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Abstract

We present novel techniques for single-image vignetting correction based on symmetries of two

forms of image gradients: semicircular tangential gradients (SCTG) and radial gradients (RG). For

a given image pixel, an SCTG is an image gradient along the tangential direction of a circle

centered at the presumed optical center and passing through the pixel. An RG is an image gradient

along the radial direction with respect to the optical center. We observe that the symmetry

properties of SCTG and RG distributions are closely related to the vignetting in the image. Based

on these symmetry properties we develop an automatic optical center estimation algorithm by

minimizing the asymmetry of SCTG distributions, and also present two methods for vignetting

estimation based on minimizing the asymmetry of RG distributions. In comparison to prior

approaches to single-image vignetting correction, our methods do not rely on image segmentation

and they produce more accurate results. Experiments show our techniques to work well for a wide

range of images while achieving a speed-up of 3-5 times compared to a state-of-the-art method.
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1 Introduction

Vignetting refers to the radial fall-off of brightness away from the center of an image. It is

mainly caused by foreshortening of light rays at oblique angles to the optical axis and by

obstruction of light by the stop or lens rim. This effect is undesirable in computer vision

applications that rely on accurate or consistent intensity measurements of the scene, such as

shape from shading, image mosaicing, image-based rendering, stereo matching, optical flow

estimation, and image segmentation. For these applications, correcting for the brightness

distortions caused by vignetting is an important step towards obtaining high-quality results.

To correct for vignetting, the optical center generally needs to be known, since the intensity

fall-off is commonly modeled as radially symmetric about that point. Most previous

techniques on vignetting correction simply assume the optical center to be at the center of

the image [11], [7], [33], [10]. However, in practice it may lie at a considerable distance

from the image center [13], or the input image may have been cropped (with the original

image not available). In such cases, the actual image center needs to be determined for

accurate removal of vignetting effects.

In this paper, we address the problem of vignetting correction based on a single input image

from an unknown camera. This problem setting makes our work more useful in practice and

widely applicable than most previous techniques (which typically require an explicit

calibration step or an image sequence as input). However, single-image vignetting correction

is a difficult problem to solve mainly because of two challenges: differentiating global

brightness variations caused by vignetting from those caused by textures or lighting, and

accurately locating the optical center given just a single input image.

To address these issues, we introduce an approach that takes advantage of regularities in the

statistical distributions of two types of image gradients, namely semicircular tangential

gradients (SCTG) and radial gradients (RG). An SCTG is a gradient along the tangential

direction of a circle centered at the optical center and passing through the pixel. We observe

that the SCTG distribution for a broad range of vignetted images exhibits a more symmetric

structure for more accurate estimates of the optical center. We find a similar property for the

RG, which is a gradient along the radial direction with respect to the optical center.

Specifically, the RG distribution of an image becomes more symmetric if it contains less

vignetting.

From these gradient distribution properties, we develop a technique that identifies the optical

center as the point which minimizes asymmetry in the SCTG distribution. Once the optical

center is found, we recover a vignetting-free image by minimizing asymmetry in the RG

distribution. Two variants are presented for determining the vignetting-free image. One

variant estimates the amount of vignetting at discrete radii by casting the problem as a

sequence of least-squares estimations. The other variant fits a parametric vignetting model

using a nonlinear optimization process.

We believe that these techniques for single-image based vignetting correction bring

significant improvements over the previous work on the same problem [43], [42], which are

based on image segmentation. First, our presented methods are not sensitive to segmentation
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quality and are less susceptible to brightness variations within regions caused by texture and

lighting. Second, for parametric vignetting models, this approach requires much fewer

parameters to estimate. Third, its accurate determination of the optical center leads to

improved vignetting estimation. Finally, in addition to better performance, our techniques

operate faster, from 5 minutes in [43] to less than 2 minutes for our methods on a 450 × 600

image in a 2.39 GHz PC.

2 Related Work

In this section, we briefly review work related to our approach: optical center estimation,

vignetting estimation, and natural image statistics.

2.1 Optical Center Estimation

Various techniques have been proposed for optical center estimation. Some estimate the

optical center by locating the center of an optical effect such as vignetting [18], radial lens

distortion [36], vanishing point [34], or focus/defocus [37]. These techniques generally

require specific calibration scenes or instruments, such as a uniform scene [18], a special

calibration target [36], a cube [34], a high-frequency textured pattern [37], or a laser emitter

[13]. Another approach to estimate the optical center is to use a general camera calibration

procedure that also estimates other intrinsic or extrinsic camera parameters. Some of these

methods require a particular calibration pattern or scene [32], [10], while others perform

self-calibration using image sequences captured with fixed camera settings [4], [8]. In

contrast, we estimate the optical center from a single (vignetted) image of an arbitrary

natural scene without knowledge of the camera. This makes our technique highly practical.

2.2 Vignetting Estimation

Different techniques have been proposed to estimate the amount of vignetting in images.

Some require specific scenes for calibration, which typically must be uniformly lit [2], [10],

[28], [38], [24]. Others use image sequences with overlapping views [7], [11], [19], image

sequences captured with a projector at different exposures and different aperture settings [9],

or image sequences from a lens setting [12]. A more flexible technique was proposed by

Zheng et al. [43], [42], which requires only a single (almost arbitrary) image.

The method of [43], [42] decomposes an image into regions that are homogeneous with

respect to color or texture, and then estimates vignetting based on low-frequency brightness

variations within each region. Outlier rejection is used to discount intra-region variations

inconsistent with other regions or with a parametric vignetting model. It relies on accurate

image segmentation and the optical center being at the image center.

The single-image vignetting correction techniques proposed in this paper are instead based

on statistical distributions of the SCTG and RG over the image. They do not rely on image

segmentation quality but rather they directly estimate the vignetting from global distribution

data, which we will show to bring improvements in both performance and running time.

This paper is an extension of the methods in [44], [41] in which we further characterize the

theoretical space of solutions to the problem and include additional validation on the

benefits of optical center estimation in vignetting correction. A recently published work [20]
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inspired by the methods in [44], [41] accounts for statistical regularities in a series of general

image derivatives. However, unlike with the SCTG and RG in this paper, it is unclear how

vignetting affects the statistical distributions of general image derivatives.

2.3 Natural Image Statistics

Recent research on natural image statistics has shown that images of real-world scenes have

gradient distributions that exhibit a certain shape: sharply-peaked at zero and heavy-tailed at

large values. Such a distribution assigns higher probability to small gradient magnitudes [6],

[45], [16]. Its shape also exhibits symmetry around its peak [25], especially among small

gradient magnitudes because of the numerous small and offsetting gradients (e.g., textures)

commonly present throughout natural images. The gradient distribution is generally less

symmetric near the tails, which often represent abrupt changes across shadow and occlusion

boundaries and tend to be less statistically balanced. This special shape of image gradient

distribution is generally invariant to certain image processing operations such as image

resizing, cropping, and contrast adjustment. It has been used in various applications such as

image denoising, deblurring, superresolution and object recognition (e.g., [25], [27], [30],

[5], [1], [16], [35], [31]).

Previous work [22] has shown that it is reasonable to assume that image noise is symmetric

when the radiometric camera response is linear. This implies that including noise in our

analysis is not likely to affect the symmetry of the gradient distribution.

3 Definitions

In this section, we provide formal definitions of the radial gradient (RG) and the

semicircular tangential gradient (SCTG), upon which our estimation methods are based.

Let Z denote a given image with vignetting. To index a pixel in Z, we will interchangeably

use its Euclidean coordinates (x, y) and polar coordinates (r, θ ) for simplicity. These two

types of coordinates are meaningful only when the origin (x0, y0) or (r0, θ 0) of the

coordinate system is specified. To facilitate vignetting analysis, we wish to place the origin

at the optical center, since vignetting is typically radially symmetric about the optical center.

For a pixel (x, y), the conventional image gradient ∇Z(x, y) is defined in the Euclidean

coordinate system as

(1)

which is composed of the horizontal gradient (HG) and vertical gradient (VG), respectively.

An image gradient may instead be defined along any direction in the image, as the inner

product of the conventional gradient vector in Eq. (1) and the unit vector in the given

direction. Geometrically, this represents the projection of the conventional gradient onto the

specified direction. In the following, different forms of gradients will be defined in this way.
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3.1 Radial Gradients

The RG is defined as the image gradient along the radial direction with respect to the origin

of the coordinate system, as shown in Fig. 1. It measures the projection of the conventional

image gradient on the radial direction.

The radial direction at a pixel (x, y) is expressed by the following unit vector:

(2)

where |*| denotes the L2 norm. In practice, Eq. (2) can be approximated by

(3)

where ε is a very small value (e.g., 1 × 10−6) to avoid division by zero. The RG magnitude is

then expressed as

(4)

where “·” denotes the inner product operator.

3.2 Tangential Gradients

The conventional tangential gradient (TG) of a pixel is the image gradient along the

tangential direction of the circle that is centered at the origin of the coordinate system and

passes through this pixel, as illustrated in Fig. 2. It measures the projection of the

conventional image gradient on the tangential direction.

The tangential direction of a pixel (x, y) can be obtained by rotating the radial direction by

90° counterclockwise:

(5)

The TG magnitude is computed as

(6)

In the polar coordinate system, it is expressed as

(7)
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3.3 Semicircular Tangential Gradients

For the purpose of optical center estimation, we introduce SCTG which is defined as the

image gradient along either the tangential direction (rotating the radial direction by 90°

counterclockwise) or its opposite direction (rotating the radial direction by 90° clockwise).

We refer to these two cases as counterclockwise SCTG and clockwise SCTG, respectively.

Both forms of SCTG can be written jointly as

(8)

for which we set sgn(x, y) = 1 for counterclockwise SCTG and sgn(x, y) = −1 for clockwise

SCTG. The SCTG magnitude is computed as

(9)

as shown in Fig. 2(a) for the counterclockwise SCTG.

When estimating the optical center, its true position (x0, y0) is unknown and therefore its

estimate ( , ) is instead used as the origin of the coordinate systems in the above

definitions. We denote a pixel in such coordinate systems by (x′, y′) or (r′, θ′).

We assign to each pixel either the clockwise SCTG or the counterclockwise SCTG based on

its position with respect to the line defined by ( , ) and (x0, y0) (shown in red in Fig.

2(b)). Here, let us consider (x0, y0) to be a hypothetical true optical center to which is we

wish to update ( , ). This line divides any circle centered at ( , ) into two parts (as

shown in green and blue in Fig. 2(c)). Those pixels that lie on the green semicircle take the

value of the clockwise SCTG, while those in blue are assigned the counterclockwise SCTG.

Equivalently, the image is divided into two parts by this line, with the clockwise SCTG

assigned to pixels on one side and the counterclockwise SCTG to the other side.

This strategy for assigning a clockwise or counterclockwise SCTG to a pixel (x′, y′) can be

expressed analytically by setting sgn(x′, y′) in Eq. (8) according to

(10)

where θl is the rotation angle from the x direction to the ray from ( , ) to (x0, y0) (set to

zero when ( , ) = (x0, y0)) and θ′ is the polar angle of (x′, y′) with respect to ( , ). With

the SCTG value of each pixel determined according to Eqs. (5)-(10), different pixels may be

assigned in different ways depending on the estimate of the optical center, as shown for

different estimates in Fig. 2(c).

Note that this assignment strategy does not require the actual optical center (x0, y0), but

instead needs only the angular direction (θl in Eq. (10)) of (x0, y0 ) from ( , ) to define the

line between them. The SCTG distribution over the image is computed using different
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sampled values of these angles  and taking one that yields greatest

asymmetry, asymmetry should generally be maximum for the correct value of θl as we will

later describe in Sec. 4.1.

4 Gradient Distribution Properties

In this section, we introduce a quantitative measure on the asymmetry of a gradient

histogram distribution, briefly describe certain properties of conventional gradient

distributions, and explore a series of asymmetry properties on RG and SCTG distributions

which are caused by vignetting. These asymmetry properties will later be used to estimate

the vignetting in an image. Since the logarithm of image intensities has a gradient

distribution similar to that of the original image [45], these gradient distribution properties

generally hold for both the original image and its logarithm image.

To better visualize asymmetry properties, we plot the gradient distributions in various forms:

as a regular histogram, a log-histogram, and a log(1+ |x|) histogram (e.g., Fig. 3). A regular

histogram shows the probability density (denoted by “prob”) of the gradient (denoted by x).

The log-histogram and log(1 + |x|)-histogram are obtained by mapping “prob” to its

logarithmic value and by mapping x to log(1 + |x|), respectively. The log-histogram

enhances asymmetry that is present at the two tails of the histogram, while the log(1 + |x|)-

histogram emphasizes near any skewness the peak. Note that for plots of the log(1 + |x|)-

histogram we fold the curve for negative x values over to the positive side (hence two

curves, with red representing negative x and blue representing positive x).

4.1 Asymmetry Measure

We introduce a quantitative measure for the asymmetry of a gradient histogram distribution.

In this measure, we use the Kullback-Leibler (K-L) divergence to describe the shape

difference between the two sides of the distribution. Let H(ψ) be the histogram of gradients

ψ centered at zero. We compute the positive and negative sides of the distribution as

(11)

(12)

where A1 and A2 are areas under the curve for the two sides of the distribution, which are

respectively defined as

(13)

The K-L divergence measures the difference between probability distributions H+(ψ) and

H−(ψ) as
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(14)

Since two different sides of a distribution may become similar after normalization, we

account for their difference by incorporating A1 and A2 in our asymmetry measure Γ:

(15)

where the weight λh (balancing the two terms) and exponent q (adjusting the emphasis on a

small or large area-under-curve deviation value) were set empirically to 0.7 and 0.25,

respectively, in our experiments. We use Γr(I), Γst(I), Γt(I), Γh(I), and Γv(I) to represent the

asymmetry measure of the RG, SCTG, TG, HG, and VG, respectively.

4.2 Conventional Gradients

The histogram distributions of the conventional gradients, HG and VG, are generally smooth

and exhibit a special shape. As described in Sec. 2.3 and shown in Fig. 3, this distribution

shape is characterized by a sharp peak, heavy tails and symmetry. We observe that deviation

from this structure occurs if a global brightness variation is added to the image. For

example, increasing the brightness from left to right in an image will cause corresponding

increases in HG values and lead to asymmetry in the HG histogram distribution. However,

not all types of global brightness variation will alter this special histogram structure. For

example, vignetting generally will not change this histogram structure because of the radial

symmetry of vignetting.

We further observe that, for images without vignetting or other directional brightness

variation, the image gradient distributions defined along directions other than the vertical or

horizontal direction share the special structure shown by the conventional gradients. This

can be seen from the distribution comparisons of HG, TG, and RG in Fig. 3. Similar

findings are also presented in [31], [25]. As discussed in [25], the special shape holds for

image gradients in any direction because images consist of mostly smooth areas and the

structures in images tend to have starting and ending boundaries of similar contrast.

4.3 Radial Gradients

We observe several interesting properties of RG distributions. First, the RG distribution of

an image with vignetting is asymmetric or skewed, as shown at the bottom left of Fig. 4(c).

Second, the stronger the vignetting, the more asymmetric the RG distribution will be, as

shown in Fig. 5. Finally, with the same vignetting function, brighter scenes will exhibit

greater asymmetry, as shown in Fig. 6. These are validated through the following geometric

analysis.

4.3.1 Geometric Analysis—In polar coordinates, a given image Z with vignetting is

represented by
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(16)

where I is the vignetting-free image and V is the vignetting function. We assume V to be

rotationally symmetric (a function of r only), as done in most previous work [2], [10], [28],

[38], [43]. The RG is then expressed as

(17)

Let us now consider the right-hand side of Eq. (17). The first term simply scales the radial

gradients by V . Since V is radially symmetric, the scaled distribution of the first term is

expected to be mostly symmetric for natural images. The distribution of the second term,

however, is not. This is because vignetting functions are radially monotonically decreasing,

i.e., . Since the scene radiance I is always positive, the second term is always non-

positive. The distribution of the second term has most of its mass on negative values and

therefore is asymmetric. Furthermore, the second term becomes more negative for brighter

scenes and stronger vignetting. Stronger vignetting produces a larger brightness attenuation

and more negative values of , while brighter scenes have larger values of I in the second

term. This results in greater asymmetry in the RG distribution as shown in Fig. 5 and Fig. 6.

These findings are consistent with the common observations that vignetting is more visually

prominent when it is stronger or the scene is brighter.

In contrast to the RG, the symmetry of an HG or VG distribution is relatively unaffected by

vignetting. Since vignetting is radially symmetric from the image center, it can be seen as

increasing the magnitudes of HG or VG on one side of the image, while decreasing the

gradient magnitudes on the other side. The vignetting-free gradient distributions of each side

of the image can be assumed to be symmetric, and increasing or decreasing their magnitudes

will in general leave the distributions symmetric. As a result, HG and VG distributions

provide little information about vignetting in an image.

4.3.2 Experimental Validation—We have compared the asymmetry measure Γr for the

RG with Γh for the HG on images in the Berkeley Segmentation Dataset [21] and found Γr

to be considerably more sensitive to vignetting. For this dataset, Γr is significantly higher on

average than Γh (0.12 vs. 0.08). In Fig. 15, we display in the top row the four images with

the highest Γr.

We have also compared Γr and Γh before and after vignetting correction by the method in

[43]. With vignetting correction, significant reductions in Γr were observed, from an average

of 0.12 down to 0.072 over 40 images. By contrast, no obvious changes were observed for

Γh (0.074 vs. 0.076). Note that vignetting correction brings Γr down to a level similar to that

of Γh (0.072 vs. 0.076). We repeated these vignetting correction experiments on log intensity

images and found that their RG and HG distributions also follow these trends.
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4.4 Semicircular Tangential Gradients

The SCTG distribution has several interesting properties. First, the SCTG distribution

exhibits the same special shape as conventional gradients when images are free of any

global brightness variation. Second, this special distribution shape still exists for the SCTG

when images contain vignetting and the origin of the coordinate system is located at the true

optical center. Third, the SCTG distribution of vignetted images will be skewed if the origin

of the coordinate system is displaced from the true optical center, as demonstrated in Fig. 7

and Fig. 8. The causes for this asymmetry in the SCTG distribution will be explained in the

following geometric analysis.

4.4.1 Geometric Analysis—To geometrically analyze SCTG, we rewrite Eq. (16) as

(18)

where (r′, θ′) denotes polar coordinates with origin of the coordinate system at an estimated

optical center ( , ).

We perform the geometric analysis in the logarithm domain of the image. We denote ln Z, ln

I, and ln V by  , , and , respectively, and represent the TGs of , , and  for each

pixel (r′, θ′) by , , and  respectively. From Eq. (18), we

have

(19)

By analyzing the right-hand side of Eq. (19), we obtain four special properties of the SCTG

distribution, based on which we present an optical center estimation algorithm in Sec. 5.1.

Property 1: The SCTG distribution is symmetric when the estimated optical center is at the

true optical center, i.e., ( , ) = (x0, y0).

On the right-hand side of Eq. (19), the first term is the TG of the vignetting-free image ,

which is taken to have a symmetric distribution for natural images as examined in Sec. 4.2.

The second term represents the TG for the vignetting component of the image. Vignetting is

radially symmetric about the estimated optical center if it is co-located with the true optical

center. Therefore, the tangential gradient  would be zero, and the SCTG is also

zero regardless of whether the SCTG is computed in the clockwise or counterclockwise

direction. In short, the SCTG distribution is symmetric when the optical center is correctly

estimated.

Property 2: The SCTG distribution is asymmetric when the estimated optical center is

incorrect, i.e., ( , ) ≠ (x0, y0).
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When the estimated optical center is displaced from the true optical center, as shown in Fig.

9(a), the tangential gradient  relative to the estimated optical center ( , ) is

equal to the projection of the true radial gradient  at that point onto the semicircular

tangent direction, expressed as

(20)

where β is the rotation angle from  to .

From the property that vignetting attenuation is radially non-decreasing away from the true

optical center, we show that  is always non-negative. Let γ denote the rotation

angle from  to the line from (r′, θ′) to ( , ), as shown in Fig. 9. Since β + γ =

90° , it can be seen by simple geometric reasoning on the triangle defined by (x0, y0), ( , )

and (r′, θ′) that 0° < γ < 180° and −90° < β < 90° . This holds true both for pixels assigned

clockwise or counterclockwise SCTG values. From Eq. (20) and the radially non-decreasing

vignetting  we conclude that . Since the first term on the

right-hand side of Eq. (19) has a symmetric distribution about zero and the second term

skews the distribution towards positive values, the SCTG distribution is asymmetric about

zero for vignetted images in which the estimated optical center is incorrect.

Property 3: Asymmetry values of SCTG distributions generally increase with greater

distances between the estimated and true optical centers.

As seen in Fig. 9, for each pixel that does not lie on the line through ( , ) and (x0, y0), β

decreases for increasing distances between ( , ) and (x0, y0). For pixels that lie within the

circle defined by the diameter between ( , ) and (x0, y0), we have 90° < γ < 180° and a

negative β. With negative values of β, the SCTG values for pixels within the circle become

smaller (less positive) for increasing error in the estimated optical center. On the other hand,

pixels outside the circle have 0° < γ < 90° and a positive β, which leads to larger (more

positive) SCTG values. Consequently from Eq. (20),  becomes smaller for pixels

inside the circle but larger for pixels outside the circle. Since there is typically a much larger

number of pixels outside the circle than inside, the SCTG distribution will become more

skewed in the positive direction when the distance between ( , ) and (x0, y0) becomes

larger.

Property 4: The asymmetry value for an SCTG distribution should generally be at its

maximum for the correct value of θl in Eq. (10).

For an estimated optical center, the angle θl defines the line that divides the assignment of

pixels to clockwise or counterclockwise SCTGs, as illustrated in Fig. 2(b). As shown in the

analysis of Property 2,  is always non-negative given the true value of θl. An
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incorrect value of θl, however, leads to an erroneous line and wrong assignments of pixels to

clockwise or counterclockwise SCTGs. A wrongly assigned pixel has an opposite sign for

its SCTG, and therefore it will be non-positive. These non-positive values decrease the

positive skew of an SCTG distribution and reduce its asymmetry. Likewise, it can be seen

that smaller errors in θl lead to fewer pixels with an incorrect SCTG sign, and thus greater

asymmetry of the SCTG distribution. As a result, the asymmetry value is generally

maximized with the correct value of θl.

4.4.2 Experimental Validation—We have compared the numerical asymmetry values of

over 65 natural vignetted images before and after vignetting correction (the process of

obtaining the ground truth will be explained in Sec. 6.1). For each of the images, three

estimates of the optical center were randomly chosen with a distance of 0, 10, and 20 pixels

from the true optical center. The asymmetry values of the SCTG distributions were

computed with each of these three hypothesized optical centers. Before vignetting

correction, significant increases in asymmetry values were observed for greater distances

from the true optical center, from an average of 0.05 for a correctly estimated center, to 0.14

for a 10-pixel error and 0.19 for a 20-pixel error. By contrast, after the vignetting correction

no obvious changes were observed (0.054 vs. 0.051 vs. 0.057). That a greater estimation

error generally corresponds to a higher asymmetry value in a vignetted image is a favorable

property for optimization of the optical center, which is described in Sec. 5.1.

5 Estimation

In this section, we apply the distribution properties of the RG and SCTG described in Sec. 4

to estimate the optical center and vignetting effect given a single image. To obtain reliable

estimates of the optical center, we propose a nonlinear optimization based algorithm that

minimizes the asymmetry of the SCTG distribution. With the estimated optical center, we

present two variants of vignetting estimation that minimize the asymmetry of the RG

distribution: (1) a least-squares solution that determines the vignetting value at discrete radii,

and (2) a nonlinear optimization solution for fitting a parametric model of vignetting.

5.1 Optical Center Estimation with SCTG

As described in Sec. 4.4, the SCTG distribution is more symmetric with a more accurate

estimate of θl and optical center. Therefore, our method solves for the optical center (x̂0, ŷ0)

via the following minimization:

(21)

where the distribution asymmetry Γst of the SCTG is defined in Eq. (15).

The minimization in Eq. (21) can be accomplished by repeating two processes of estimating

θl by fixing ( , ) and estimating ( , ) by fixing θl, until convergence. We carry out the

former process with the scheme for determining θl explained in Sec. 3.3. For the latter

process, we utilize the Levenberg-Marquardt (L-M) algorithm [26] with ( , ) initialized

as the numerical center of the image coordinates. As shown in Fig. 10, the profile of the
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asymmetry measure with respect to the unknowns  and  enables quick convergence by

L-M optimization to an accurate solution.

5.2 Vignetting Estimation with RG

We propose two variants for single image vignetting correction based on minimizing the

asymmetry of the RG distribution. One variant estimates the amount of vignetting at discrete

radii by casting the problem as a sequence of least-squares optimizations. The other variant

fits an empirical vignetting model by nonlinear optimization.

5.2.1 Least-squares Solution with Discrete Radii—Our goal is to find the optimal

vignetting function V that minimizes asymmetry of the RG distribution. As in Sec. 4.4.1, we

denote ln Z, ln I, and ln V by , , and , respectively. We also denote the radial gradients

of , , , and  for each pixel (r, θ ) by , , and , respectively. By

taking the logarithm of Eq. (16), we have

(22)

Given an image  with vignetting, we find a maximum a posteriori (MAP) solution to .

Using Bayes’ rule, this amounts to solving the optimization problem

(23)

We consider the vignetting function at discrete, evenly-sampled radii: (V (rt), rt ∈ Sr), where

Sr = {r0, r1, . . . , rn−1}. We also partition an image into sectors divided along these discrete

radii, such that rm is the inner radius of sector m. Each pixel (r, θ ) is associated with the

sector in which it resides, and we denote sector width by δr.

The vignetting function is in general smooth; therefore, we impose a smoothness prior over

:

(24)

where λs is chosen to compensate for the noise level in the image, and  is

approximated as

To compute , from Eq. (22) we have

(25)
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We impose the commonly-used gradient sparsity prior [16], [15] on the vignetting-free

image :

(26)

Here, we use  because of symmetry of the RG distribution for .

Substituting Eq. (25) into Eq. (26), we have

(27)

where  denoting the sector within which the pixel (r, θ )

resides. The overall energy function  can then be written as

(28)

where λs is empirically set to 0.1. Our goal here is to find the values of

, that minimize .

To effectively apply this energy function, a proper sparsity parameter α for the RG

distribution of  must be selected. As given in Eq. (26), α must be less than 1. However,

very small values of α allow noise to more strongly bias the solution [45], [16]. We have

empirically found that values of α between 0.3 and 0.9 yield robust estimates of the

vignetting function for most images. For 0 < α < 1 though, Eq. (28) does not have a closed-

form solution.

To optimize Eq. (28), we employ an iteratively re-weighted least squares (IRLS) technique

[15], [23]. IRLS poses the optimization as a sequence of standard least squares problems,

each using a weight factor based on the solution of the previous iteration. Specifically, at the

kth iteration, the energy function using the new weight can be written as

(29)

The weight wk(r, θ ) is computed in terms of the optimal  from the last iteration as

(30)

Minimization of  in Eq. (29) amounts to making the gradient of  equal to the gradient of

 for each pixel while enforcing local smoothness on . Directly solving Eq. (29) has no

unique solution becauseV adding a constant value to  will not influence the value of . To
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address this issue, we introduce another constraint as shown in the following new objective

function:

(31)

where ε is a very small value (e.g. 0.00001). Compared with [44], we add this constraint to

make  as small as possible (i.e., V in Eq. (16) as close to 1 as possible), leading  to a

unique solution. Without this constraint, the corresponding objective function in [44] is

incapable of distinguishing between solutions which are different with a constant shift over

the vignetting attenuation values.

The minimization of Eq. (31) relative to  is a standard regularized least-squares problem. It

can beVaccomplished by the ridge regression (or Tikhonov regularization) technique [3] and

always has a closed-form solution.

In our experiments, we initialized w0(i, j) = 1 for all pixels (i, j), and found that it suffices to

iterate 3 or 4 times to obtain satisfactory results. We also observed that the re-computed

weights at each iteration k are higher at pixels whose radial gradients in  are more similar

to the ones in the estimated . Thus, the solution is biased towards smoother regions

whose radial gradients are relatively smaller. In addition, in a departure from [15], the

recomputed weights in our problem are always within the range [0, 1]. Fig. 11 shows the

weights recovered at the final iteration for an indoor image.

Our IRLS approach for estimating the vignetting function does not require any prior on the

vignetting model. However, it requires choosing a proper coefficient λs to balance the

smoothness prior on V (in Eq. (16)) and the radial gradient prior on . Since we choose a

relatively small value of α, our vignetting estimation is biased more towards smooth regions

than sharp edges. In essence, we emphasize the central symmetric part of the RG

distribution rather than the less symmetric heavy tails.

The IRLS variant has the advantage of fast convergence and a linear solution. However, it

requires estimating many parameters, each corresponding to a discrete radius value. We now

describe the second variant, which is model-based and requires far fewer number of

parameters to estimate.

5.2.2 Model-based Solution—Many vignetting models exist, including polynomial

functions [2], [28], hyperbolic cosine functions [38], as well as physical models that account

for the optical and geometrical causes of vignetting such as off-axis illumination and light

path obstruction [2], [10]. In this paper, we use the extended Kang-Weiss model [43] in

which brightness ratios are described in terms of an off-axis illumination factor A, a

geometric factor G (represented by a polynomial), and a tilt factor. By neglecting the tilt

factor, we have
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(32)

where f is the effective focal length of the camera and a1, . . . , ap are the coefficients of the

pth order polynomial associated with G. In our experiments, p = 5.

We estimate the parameters in this vignetting model, i.e., f, a1, . . . , ap, by minimizing

(33)

where  is the measure of asymmetry for image Z/V using Eq. (15), NΩis the total

number of pixels in the image, and Nb is the number of pixels whose estimated vignetting

values lie outside the valid range [0, 1] or whose corrected intensities exist outside of [0,

255]. In essence, the second term in Eq. (33) penalizes outlier pixels.

To find the optimal vignetting model, we minimize the energy function in Eq. (33) using the

Levenberg-Marquardt (L-M) algorithm [26]. We first solve for the focal length by fixing the

geometric factor G to be 0. We then fix the focal length and compute the optimal

coefficients a1, . . . , ap of the geometric factor. Finally, we use the estimated focal length

and geometric coefficients as an initial condition and re-optimize all parameters using the L-

M method.

There are many advantages of using the vignetting model in Eq. (32). First, it effectively

models the off-axis illumination effect A(r) using a single parameter f. The off-axis

illumination effect accounts for a prominent part of the vignetting for natural images.

Second, as shown in Fig. 12, the profile of the energy function (Eq. (33)) with respect to

focal length enables quick convergence by L-M optimization when estimating the focal

length. Finally, the polynomial parameters in the extended Kang-Weiss model can

effectively characterize the residual vignetting effect after removing the off-axis effect. In

our experiments, by initializing these parameters simply to 0, the L-M method can quickly

converge to satisfactory solutions.

6 Results

We applied our algorithms on images captured using a Canon G3, Canon EOS 20D, Nikon

E775, HP 945, as well as on images from the Berkeley Segmentation Dataset [21] and from

flickr® (http://www.flickr.com/). To obtain a linear camera response, the single-image

radiometric calibration method in [17] was applied as a preprocessing step to our algorithms.

6.1 Ground Truth Measurements

To obtain ground truth measurements of the optical center for each camera and setting, we

use the DLR Camera Calibration Toolbox [29]. Ten images of a chessboard-like calibration

panel were captured from different views and distances at each camera setting. The

landmarks/corners of the panel were then detected with the DLR CalDe tool and some
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manual interaction. From the image coordinates of these calibration features, the intrinsic

and extrinsic parameters of the camera were estimated with the DLR CalLab tool.

The ground truth vignetting was obtained using the approach described in [43], [42].

Specifically, for each camera setting, a series of images of a distant white surface under

approximately uniform illumination was captured, joined and blended to produce an

accurate calibration image. The ratio of intensity with respect to the optical center in this

image reflects the vignetting effect.

6.2 Estimation of Optical Center

We ran our algorithm for optical center estimation on a variety of simulated and real images.

Simulated Data—We first simulated different vignetting effects using the Kang-Weiss

model (as described in Sec. 5.2.2) by keeping its off-axis illumination factor and neglecting

its geometric factor. We set f = {250, 500, 1300, 2000, 3000} (in pixels) and added the

simulated vignetting effects with optical centers randomized on circles centered at the

numerical center of the image coordinates. These circles were sampled at four different radii

(5, 15, 25 and 30 pixels), giving a total of 20 simulated vignetting effects. These effects

were applied to a set of 65 real-world images considered to be vignetting-free, as they were

captured with a large focal length. The simulated vignetting effects were added to each of

the vignetting-free images by multiplying the original image intensities by the vignetting

attenuation value. We show the estimation errors of our approach in Fig. 13, where the error

value for each combination of f and optical center shift is averaged over the 65 images.

Since our algorithm relies on vignetting information to estimate the optical center, it

becomes less effective for images which are weakly vignetted, as shown in Fig. 13. On the

other hand, the estimation is shown to be fairly insensitive to different shifts in the optical

center away from the numerical center of the images.

Real images—We also applied our algorithm to real images taken by the aforementioned

cameras. The focal length and zoom were varied to obtain different optical centers [37], and

we additionally varied the focus and aperture size to produce different vignetting

characteristics. For each camera setting, we captured 15 images of real-world scenes. We

ran our algorithm on each of these images, and present comparisons to ground truth values.

We found that the zoom parameter has little influence on accuracy. In contrast, the focal

length, focus distance, and aperture setting have more obvious effects, as shown in Tab. 1

based on the 15 images. We only report the results for the Canon EOS 20D in Tab. 1.

Results for the other cameras have very similar error statistics. Camera settings that generate

greater vignetting (shorter focal length, larger focus distance, and larger aperture size)

usually lead to more accurate estimates of the optical center. With our technique, good

accuracy can be obtained even for complex scenes.

6.3 Estimation of Vignetting

Indoor images—We ran our vignetting correction algorithms on 20 indoor images. The

vignetting artifacts in indoor images are generally difficult to correct due to greater
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illumination non-uniformity [43]. Since our methods are based on modeling the asymmetry

of the gradient distributions instead of the intensity distributions, they work well for indoor

images. The results shown in the top rows of Fig. 14 demonstrate that our methods are able

to effectively reduce vignetting despite highly non-uniform illumination.

Texture images—We have also tested our methods on 15 highly textured images. While

many previous approaches rely on robust segmentation of textured regions, our methods

uniformly model the more slowly-varying vignetting and the high-frequency textures in

terms of the radial gradient distributions: the textures correspond to the heavy tails of the

distribution and vignetting is reflected in the asymmetry of the distribution. Therefore,

without segmentation, our methods can still significantly reduce vignetting in the presence

of strong textures, such as leaves on a tree, as shown in the bottom row of Fig. 14(a).

Images from Berkeley Segmentation Dataset and flickr®—We ran our algorithms

on the Berkeley Segmentation Dataset and on 57 images from flickr® that exhibit obvious

vignetting. Vignetting was observed to be significantly reduced for photographs with very

different content. Results for the most heavily vignetted images in the Berkeley Dataset are

shown in Fig. 15. Our techniques were also found to be effective for flickr® images (Fig.

16), as indicated by the flatter brightness profiles of the vignetting corrected images in

comparison to the original images. The lower flickr® image in Fig. 16 demonstrates the

usefulness of our techniques to correct vignetting also in microscopy imaging. Vignetting

correction provides an effective means of optimising digital microscopy image appearances

for printing, image analysis, or telepathology [14].

Quantitative Evaluation and Comparison—To quantitatively evaluate the accuracy of

our algorithms and compare them with previous methods, we ran our algorithms and Zheng

et al.'s algorithm [43] on 80 images captured from outdoor (36), indoor (29) and texture (15)

scenes, respectively. For all of the images, the ground truth vignetting is known. For outdoor

scenes, our model-fitting variant performs the best while the method of Zheng et al. and our

least-squares variant are comparable in performance.

We found that for indoor and texture scenes, our two methods, in particular the model-based

method, estimate the vignetting functions more accurately. This is mainly because our

technique is based on the symmetry of the RG distribution while the method by Zheng et al.

[43] depends on the (less reliable) measurement of homogeneity in textures and colors. RG

symmetry holds for a wide range of natural images even though they contain few

homogeneous regions (e.g., highly textured images). It is thus not surprising that our

methods are able to correct vignetting in images with highly complex textures or

nonuniform illumination while the method of Zheng et al. is less able to, as shown in Fig.

17. We observed that the algorithm of Zheng et al. [43] may generate segments that are

inhomogeneous or non-uniformly textured, which leads to sub-optimal results.

Benefits of Optical Center Estimation—To validate the benefits of optical center

estimation on vignetting correction, we ran our least squares vignetting correction algorithm

on 20 real-world images captured from each of the four test cameras, with imaging

parameters set to generate significant vignetting. We found that the mean/standard-deviation
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of the Mean Squared Errors (×10−3) of the vignetting estimations decrease from 2.08/1.72

(with the optical center assumed to be at the image center) to 1.29/0.64 (with the optical

center estimated by the proposed algorithm).

6.4 Speed

We compared the speed of our vignetting methods to that of Zheng et al.'s algorithm [43] on

a total of 80 outdoor, indoor, and textured images. All images were resized to a resolution of

450 × 600 (which does not affect the special shape of image gradient distributions as

described in Sec. 2.3), and all algorithms were implemented in Matlab (except for the

segmentation component of [43] in C++) and run on a Dell PC with a 2.39 GHz Intel Core 2

CPU. A substantial increase in speed is likely to be possible with an optimized C++

implementation.

Our algorithms achieved on average a speed-up of 3-5 times compared with Zheng et al.'s

algorithm, from an average execution time of 285 seconds for Zheng et al.'s algorithm to 64

seconds of our least squares technique and 80 seconds for our model-based algorithm. Our

methods are faster mainly because they do not require an iterative segmentation process.

Note that the timings of our methods include the average execution time (29 sec) spent on

automatic estimation of the optical center.

7 Discussion

Our proposed vignetting correction techniques work well for both non-texture images and

texture images. There are, however, failure cases, due to our assumption of symmetric

distribution of edges. This means that our techniques are less effective on images with

predominantly inhomogeneous textures, e.g., a close view of trees. Failure may also result in

cases where the dominant brightness variation is caused by outdoor illumination (e.g., bright

sun in the sky) or where there is inhomogeneous shading/reflectance in indoor images.

Highly noisy images (e.g., under low-light conditions) will also not be properly corrected

due to the possible skewed gradient distribution. In such cases, the algorithm of Zheng et al.

[43], [42] is expected to be more robust due to the use of a robust statistical function.

Our model-based vignetting variant uses a small number of parameters, and as such, has a

better chance of converging to an optimal solution. However, since its optimization is

nonlinear, convergence is slower than the least squares variant. Also, not all images with

vignetting fit the Kang-Weiss vignetting model. Cameras with specially designed lenses, for

example, may produce vignetting effects that deviate from this model. Here, the more

flexible least squares variant would perform better.

8 Conclusion

We presented novel techniques for single-image vignetting correction based on the

symmetric distribution of two particular image gradients: the semicircular tangential

gradient (SCTG) and radial gradient (RG). Our techniques model the symmetry of the RG

and SCTG distributions over the entire image and avoid the segmentation that is required by

previous single-image methods. Moreover, our techniques are able to achieve higher
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accuracies by determining the optical center precisely from a single input image.

Experiments on a wide range of natural images show that our techniques are overall more

robust and accurate, particularly for images with textures and non-uniform illumination,

which are difficult to handle effectively using segmentation-based approaches. Our methods

are also faster than the previous segmentation-based approach, achieving a speed-up of 3-5

times, and with comparable or better results.

We would like to extend the techniques in this paper to more general global variations of

image brightness, e.g., nonuniformity artifacts in medical imaging [40], [39], to the

simultaneous estimation of optical center, vignetting and other camera parameters (e.g., the

camera response curve [7]), and to other applications such as high dynamic range imaging

[25], radiometric calibration of agricultural cameras [24], and medical imaging [40], [39].

Finally, the implementation of our algorithms and some examples presented in this paper are

available for public usage at https://www.eecis.udel.edu/wiki/vims/index.php/Main/

Software.
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Fig. 1.

Radial gradient  is defined as the projection of the conventional image gradient ∇Z on

the radial direction r̄.
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Fig. 2.

Illustration of TG and SCTG. (a) TG  is defined as the projection of the conventional

image gradient ∇Z on the tangential direction t̄. (b) The line through the true optical center

(green dot) (x0, y0) and its estimation (pink dot) ( , ) divides the blue circle into two

parts. With Eq. (10), the clockwise SCTG is assigned to pixels on the part with the green

arrow while the counterclockwise SCTG is assigned to the part with the blue arrow. (c)

SCTG assignments are different for different optical center estimates.
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Fig. 3.
Statistical regularities of an ensemble of natural scene images free from vignetting or other

directional brightness variation, demonstrated with HG, TG and RG histograms. From left to

right: regular histogram, log-histogram, and log(1 + |x|)-histogram.
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Fig. 4.
Gradient histograms for two natural images in (a). In (b) and (c), top to bottom: regular

histogram and corresponding log(1 + |x|) histogram. (b) displays plots for HG while (c)

shows plots for RG.
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Fig. 5.
Comparison of asymmetry of RG distribution for varying degrees of vignetting. From left to

right: image, regular histogram with asymmetry value, and log(1 + |x|) histogram. From top

to bottom: increasing degrees of vignetting.
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Fig. 6.
Effect of darker images on asymmetry. (a) Original image, (b) image with synthetic

vignetting, (c) darkened version of (a), (d) same amount of synthetic vignetting applied to

(c). For each of (a)-(d), from top to bottom: image, regular histogram with asymmetry value,

log(1 + |x|) histogram. Notice that brighter images with vignetting have a greater asymmetry

value.
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Fig. 7.
Comparison of SCTG and TG distributions. The true optical center and three estimated

optical centers are marked by the red dot and three purple dots, respectively. For each

estimate, we show the regular histogram with asymmetry value and the log(1 + |x|)

histogram.
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Fig. 8.
Comparison of SCTG and HG distributions. In each image, the true optical center and

estimated optical center are marked by the yellow dot and purple dot, respectively. With

each distribution, a log(1 + |x|) histogram is also shown to emphasize asymmetry.
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Fig. 9.
Geometric analysis of SCTG asymmetry caused by vignetting.
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Fig. 10.
Profile of asymmetry measure with respect to different hypothesized positions of the optical

center (x0, y0) for the image in Fig. 7. The true optical center is marked by the black dot.
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Fig. 11.
Computed weights in the least squares variant (Eq. (29)) after the 3rd iteration of the IRLS

algorithm.
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Fig. 12.
Model-based vignetting correction. (a) Input image, (b) final corrected image, and (c) graph

of objective function (Eq. (33)) vs. focal length. The images above the graph, from left to

right, correspond to corrected versions using focal length values indicated by green squares

on the curve. The focal length yielding the minimum value is the final solution.
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Fig. 13.
Errors in optical center estimation using images with simulated vignetting. The vignetting

effects are simulated with different focal lengths f and random shifts of the optical center

away from the numerical center of the image coordinates.
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Fig. 14.
Results on indoor and textured images. (a) From left to right: input image, corrected image

using least squares, corrected image using the model-based variant. (b) From left to right:

estimated vignetting curves for the upper and lower images in (a), respectively. The red and

blue curves are obtained by our least squares and model-based methods, respectively, and

the black dotted curves are the ground truth.

Zheng et al. Page 38

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 15.
The four most heavily vignetted images in the Berkeley Segmentation Dataset [21] and the

vignetting correction results with our techniques.
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Fig. 16.
Vignetting correction results using our methods on two images taken from flickr®.

Brightness profiles are drawn for pixels on a middle horizontal line, from left to right. The

lower original image is from microscopy imaging.
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Fig. 17.
Comparisons of speed and accuracy. The numbers in parentheses are mean squared errors

(×10−3).
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TABLE 1

Error statistics (mean μ and standard deviation σ) with a Canon EOS 20D at different zooms z (with focal

length 50mm), focal lengths f (with 27mm-136mm zoom), focus distances d (with 100mm zoom), and

aperture sizes a (with 100mm zoom).

Zoom z 27mm 40mm 90mm 136mm

Error μ 1.0 1.3 1.1 1.0

σ 0.6 1.9 0.7 0.7

Focal length f 33mm 50mm 100mm 135mm

Error μ 1.4 1.8 4.7 6.3

σ 0.8 1.0 2.1 3.3

Focus d 1m 5m 10m ∞

Error μ 14.3 9.6 5.7 1.2

σ 31.3 5.5 3.1 0.8

Aperture a f 5.6 f 4.5 f 3.5 f 2.8

Error μ 14.1 13.3 8.4 1.5

σ 21.0 18.9 7.8 0.9

Errors are measured in pixels.
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TABLE 2

Comparison of mean/standard-deviation of the Mean Squared Errors (×10–3) for 80 images.

Zheng et al. Least squares Model-based

Outdoor 1.9/0.7 1.8/0.9 1.3/0.3

Indoor 3.1/1.9 2.4/1.5 2.6/1.3

Texture 5.9/2.3 5.2/2.1 3.9/1.6

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 September 23.


