we consider in detail property of the second penalty. Assume that λ1 and λ2 are fixed,

and we want to solve the objective function (2). Suppose that in step s − 1, βj−1 has been

updated. Consider the values of estimate under adjacent steps, and define

. Further assume that at step s − 1, only  is non-zero and δ is usually

positive. We now go into step s to update βj.

•
If corr(xj, xj−1) > 0, then ζj−1 = corr(xj, xj−1). We have . Note

that , since ζj−1 > 0. From expression (8), we know that  will be

nonzero if cj is less than |bj|. One can see that when the correlation is stronger (i.e.

ζj−1 is larger) and/or λ2 is larger,  is smaller. Consequently,  is more likely to

be nonzero. The sign of β̃
j is also positive if it is not zero. It makes sense that the

correlation between the (j − 1)th and jth predictors is assumed to be positive.

• It is similar when corr(xj, xj−1) < 0.

Thus, incorporating the second penalty increases the chance that adjacent SNPs with high

correlations will be selected together.

4.2 Tuning parameter selection

There are various methods that can be applied, including AIC, BIC, cross-validation and

generalized cross-validation. However, they are all based upon the performance of

prediction error. In GWAS, it is rare that disease markers are part of SNP data, which
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consequently results in non-true models for SNP data. Hence, the methods mentioned above

may be inadequate in GWAS. Wu et al. [19] used a predetermined number of predictors to

select the tuning parameter and implemented a combination of bracketing and bisection to

search for the optimal tuning parameter. We adopt Wu et al.’s method [19]. For this purpose,

tuning parameters λ1 and λ2 are re-parameterized as τ = λ1 + λ2 and η = λ1/τ. The value of η

is fixed beforehand. When η = 1, the SMCP method becomes the MCP method.

The value of τ that selects the predetermined number of predictors is determined through

bisection as follows. Let r(τ) denote the number of predictors selected under τ. Let τmax be

the smallest value for which all coefficients are 0. τmax is the upper bound for τ. From (5),

. To avoid undefined saturated models, τ cannot be zero or

too close to zero. Its lower bound, denoted by τmin, is set at τmin = ετmax for a preselected ε.

Setting ε = 0.1 works well in our numerical study. Initially, we set τl = τmin and τu = τmax. If

r(τu) < s < r(τl), then we employ bisection. This involves testing the midpoint

. If r(τm) < s, replace τu by τm. If r(τm) > s, replace τl by τm. This process is

repeated until r(τm) = s. Our simulation study suggests that the regularization parameter γ

also has an important impact on the results. Based on our experience, γ = 6 is a reasonable

choice.

4.3 p-values for the selected SNPs

The use of p-value is a traditional way to evaluate the significance of estimates.

Unfortunately, there are no straightforward ways to compute standard errors of penalized

linear regression estimates. We use the multi-split method proposed by [11] to obtain p-

values. This is a simulation-based method that automatically adjusts for multiple

comparisons.

In each iteration, the multi-split method proceeds as follows:

1. Randomly split data into two disjoint sets of equal size: Din and Dout. The case:

control ratio in each set is the same as in the original data.

2. Fit the SMCP method with subjects in Din. Denote the set of selected SNPs by S.

3. Assign a p-value P̃
j to SNP j in the following way:

a. If SNP j is in set S, set P̃
j as the p-value computed using Dout in the

regular linear regression where SNP j is the only predictor.

b. If SNP j is not in set S, set Pj̃ = 1.

4. Define the adjusted p-value as Pj = min{P̃
j |S|, 1}, j = 1, …, p, where |S| is the size

of set S.

This procedure is repeated B times for each SNP. Let  denote the adjusted p-value for

SNP j in the bth iteration. For π ∈ (0, 1), let qπ be the π-quantile of { ; b = 1, …, B}.

Define Q̃
j (π) = min{1, qπ}. Meinshausen et al. [11] proved that Q̃

j (π) is an asymptotically

correct p-value, adjusted for multiplicity. They also proposed an adaptive version that

selects a suitable value of quantile based on data:
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where π0 is chosen to be 0.05. It was shown that {Qj, j = 1, …, p}, can be used for both

FWER (family-wise error rate) and FDR control.

5. SIMULATION STUDIES

To make the LD structure as realistic as possible, genotypes are obtained from a rheumatoid

arthritis (RA) study provided by the Genetic Analysis Workshop (GAW) 16 (more details

described in Section 6). This study involves 2,062 individuals. Four hundred of them are

randomly chosen. Five thousand SNPs are selected from chromosome 6. For individual i, its

quantitative phenotype yi is generated as:

where xi (which is a vector of length 5,000) represents the genotype data of individual i, and

β is the vector of genetic effect whose elements are all 0 except that (β2287, …, β2298) =

(−0.3, 0.2, −0.25, 0.2, −0.6, 0.7, −0.5, 0.4, −0.5, 0.3, −0.6, 0.2) and (β2300, …, β2318) = (0.25,

−0.4, 0.2, −0.5, −0.25, 0.3, −0.4, −0.4, 0.15, 0.3, −0.4, 0.4, −0.5, 0.2, − 0.3, 0.16, 0.36, −0.2,

0.1). εi is the residual sampled from a normal distribution with mean 0 and standard

deviation 1.5.

For binary phenotype yi, the linear predictor is generated in the same way as for the

quantitative trait. Then, the binary response variables are generated from Bernoulli

distributions with probability  where β0 = 0.

For the quantitative trait, the loss function g(β) is given in expression (4), whereas for the

binary trait, two loss functions, including the marginal quadratic loss (4) and marginal

negative likelihood loss (Appendix: expression (10), are used in simulation.

To evaluate the performance of SMCP, we use false discovery rate (FDR) and false negative

rate (FNR) which are defined as follows. Let βĵ denote the estimated value of βj, then

and
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The mean and standard deviation of the number of true positives, FDR and FNR for various

values of η for SMCP, LASSO and MCP over 100 replications are reported in Table 1. In

each replication, 50 SNPs are selected. It can be seen that for different values of η, FDR and

FNR change in the same direction, since the number of selected SNPs is fixed. As the

number of true positives increases, the number of false negatives and the number of false

positives decrease. Overall, SMCP outperforms MCP and LASSO in terms of true positives

and FDR. For the binary trait, we see that although the marginal negative log-likelihood loss

is better than the marginal quadratic loss, it is still sensible to use the marginal quadratic loss

(4) to identify phenotype-associated SNPs.

To further investigate the performance of SMCP, MCP and LASSO, we look into a specific

simulated data set. For the quantitative trait, the 50 SNPs selected by the three methods and

their p-values obtained using the multi-split method are reported in Table 4 (Appendix). For

the binary trait, the selected SNPs and their p-values are reported in Table 5 and Table 6

(Appendix) using the marginal negative log-likelihood and marginal quadratic loss,

respectively. It is apparent that the number of true positives is much higher for the SMCP

method than for the MCP and LASSO methods. For the quantitative trait, SMCP selects 28

out of 31 true response-associated SNPs, while LASSO selects 23 (Appendix: Table 4). The

multi-split method can effectively assign p-values for the selected SNPs: with SMCP, 9 out

of 22 false positives are significant, whereas 21 out of 28 true positives are significant. In

comparison, with MCP, 14 out of 27 false positives are significant, and 16 out of 23 true

positives are significant. With LASSO, 11 out of 27 false positives are significant, and 17

out of 23 true positives are significant. Similar results are obtained for the binary trait. The

difference between results in Table 5 and Table 6 (Appendix) is not significant, suggesting

that it is sensible to use the quadratic loss for binary trait in GWAS.

6. APPLICATION TO REAL DATA

6.1 Application to heterogeneous stock mice data

We use a dataset publicly available from the Welcome Trust Center. This data resource,

which also includes pedigree information, was based on an advanced intercross mating

among 8 inbred strains over 50 generations of random mating [17]. It is expected that the

use of pseudorandom breeding for over 50 generations should result in an average distance

between recombinants of < 2 cM. The average LD, as measured by R2 between adjacent

markers, is 0.62 [9]. We refer to the original publication for more detailed descriptions [17,

18]. This dataset includes full phenotypic records on 2,202 mice, and each was genotyped

for 13,459 SNP markers. The phenotype of interest is the starting weight. After deleting

observations with missing phenotypes and alleles with minor allele frequency less than 0.05,

there are 1,928 mice and 10,074 SNP markers in 19 autosomes.

The SNPs on the whole genome are analyzed simultaneously. By using different

predetermined numbers of SNPs, we find that 400 SNPs are appropriate for this dataset. For

the SMCP method, the value of tuning parameter τ is 2.006 with η = 0.05. For the MCP

method (η = 1 and γ = 6), the tuning parameter τ is 0.099. For the LASSO method (η = 1

and γ = ∞), the tuning parameter τ is 0.099. p-values of the selected SNPs are computed

using the multi-split method. Fig. 2 shows the Manhattan plots for all three methods plus
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regular single-SNP linear regression. For SMCP, MCP and LASSO, the large dots represent

SNPs with significant estimates, while the small dots are for SNPs with insignificant

estimates.

For MCP and LASSO, they identify exactly the same 400 SNPs with slightly different p-

values. For SMCP, MCP and LASSO, respectively, 199, 200 and 199 SNPs are significant.

The rough pattern of the significant SNPs can be found in Fig. 2. The SNPs that are

significant under at least one but not all methods are listed in Table 2.

6.2 Application to rheumatoid arthritis data

Rheumatoid arthritis (RA) is a complex human disorder with a prevalence ranging from

around 0.8% in Caucasians to 10% in some native American groups [1]. Its risk is generally

higher in females than in males. Some studies have identified smoking as a risk factor.

Genetic factors underlying RA have been mapped to the HLA region on 6p21 [12], PTPN22

locus at 1p13 [2], and CTLA4 locus at 2q33 [13]. Other potential loci include 6q

(TNFAIP3), 9p13 (CCL21), 10p15 (PRKCQ), and 20q13 (CD40), which seem to have

weaker effects [1].

GAW 16 RA data is from the North American Rheumatoid Arthritis Consortium (NARAC).

It is the initial batch of whole genome association data for the NARAC cases (N=868) and

controls (N=1,194) after removing duplicated and contaminated samples. After quality

control and removing SNPs with low minor allele frequencies, there are 475,672 SNPs over

22 autosomes, of which 31,670 are on chromosome 6.

By using different predetermined numbers of SNPs, we find that 800 SNPs are appropriate

for this dataset. For SMCP, the tuning parameter τ is 1.861 with η = 0.05. p-values of the

selected SNPs are computed using the multi-split method. The majority of SNPs (539 out of

800) selected by SMCP are on chromosome 6, 293 of which are significant with p-values

smaller than 0.05. For LASSO, the tuning parameter τ is 0.091. There are 537 SNPs selected

on chromosome 6, and 280 of them are significant with p-values less than 0.05. MCP selects

the same set of SNPs as LASSO. The estimates of βs obtained from SMCP, MCP, LASSO

and regular single-SNP linear regression analysis are presented in Fig. 3. In Fig. 3, the large

dots are SNPs with significant estimates, and small dots are for insignificant SNPs. The

difference between LASSO and MCP lies in the magnitude of estimates, as MCP may be

unbiased under a proper choice of γ, but LASSO is always biased. The two sets of SNPs

selected by SMCP and LASSO on chromosome 6 are both in the region of HLA-DRB1 gene

that has been found to be associated with RA [12].

There are SNPs on other chromosomes that are significant (Table 3). Particularly,

association with rheumatoid arthritis at SNP rs2476601 in gene PTPN22 has been reported

previously [2]. Other noteworthy SNPs include SNP rs512244 in RAB28 region, 4 SNPs in

TRAF1 region, SNP rs12926841 in CA5A region, SNP rs3213728 in RNF126P1 region, and

SNP rs1182531 in PHACTR3 region. On chromosome 9, 4 SNPs in the region of TRAF1

gene are identified by SMCP and LASSO. One can see from Fig. 3 that MCP produces

larger estimates than LASSO, but the SMCP estimates are smaller than those from LASSO.
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This is caused by the (side) shrinkage effect of the proposed smoothing penalty. In terms of

model selection, SMCP tends to select more adjacent SNPs that are in high LD.

7. DISCUSSION

Penalization is a modern variable selection approach developed to handle “large p, small n”

problems. Application of this approach to GWAS is highly anticipated. Compared to

traditional GWAS analysis where one SNP is analyzed at a time, penalized methods are able

to handle a large collection of SNPs at the same time. In this article, we have proposed a

novel SMCP penalty and introduced a penalized regression method suitable for GWAS. A

salient feature of this method is that it takes into account the LD among SNPs in order to

reduce the randomness often seen in the traditional single SNP analysis. We have developed

a coordinate descent algorithm to implement the proposed method. Also, we have applied a

multi-split method to compute p-values of selected SNPs.

The proposed SMCP method is different from the fused LASSO. The penalty function for

fused LASSO can be written as

One apparent difference between SMCP and fused LASSO is in the second penalty term.

The SMCP uses the square of the difference of absolute values. In comparison, the fused

LASSO uses the absolute value of the difference. Therefore, SMCP is not affected by the

choice of reference allele for genotype scoring. But the fused LASSO requires specification

of reference alleles for all markers. Second, SMCP explicitly incorporates a measure of LD

of adjacent SNPs to only encourage smoothness of the effects of those with high LD. This

feature of the penalty is particularly suitable for GWAS. Third, SMCP is computationally

efficient as it has an explicit solution when updating βj in the coordinate descent algorithm.

In comparison, no such explicit solution exists for fused LASSO. Its computation is not as

efficient as SMCP even using the method proposed by [5]. A referee pointed out that the

fusion penalty (absolute value of difference) can be used in the second penalty term.

Although we did not think this is appropriate in the current setting, we agree it would be

interesting to compare the findings of the SMCP and those of the fused LASSO (or fused

MCP). However, a systematic comparison is beyond the scope of this paper. The biggest

obstacle is the computational burden in implementing the fused Lasso with a large number

of SNP markers.

A thorny issue in handling a large number of SNPs simultaneously is computation. We have

used several measures to tackle this issue. We have introduced explicit expressions for

implementing the coordinate descent algorithm. This algorithm is stable and efficient in our

simulation studies and data examples. For a dichotomous phenotype, we have showed that a

marginal quadratic loss function yields a correct estimate of the effect of a SNP. Two

important advantages in using the marginal loss (4) as opposed to a joint loss are its

convenience in computing over genome and capability of handling missing genotypes, a
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phenomenon common with high-throughput genotype data. As expression (5) indicates, only

cj needs to be updated for each iteration. Thus, there is no need to read all the data on 22

chromosomes in a computer. The inner products between standardized phenotypes and

genotypes are all needed. It makes computing for all SNPs over genome possible. Second,

the joint loss function does not allow any missing genotypes. Missing genotypes have to be

imputed upfront, incurring extra computation time and uncertainty in imputed genotypes. In

contrast, the marginal loss function (4) is not impeded by missing genotypes.

Compared with LASSO and MCP, the proposed SMCP is able to incorporate the

consecutive absolute difference into the penalty. Simulation studies show that the SMCP

method is superior to LASSO and MCP in terms of the number of true positives and false

negative rate.

We have focused on quantitative and dichotomous phenotypes. For dichotomous phenotype,

we show that it is reasonable to use a marginal quadratic loss. We expect that covariates and

environmental factors, including those derived from principal components analysis based on

marker data for adjusting population stratification, can be incorporated in SMCP analysis.

Specifically, we can consider a loss function that includes the effects of SNPs and covariate

effects based on an appropriate working regression model, then use the SMCP penalty on

the coefficients of SNPs. The coordinate descent algorithm for SMCP and the multi-split

method for assessing statistical significance can be used in such settings with some

modifications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A. APPENDIX SECTION

A.1 Accommodating case-control data with logistic regression

To accomandate the properties of case-control data, we use the marginal logistic regression

with the proposed SMCP penalty.

(9)

where , (t; λ, γ) is defined in Section 2. Then, quadratic approximation can

be applied piecewise to index j by using following equations.

The new objective function after quadratic approximation is given as follows.

(10)

β 0 can be omitted for linear model by centering the response variable, but it must be

included in the model for logistic regression. β0s can be fitted marginal logistic regression

and then fixed in objective function (10). ζj s are defined the same as in Section 2. Then

algorithm implemented in marginal linear regression with the SMCP penalty can be used to

solve the marginal logistic regression with the SMCP penalty.

A.2 Application to rheumatoid arthritis data

Due to the computational burden, we conduct the analysis for rheumatoid arthritis data only

on chromosome 6 by marginal logistic regression. The plots of estimates by the SMCP, the

MCP and the LASSO methods are presented in Fig. 4 and their significance estimates are

large dots. By cross-sectional comparison with the results in Section 6.2, we found that there

are 559 overlapping SNPs by the SMCP metho, in which 293 SNPs are significant. There

are 535 overlapping SNPs by the MCP method, in which 293 SNPs are significant. while the

LASSO method identifies the same set of SNPs. From simulation result and analysis results

in Section 5, we see that despite that the logistic regression is a more natural choice for case-

control studies, marginal linear regression can capture the pattern of SNPs’ effect in GWAS.

Furthermore, the computational burden prohibit us from conducting genome-wide scan by

using marginal logistic regression, but it is possible to conduct it by marginal linear

regression.
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Table 4

List of SNPs selected by the SMCP, the MCP and the LASSO method for a simulated data

set with quantitative trait. Recall that the 31 disease-associated SNPs are 2287 – 2298 and

2300 – 2318

SNP

SMCP MCP LASSO Regression

|β̂| p-value* |β|̂ p-value* |β|̂ p-value* |β|̂ p-value**

1866 −0.011 1.000 −0.005 1.000 −0.211 1.2E-04

2144 −3.6E-04 1.000 −0.044 0.031 −0.019 0.056 −0.227 3.3E-05

2167 −0.038 0.034 −0.017 0.090 −0.225 4.1E-05

2171 −0.029 0.168 −0.096 1.000 −0.043 1.000 −0.253 3.6E-06

2173 −0.026 0.112 −0.115 1.000 −0.051 1.000 −0.262 1.6E-06

2178 0.001 1.000 0.043 0.015 0.019 0.078 0.227 3.3E-05

2209 0.005 0.080 0.002 0.097 0.208 1.5E-04

2212 0.002 0.080 0.001 0.098 0.207 1.6E-04

2235 0.027 0.050 0.012 0.040 0.219 6.4E-05

2240 0.042 0.013 0.162 0.008 0.072 0.004 0.286 1.5E-07

2241 0.037 0.241 0.038 0.031 0.017 0.030 0.225 4.1E-05

2242 0.052 0.019 0.139 0.012 0.062 0.005 0.274 5.0E-07

2243 0.035 0.193 0.069 1.000 0.031 1.000 0.240 1.2E-05

2269 −0.065 0.015 −0.167 0.014 −0.074 0.005 −0.288 1.2E-07

2270 0.059 0.034 0.097 0.032 0.043 0.021 0.254 3.5E-06

2271 −0.038 0.059 −0.121 0.024 −0.054 0.024 −0.265 1.1E-06

2272 −0.009 0.950 −0.007 0.057 −0.003 0.095 −0.210 1.3E-04

2275 −0.029 1.000 −0.013 1.000 −0.220 6.0E-05

2279 −0.081 0.002 −0.237 1.000 −0.105 1.000 −0.322 2.7E-09

2281 −0.016 0.413 −0.080 1.000 −0.036 1.000 −0.245 7.2E-06

2284 −0.048 0.011 −0.159 0.007 −0.071 0.006 −0.284 1.8E-07

2285 0.039 0.470 0.205 1.9E-04

2286 −0.183 3.0E-04 −0.265 1.000 −0.118 1.000 −0.336 5.1E-10

2287 0.274 3.3E-04 0.271 3.1E-04 0.120 0.001 0.339 3.5E-10

2288 0.287 3.3E-04 0.277 2.7E-04 0.123 0.001 0.342 2.4E-10

2289 −0.352 6.0E-05 −0.412 3.2E-05 −0.183 8.1E-05 −0.409 2.0E-14

2290 0.428 3.1E-11 0.841 1.000 0.374 1.000 0.619 1.6E-34

2291 −0.037 0.187 −0.159 0.004

2293 0.201 4.9E-07 0.524 6.3E-07 0.233 5.1E-06 0.463 1.7E-18

2294 0.190 0.001 0.294 1.1E-04 0.131 0.001 0.351 8.2E-11

2295 −0.121 4.6E-04 −0.252 1.6E-04 −0.112 0.001 −0.330 1.1E-09

2296 0.035 1.000 0.159 0.004

2297 −0.015 0.211 −0.077 0.064 −0.034 0.031 −0.244 8.4E-06

2299 0.054 1.000 0.033 5.5E-01

2300 0.716 1.8E-15 0.643 2.3E-16 0.456 7.2E-15 0.711 4.0E-48

2301 −0.789 2.2E-19 −0.706 8.2E-19 −0.520 1.6E-17 −0.781 7.4E-62
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SNP

SMCP MCP LASSO Regression

|β̂| p-value* |β|̂ p-value* |β|̂ p-value* |β|̂ p-value**

2302 0.718 2.7E-12 0.913 1.4E-13 0.406 1.3E-12 0.655 2.6E-39

2303 −0.401 0.089 −0.191 5.1E-04

2304 −0.615 4.4E-17 −0.681 5.9E-18 −0.494 3.3E-18 −0.753 6.3E-56

2305 −0.531 8.5E-10 −0.762 1.7E-10 −0.339 1.2E-09 −0.580 9.0E-30

2306 0.384 0.290 0.175 0.002

2307 −0.406 1.5E-06 −0.559 1.000 −0.249 1.000 −0.481 6.1E-20

2308 0.237 0.114 0.195 3.8E-04

2309 0.359 6.9E-09 0.695 1.8E-10 0.309 7.3E-10 0.547 3.5E-26

2310 −0.291 3.5E-05 −0.452 1.000 −0.201 1.000 −0.428 8.4E-16

2312 0.153 4.7E-04 0.331 1.000 0.147 1.000 0.369 7.2E-12

2313 0.146 0.092 0.047 1.000 0.021 1.000 0.229 2.9E-05

2314 −0.276 6.6E-05 −0.368 8.8E-05 −0.164 4.1E-05 −0.387 5.4E-13

2315 0.296 6.6E-05 0.368 8.8E-05 0.164 4.1E-05 0.387 5.4E-13

2316 −0.322 3.4E-07 −0.597 1.88E-07 −0.265 1.21E-07 −0.499 1.5E-21

2317 −0.260 0.005 −0.181 0.003 −0.081 0.002 −0.295 5.8E-08

2318 0.228 0.003 0.236 1.000 0.105 1.000 0.322 2.8E-09

2320 0.014 0.735 0.065 0.009 0.029 0.015 0.238 1.4E-05

2321 −0.012 0.992 −0.055 0.009 −0.024 0.018 −0.233 2.1E-05

2337 −0.087 0.002 −0.317 1.000 −0.141 1.000 −0.362 1.8E-11

2363 −0.024 0.047 −0.011 0.054 −0.218 7.1E-05

2371 −0.023 0.035 −0.124 0.023 −0.055 0.005 −0.267 1.0E-06

*
Computed using the multi-split method.

**
Single SNP analysis, not corrected for multiple testing.

***
Empty cells stand for SNPs that are not identified from the model.

Table 5

List of SNPs selected by the SMCP and the LASSO method for a simulated data set with

binary trait. The analysis is based on marginal negative log-likelihood loss. Recall that the

31 disease-associated SNPs are 2287–2298 and 2300–2318

SNP

SMCP MCP LASSO Regression

|β̂| p-value* |β|̂ p-value* |β|̂ p-value* |β|̂ p-value**

366 −0.009 1.000 −0.004 1.000 −0.071 0.004

368 −0.001 1.000 −0.045 1.000 −0.020 1.000 −0.075 0.002

506 −0.002 1.000 −0.103 1.000 −0.043 1.000 −0.081 0.001

656 0.001 1.000 0.056 1.000 0.025 1.000 0.077 0.002

932 0.001 1.000 0.001 1.000 0.071 0.005

948 0.020 1.000 0.009 1.000 0.073 0.004

1047 0.009 1.000 0.004 1.000 0.071 0.004

1476 −0.003 1.000 −0.001 1.000 −0.071 0.005

1477 0.025 1.000 0.011 1.000 0.073 0.003

1478 −0.011 1.000 −0.005 1.000 −0.072 0.004
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SNP

SMCP MCP LASSO Regression

|β̂| p-value* |β|̂ p-value* |β|̂ p-value* |β|̂ p-value**

1678 −0.001 1.000 −0.033 1.000 −0.015 1.000 −0.074 0.003

1978 −0.008 1.000 −0.195 0.788 −0.083 0.788 −0.091 2.6E-04

1980 −3.8E-05 1.000 −0.028 1.000 −0.012 1.000 −0.073 0.003

1990 0.005 1.000 0.068 1.000 0.030 1.000 0.078 0.002

2048 0.001 1.000 0.039 1.000 0.016 1.000 0.074 0.003

2283 0.002 1.000 0.060 0.017

2284 −0.030 1.000 −0.108 1.000 −0.047 1.000 −0.082 0.001

2285 0.034 1.000 0.060 0.016

2286 −0.144 0.015 −0.436 0.026 −0.180 0.026 −0.113 4.9E-06

2287 0.150 0.425 0.168 0.720 0.072 0.720 0.088 3.9E-04

2288 0.151 0.354 0.187 0.615 0.080 0.615 0.090 2.9E-04

2289 −0.152 0.218 −0.192 1.000 −0.077 1.000 −0.089 3.6E-04

2290 0.152 1.0E-04 0.751 8.1E-05 0.313 8.1E-05 0.144 4.2E-09

2291 −0.034 1.000 −0.054 0.031

2292 −0.018 1.000 −0.006 0.820

2293 0.065 0.014 0.444 0.013 0.187 0.013 0.116 2.8E-06

2294 0.067 0.126 0.268 0.191 0.117 0.191 0.099 6.2E-05

2295 −0.048 0.629 −0.167 1.000 −0.072 1.000 −0.088 3.9E-04

2296 0.030 1.000 0.061 0.014

2299 −0.097 1.000 −0.021 0.399

2300 0.275 2.0E-04 0.553 0.002 0.238 0.002 0.128 0.000

2301 −0.307 2.3E-06 −0.887 2.3E-06 −0.438 2.3E-06 −0.170 2.4E-12

2302 0.294 1.9E-04 0.684 3.1E-04 0.278 3.1E-04 0.136 3.0E-08

2303 −0.211 1.000 −0.048 0.053

2304 −0.206 1.1E-05 −0.876 1.1E-05 −0.371 1.1E-05 −0.157 1.4E-10

2305 −0.176 0.003 −0.490 0.008 −0.196 0.008 −0.118 1.9E-06

2306 0.131 1.000 0.020 0.421

2307 −0.076 1.000 −0.003 1.000 −0.001 1.000 −0.071 0.005

2308 0.041 1.000 0.053 0.034

2309 0.053 0.117 0.313 0.134 0.130 0.134 0.102 3.7E-05

2310 −0.040 1.000 −0.148 1.000 −0.061 1.000 −0.085 0.001

2316 −0.005 0.753 −0.216 0.591 −0.086 0.591 −0.091 2.4E-04

2329 0.003 1.000 0.001 1.000 0.071 0.005

2337 −0.016 0.328 −0.299 0.253 −0.113 0.253 −0.097 9.8E-05

2360 −0.002 1.000 −0.055 1.000 −0.024 1.000 −0.076 0.002

2362 −0.028 1.000 −0.012 1.000 −0.073 0.003

2461 0.001 1.000 0.049 1.000 0.020 1.000 0.075 0.003

2550 0.009 1.000 0.068 0.007

2551 0.038 0.460 0.269 0.514 0.100 0.514 0.093 1.7E-04

2552 −0.033 1.000 −0.134 1.000 −0.057 1.000 −0.085 0.001

2553 0.029 1.000 0.146 1.000 0.062 1.000 0.086 0.001

Liu et al. Page 19

Stat Interface. Author manuscript; available in PMC 2014 September 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



SNP

SMCP MCP LASSO Regression

|β̂| p-value* |β|̂ p-value* |β|̂ p-value* |β|̂ p-value**

2554 −0.015 1.000 −0.056 0.024

2912 0.001 1.000 0.031 1.000 0.014 1.000 0.074 0.003

3140 0.002 1.000 0.066 1.000 0.028 1.000 0.077 0.002

3329 0.015 1.000 0.117 1.000 0.050 1.000 0.083 0.001

3388 0.001 1.000 0.045 1.000 0.020 1.000 0.075 0.002

3620 0.001 1.000 0.053 1.000 0.023 1.000 0.076 0.002

4018 0.006 0.576 0.243 0.598 0.096 0.598 0.094 1.5E-04

4078 0.002 1.000 0.059 1.000 0.026 1.000 0.077 0.002

4745 −0.007 1.000 −0.003 1.000 −0.071 0.004

4877 0.007 1.000 0.003 1.000 0.071 0.004

*
Computed using the multi-split method.

**
Single SNP analysis, not corrected for multiple testing.

***
Empty cells stand for SNPs that are not identified from the model.

Table 6

List of SNPs selected by the SMCP and the LASSO method for a simulated data set with

binary trait. The analysis is based on marginal least-square loss. Recall that the 31 disease-

associated SNPs are 2287–2298 and 2300–2318

SNP

SMCP MCP LASSO Regression

|β̂| p-value* |β̂| p-value* |β̂| p-value* |β|̂ p-value**

366 −0.002 1.000 −0.002 1.000 −0.071 0.004

368 −0.002 1.000 −0.012 1.000 −0.010 1.000 −0.075 0.002

506 −0.005 1.000 −0.025 1.000 −0.021 1.000 −0.081 0.001

656 0.002 1.000 0.015 1.000 0.012 1.000 0.077 0.002

932 3.4E-04 1.000 2.9E-04 1.000 0.071 0.005

948 0.001 1.000 0.005 1.000 0.004 1.000 0.073 0.004

1047 0.002 1.000 0.002 1.000 0.071 0.004

1476 0.000 1.000 −0.001 1.000 −0.001 1.000 −0.071 0.005

1477 0.001 1.000 0.006 1.000 0.005 1.000 0.073 0.003

1478 −0.001 1.000 −0.003 1.000 −0.002 1.000 −0.072 0.004

1678 −0.002 1.000 −0.009 1.000 −0.007 1.000 −0.074 0.003

1978 −0.013 0.240 −0.049 0.230 −0.041 0.230 −0.091 2.6E-04

1980 −0.001 1.000 −0.007 1.000 −0.006 1.000 −0.073 0.003

1990 0.008 1.000 0.018 1.000 0.015 1.000 0.078 0.002

2048 0.003 1.000 0.009 1.000 0.008 1.000 0.074 0.003

2284 −0.009 1.000 −0.028 1.000 −0.023 1.000 −0.082 0.001

2285 0.005 1.000 0.060 0.016

2286 −0.076 0.006 −0.102 0.006 −0.085 0.006 −0.113 4.9E-06

2287 0.049 0.250 0.043 0.442 0.036 0.442 0.088 3.9E-04

2288 0.051 0.222 0.047 0.282 0.039 0.282 0.090 2.9E-04

2289 −0.060 0.206 −0.044 0.328 −0.037 0.328 −0.089 3.6E-04
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SNP

SMCP MCP LASSO Regression

|β̂| p-value* |β̂| p-value* |β̂| p-value* |β|̂ p-value**

2290 0.093 0.001 0.177 0.001 0.147 0.001 0.144 4.2E-09

2291 −0.003 1.000 −0.054 0.031

2293 0.051 0.028 0.109 0.028 0.091 0.028 0.116 2.8E-06

2294 0.049 0.153 0.069 0.259 0.058 0.259 0.099 6.2E-05

2295 −0.028 0.187 −0.042 0.500 −0.035 0.500 −0.088 3.9E-04

2296 0.007 1.000 0.061 0.014

2300 0.122 0.009 0.138 0.009 0.115 0.009 0.128 2.1E-07

2301 −0.148 4.2E-05 −0.240 4.2E-05 −0.200 4.2E-05 −0.170 2.4E-12

2302 0.126 0.003 0.158 0.003 0.131 0.003 0.136 3.0E-08

2303 −0.040 0.707 −0.048 0.053

2304 −0.090 0.001 −0.207 0.001 −0.172 0.001 −0.157 1.4E-10

2305 −0.060 0.027 −0.113 0.027 −0.095 0.027 −0.118 1.9E-06

2306 0.007 1.000 0.020 0.421

2307 −0.001 1.000 −0.001 1.000 −0.001 1.000 −0.071 0.005

2309 0.030 0.081 0.076 0.081 0.064 0.081 0.102 3.7E-05

2310 −0.024 0.313 −0.035 0.689 −0.029 0.689 −0.085 0.001

2316 −0.010 0.299 −0.050 0.214 −0.041 0.214 −0.091 2.4E-04

2329 0.001 1.000 0.001 1.000 0.071 0.005

2337 −0.022 0.238 −0.063 0.238 −0.052 0.238 −0.097 9.8E-05

2360 −0.005 1.000 −0.014 1.000 −0.012 1.000 −0.076 0.002

2362 −0.002 1.000 −0.007 1.000 −0.006 1.000 −0.073 0.003

2461 0.002 1.000 0.011 1.000 0.010 1.000 0.075 0.003

2550 0.003 1.000 0.068 0.007

2551 0.031 0.172 0.055 0.172 0.046 0.172 0.093 1.7E-04

2552 −0.022 0.639 −0.034 1.000 −0.028 1.000 −0.085 0.001

2553 0.018 0.768 0.037 0.902 0.031 0.902 0.086 0.001

2912 0.003 1.000 0.008 1.000 0.007 1.000 0.074 0.003

3140 0.004 1.000 0.016 1.000 0.014 1.000 0.077 0.002

3329 0.016 1.000 0.029 1.000 0.024 1.000 0.083 0.001

3388 0.003 1.000 0.012 1.000 0.010 1.000 0.075 0.002

3620 0.002 1.000 0.013 1.000 0.011 1.000 0.076 0.002

4018 0.011 0.124 0.057 0.124 0.047 0.124 0.094 1.5E-04

4078 0.004 1.000 0.015 1.000 0.013 1.000 0.077 0.002

4745 −0.002 1.000 −0.001 1.000 −0.071 0.004

4877 0.002 1.000 0.002 1.000 0.071 0.004

*
Computed using the multi-split method.

**
Single SNP analysis, not corrected for multiple testing.

***
Empty cells stand for SNPs that are not identified from the model.
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A.3 Application to dominant model with heterogeneous stock mice data

The proposed approach can be implemented to dominant and recessive models as well as

additive model described in Section 2 to Section 6. We choose predetermined number to be

400 for the SMCP, the MCP and the LASSO methods. The multi-split method is used to

evaluate the significance of the selected SNPs. The manhattan plots for all three methods are

shown in Fig. 5. The large dots stand for SNPs with significant multi-split p-values while

small dots for insignificant SNPs.
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Figure 1.
Plots of absolute lag-one autocorrelation ζj on Chromosome 6 from Genetic Analysis

Workshop 16 Rheumatoid Arthritis data.
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Figure 2.
Genome-wide plot of |β| estimates for heterogeneous stock mice data. (Large dots for

significant estimates and small dots for insignificant estimates in SMCP, MCP and LASSO.)
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Figure 3.
Genome-wide plot of |β| estimates for RA data. (Large dots for significant estimates and

small dots for in-significant estimates in SMCP, MCP and LASSO.)
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Figure 4.
Genome-wide plot of |β| estimates for RA data on chromosome 6 by marginal logistic loss

function.
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Figure 5.
Genome-wide plot of |β| estimates for heterogeneous stock mice data by dominant genetic

model.
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