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Abstract Amyotrophic lateral sclerosis (ALS) is a fatal
chronic neurodegenerative disease whose hallmark is pro-
teinaceous, ubiquitinated, cytoplasmic inclusions in motor
neurons and surrounding cells. Multiple mechanisms pro-
posed as responsible for ALS pathogenesis include dys-
function of protein degradation, glutamate excitotoxicity,
mitochondrial dysfunction, apoptosis, oxidative stress,
and inflammation. It is therefore essential to gain a bet-
ter understanding of the underlying disease etiology and
search for neuroprotective agents that might delay disease
onset, slow progression, prolong survival, and ultimately
reduce the burden of disease. Because riluzole, the only
Food and Drug Administration (FDA)-approved treatment,
prolongs the ALS patient’s life by only 3 months, new ther-
apeutic agents are urgently needed. In this review, we focus
on studies of various small pharmacological compounds
targeting the proposed pathogenic mechanisms of ALS and
discuss their impact on disease progression.
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Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS), a.k.a. Lou Gehrig’s
disease, is a chronic neurodegenerative disease with a prev-
alence of 1-2 per 100,000 [1] and an incidence of 6-8 per
100,000 people/year. More than 300,000 Americans will
die from ALS over the next 10 years unless an effective
cure or means of prevention is found. Approximately 90—
95 % of ALS cases are sporadic ALS (SALS), with familial
ALS (fALS) or inherited cases comprising the remaining
5-10 % of cases. The degeneration of motor neurons in pri-
mary motor cortex, corticospinal tracts, brain stem, and spi-
nal cord is responsible for the muscle weakness that typi-
fies ALS.

Skeletal muscle is considered a key target in the devel-
opment of ALS. Mice expressing mutant G93A SODI1
(mSOD1%%A) selectively in skeletal muscle demonstrate
progressive muscle atrophy and spinal motor neuron
degeneration [2, 3]. Because muscle cells can clear mis-
folded mSOD1 proteins more efficiently than motor neu-
ron-like cells [4], several treatments have targeted skeletal
muscle. Unfortunately, though these treatments help sustain
muscle function, they do not significantly extend survival
in ALS mice, which may imply that motor neuron-targeted
treatment alone or combined with skeletal muscle-targeted
treatment would be more effective in ALS treatment [5-8].

In ALS pathogenesis, it has been assumed that dam-
age to a selective population of motor neurons leads to
disease onset, duration, disease progression, and length of
survival. Emerging evidence supports the involvement of
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neighboring non-motor neuron cell types including micro-
glia, astrocytes, and other glial-type Schwann cells, oli-
godendrocytes, and NG2 cells, as well as targeted muscle
cells in the process of ALS-related pathological develop-
ment; astrogliosis and microgliosis are notable hallmarks
of ALS disease. We will focus on therapeutic agents target-
ing motor neurons and summarize the effects of agents tar-
geting astrocytes and microglia.

The neuroprotective agent riluzole, the only treatment
currently approved by the US Food and Drug Administra-
tion (FDA), demonstrates only marginal efficacy, prolong-
ing the patient’s life by only a few months [9]; its proposed
mechanism of action is thought to be anti-excitotoxicity.
Hence there is hope that neuroprotective agents counteract-
ing excitotoxicity or other pathogenic mechanisms might
ameliorate the clinical symptoms of ALS. Below we review
the current knowledge regarding mechanisms underlying
the disease pathology with the goal of identifying neuro-
protective agents for ALS. We highlight the single small-
chemical compounds that affect one or more proposed
pathogenic ALS pathways and show neuroprotective effi-
cacy in ALS mouse models. Although one agent may target
multiple action mechanisms, we have divided neuroprotec-
tive agents into categories based on whether they mainly
affect protein-degradation-clearing pathways, excitotoxic-
ity, mitochondrial dysfunction, apoptosis, oxidative stress,
or inflammation (Table 1; Fig. 1).

Genetic factors in the ALS and mutant SOD16%34
mouse model

Amyotrophic lateral sclerosis is a heterogeneous disease.
Though mutations in copper—zinc superoxide dismutase 1
(SOD1) have been linked to ~20 % of fALS cases [10],
other genes have been implicated, including ubiquilin 2
[11] (a recent finding), TDP-43 [12], FUS/TLS [13, 14],
TAF-15 [15], and the hexanucleotide-repeat expansion in
the uncharacterized gene COORF72 [16, 17].

Transgenic mice overexpressing mutant G93A SODI1
constituted the first and most commonly used animal model
to evaluate the efficacy of potential treatments includ-
ing small chemical compounds for ALS [18, 19] although
other animal models are available. The mSOD1 mice mod-
els (including G37R, G85R, G127X, D90A, and H46R)
share similar pathological hallmarks but differ in disease
onset and progression related to gender, generation, and
copy number [20]. Like humans with ALS, mSOD1 mice
exhibit symptoms such as muscle loss [3], respiratory dis-
tress, upper and lower motor neuron involvement, immune
system activation, blood-brain barrier (BBB) disruption,
inclusion bodies and protein aggregation, and neuromus-
cular junction disruption [18, 19, 21, 22]. Recent mouse
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studies began intervention at symptom onset [1, 23-25] or
after onset [26, 27] to mimic the clinical treatment of ALS
patients. However, most early studies treated mice before
onset (preventively), which may have made that animal
work less applicable to clinical studies, in that human ALS
patients almost invariably receive treatment after diagnosis.
Here we include mSOD1 mouse studies involving treat-
ment before, at, or after disease onset.

Protein degradation pathways and SOD1-clearing
agents

A significant amount of ALS research has been focused
on understanding protein aggregation pathology. Pro-
tein degradation pathways play a crucial role in removing
misfolded proteins and preventing protein aggregation;
the ubiquitin proteasome system (UPS) and autophagy
are the two major known protein degradation pathways
[28]. Cytoplasmic inclusions in ALS are usually ubiqui-
tin-positive [29-34], and alterations in ubiquitin and pro-
teasome are found not only in motor neurons but also in
astrocytes from ALS patients. That evidence supports the
involvement of the ubiquitin—proteasome system in both
motor neurons and astrocytes in the pathogenesis of ALS
[32, 33]. However, because accumulation of ubiquitinated
proteins in patient samples could reflect the failure of the
UPS, autophagy, or both, the role of the UPS in ALS is
ambiguous. Most studies have reported mild-to-severe
proteasomal dysfunction in ALS [35], although upregula-
tion has also been reported [36]. A recent study using an
in vivo UPS activity reporter mouse model demonstrated
a mild decrease in UPS activity in ALS mice [37]. Muta-
tions in ubiquilin 2, a protein that regulates the degrada-
tion of ubiquitinated proteins, have recently been reported
to cause dominantly inherited, chromosome-X-linked ALS
and ALS/dementia [11]. Although the details of ubiquilin
2’s role in ALS disease etiology remain to be determined,
this new finding supports a significant relationship among
proteasomal dysfunction, abnormal protein aggregation,
and neurodegeneration.

It is critical to maintain autophagy activity in the cen-
tral nervous system (CNS). Deletion of the key autophagy
genes atg5 or atg7 in neurons in transgenic mice resulted
in neurodegeneration and the accumulation of polyubig-
uitinated proteins and ubiquitin-immunoreactive inclu-
sions [38]. The involvement of autophagy in ALS has been
reported, but its functional role in disease etiology is less
clear. Analysis of post-mortem spinal cord samples from
sALS and fALS patients revealed elevated levels of poly-
ubiquitin and autophagy markers Beclin-1 and LC3-II, sug-
gesting autophagy [39]. The protein inclusions in ALS are
often immunopositive for ubiquitin and p62, both of which
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Fig. 1 Neuroprotective agents
target the pathogenic pathways
in ALS
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are found in protein inclusions in atg5 and arg7 knockout
mice. Moreover, alterations in autophagy caused by differ-
ent gene mutations were reported in multiple fALS models.

p62 is an adaptor protein for autophagy substrates found
in pathological inclusions in ALS. Ubiquitin is commonly
found in p62-positive inclusions [40]. P62-immunopositive
inclusions were reported in fALS caused by CHMP2B
mutation [41], ANG/angiogenin mutation [42], FIG 4
mutation [43], and more recently in TDP-43 [44] and FUS
inclusions [45]. p62 co-localized with SOD1- and ubiqui-
tin-positive inclusions in G93A SODI1 mice and was co-
immunoprecipitated with fALS mutants but not with wild-
type SOD1 [30]. Moreover, p62 can function as an adaptor
between mSOD1 and the autophagy machinery, potentially
by a ubiquitin-independent mechanism [46]. P62 provides
a potential target for novel therapeutic strategies that focus
on clearing misfolded and aggregated proteins.

Several chemical compounds are capable of reducing
SODI1 levels/aggregates in models of ALS. Arimoclomol,
an amplifier of heat shock protein expression, delays dis-
ease progression and extends the lifespan of pre- or early
symptomatic stages of mSOD1%%* mice [47]. Late-stage
treatment improves muscle function [26]. Arimoclomol
reduces ubiquitin aggregates in the spinal cord of G93A
mice. Because the accumulation of ubiquitinated proteins
reflects UPS failure and/or autophagy, these results may
suggest a direct role of arimoclomol in protein aggregation

@ Springer
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Inflammatory damage ZVAD-fmk

Motor neuron death

[26] and effects on UPS and/or autophagy. Ongoing phase
I/III clinical trials indicated arimoclomol’s good safety
and tolerability [48, 49].

Another SOD1-clearing agent is edaravone. As an anti-
oxidant and a free-radical scavenger, it effectively slows
symptom progression, body weight loss, and motor neu-
ron degeneration, and decreases the mean area with SOD1
aggregates in mSOD19%A mice; these effects may be
attributed to an enhancement of proteasomal activity yet
to be characterized [25]. Pyrimethamine (Daraprim), an
FDA-approved medication for the treatment of malaria
and toxoplasmosis, reduces SODI1 levels in cultured
cells, mice, and ALS patients [50], although it cannot
decrease SOD1 expression in PC12 cells [51]. Lithium
also reduces ubiquitin and SOD1 aggregates in motor
neurons [52], inhibits excitotoxic motor neuron death in
organotypic spinal cord cultures [53], and provides neu-
roprotection in cerebellar granule cells [54]. Moreover,
lithium significantly delayed disease onset and duration,
augmented the lifespan of the G93A mouse, and reduced
reactive astrogliosis [52]. The same report suggests that
lithium combined with riluzole delayed disease progres-
sion in ALS patients [52]. However, another report on
G93A mice failed to show neuroprotection [55]. An Ital-
ian study suggested that lithium combined with riluzole
delayed disease progression in ALS patients [52]. How-
ever, two larger multicenter trials failed to confirm these
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findings and were halted due to serious safety and efficacy
concerns [56].

Excitotoxic mechanisms and anti-excitotoxic agents

Compared with other neurons, motor neurons are particu-
larly vulnerable to excitotoxicity. In addition, astrocytes
facilitate the removal of excessive glutamate and affect
the calcium permeability of AMPA receptors of motor
neurons [57]. Glutamate-induced excitotoxicity lead-
ing to motor neuron death is one pathogenic mechanism
of ALS. NMDA and AMPA receptors are responsible for
calcium entry. Under the pathological conditions of ALS,
mSODI increases the sensitivity of the AMPA receptor to
glutamatergic stimulation, disrupts mitochondrial function,
and affects the surrounding astrocytes by interrupting their
maintenance of extracellular glutamate levels. Astrocytes
expressing mSOD1 are highly vulnerable to glutamate-
induced excitotoxicity mediated by metabotropic glutamate
receptor 5 (mGluR5) [32, 58].

As stated earlier, riluzole is the only FDA-approved
treatment for ALS, but has only a modest effect on sur-
vival. Riluzole protects against motor neuron degenera-
tion through excitotoxicity by interrupting glutamatergic
transmission and lowering glutamate concentration, with
effects on NMDA or AMPA receptors. This explains the
strong interest in developing drug candidates that reduce
glutamate-induced excitotoxicity. Riluzole significantly
extended survival in ALS transgenic mice although it had
no effect on disease onset. Riluzole also blocks Ca*" and
Nat channels and modulates the GABAergic system,
which suggests that it targets multiple pathogenic pathways
[59, 60]. Combining riluzole with other drugs showing pro-
tective efficacy in ALS mice or patients may yield greater
therapeutic potential for ALS. Ceftriaxone, a $-lactam anti-
biotic approved for treatment of bacterial infections, pro-
tected neurons against apoptosis and was identified from
among 1,040 FDA-approved drugs as capable of increas-
ing glutamate transporter gene expression [61]. Ceftriaxone
prevents glutamate neurotoxicity, and when initiated at dis-
ease onset delays loss of muscle strength and body weight
and prolongs survival [61]. Talampanel, a noncompetitive
AMPA antagonist, reduces motorneuronal calcium levels
if applied presymptomatically [62]. Memantine is an FDA-
approved drug used for the treatment of Parkinsonism, vas-
cular dementia, and Alzheimer’s disease. It is a N-methyl-
D-aspartate  (NMDA) receptor blocker that attenuates
excitotoxicity [63]. If administered orally to mSOD19%34
mice either at symptom onset or pre-symptomatically [64],
it prolongs survival [23]. However, memantine did not
elicit any reversal of motor deterioration [23].

The histone deacetylases (HDACs) play an important
role in protein acetylation in histones and in regulation

of transcription [65]. Along with anti-excitotoxic effects,
HDAC inhibitors have anti-inflammatory and neurotrophic
properties. The HDAC inhibitor valproic acid (VPA) pro-
tects against glutamate or kainite-induced excitotoxicity in
cultured neurons [66, 67] and achieves neuroprotection by
reducing the number of apoptotic cells [68] and upregulat-
ing Bcl-2 [69]. Combined valproate and lithium treatment
delays disease onset, reduces neurological deficits, and pro-
longs survival in ALS mice [70]. Sodium phenylbutyrate,
another HDAC inhibitor, protects against glutathione-
induced oxidative stress in cultured cortical neurons [71].
Sodium phenylbutyrate, administered by injection to
mSOD1%%*A mice either before or after symptom onset,
prolongs survival and reduces the severity of pathological
phenotypes [72].

Mitochondrial dysfunction and mitochondrial protectants

Mitochondria, cellular organelles that generate energy, play
a key role in the intrinsic apoptotic death pathway, cellular
calcium homeostasis, and ALS pathogenesis. A tendency to
accumulate and aggregate in mitochondria is common to
all mSOD1 [73], which may disrupt the activity of com-
plex IV and impair the association of cytochrome ¢ with
the inner membrane [74]. mSOD1 aggregation in the mito-
chondria is linked with spinal cord—specific dysfunction of
mitochondria, suggesting an association between defective
mitochondria due to the toxic function of mSODI and the
pathogenesis of ALS, prompting the search for neuropro-
tective agents targeting mitochondria [75]. Below is a brief
review of candidate compounds.

KNS-760704 (dexpramipexole) is the optical enanti-
omer of pramipexole. Dexpramipexole was developed to
maintain the neuroprotective properties while reducing
the dopaminergic side effects of pramipexole. Both drugs
include the benzothiazole core also present in riluzole [76].
Dexpramipexole functions at the level of mitochondria to
enhance ATP output, reduce the generation of reactive oxy-
gen species, and suppress apoptosis. It shows neuroprotec-
tion in vitro and in vivo, including the G93A mouse model
[76], and hence is a candidate agent against ALS. However,
dexpramipexole recently failed in a phase III trail.

Olesoxime (TRO-19622 or mitotarget), a small mol-
ecule with a cholesterol-like structure, is neuroprotective
in animal and cellular models of ALS. It acts on the mito-
chondrial permeability transition pore (mPTP) [77]. Mito-
chondrial swelling and vacuolization are early pathological
features of ALS [18], and genetic deletion of a major regu-
lator of the mPTP in ALS mice delays disease onset and
extends survival [78]. Olesoxime protects against motor
neuron death, increasing the lifespan of mSOD1%%*A mice
via delaying the onset of motor dysfunction and weight loss
rather than slowing disease progression [79]. Furthermore,
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olesoxime delays muscle denervation, astrogliosis, micro-
glial activation, and motoneuron death in mSOD15%** mice
[80]. Olesoxime directly binds TSPO and VDAC, two pro-
teins of the outer mitochondrial membrane [79].

Creatine helps prevent bioenergetic dysfunction and
mitochondrial impairment, producing a dose-dependent
improvement in motor performance and extending survival
in G93A mice [81]. Creatine supplementation also reduces
oxidative damage and neuron loss in G93A mice [81]. The
addition of other agents, including minocycline or CELE-
BREX, produces additive effects in ALS mice [82, 83].

Induction of mPTP results in the release of mitochon-
drial proteins such as cytochrome ¢ into the cytoplasm,
which eventually induces cell-death pathways and leads
to cell demise [84]. Inhibitors of mPT have been sug-
gested to be neuroprotective [85]. Among these inhibitors,
nortriptyline is an FDA-approved tricyclic antidepressant
[85] that significantly delays disease onset and reduces
motor neuron loss in ALS mice [86]. Caspase-3 activa-
tion and cytochrome c release in the lumbar spinal cord
of ALS mice were inhibited by nortriptyline [86]. Another
mPT inhibitor, the immunosuppressant cyclosporine, has
mitochondrial protective properties. It prevents the assem-
bly of mPT and stabilizes mitochondrial membranes, thus
preventing apoptosis [87]. Intrathecal injections of cyclo-
sporine starting at disease onset extended the survival of
ALS mice [87]. Taken together, these studies support the
potential of mPT inhibitors in therapeutic applications for
ALS.

P7C3 and its analog P7C3A20 are aminopropyl carba-
zoles shown to be neuroprotective and to encourage neuro-
genesis. P7C3 exhibits protection of mitochondrial member
integrity against calcium in vitro [88]. Besides its neuro-
protective effect in a mouse model of Parkinson disease
[89], when administrated at onset, P7C3A20 was also neu-
roprotective in a G93A SOD1 mouse model of ALS, pro-
tecting lumbar spinal motor neurons and improving motor
performance in accelerating rotarod test and walking gait
[90].

Apoptotic pathways and anti-apoptotic agents

Though debatable, there is evidence that apoptosis, par-
ticularly the mitochondrial apoptotic pathway, has some
involvement in ALS. An early event in the mechanism of
toxicity of ALS is the activation of initiator caspase-1 [34,
91, 92]. The deletion of the Bax/Bak pathways of mito-
chondrial apoptosis in G93A mice provides strong support
for the role of mitochondrially regulated apoptosis in ALS
[93]. Understanding these apoptotic pathways is an active
area for future ALS therapeutic studies.

Melatonin has an indole core skeleton, easily pen-
etrates the BBB, and acts as an anti-apoptotic agent, an
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antioxidant, and a free radical scavenger [94]. Our own
recent studies indicate that melatonin administrated by
intraperitoneal injection not only delays disease onset and
increases mortality in both SOD19%** ALS mice and R6/2
Huntington’s disease transgenic mice but also inhibits
mutant huntingtin-induced cell death and caspase activa-
tion and preserves melatonin receptor 1A in mutant hun-
tingtin ST14A cells [95-97]. In addition, melatonin reduces
superoxide-induced cell death and attenuates glutamate
excitotoxicity in NSC-34 cells [98]. Astrocyte activation
with increased levels of GFAP (a marker for astrocytes)
and microglial activation with increased levels of RCA-1
(a marker for microglia/macrophages) in the spinal cord
are both correlated with motor-neuron degeneration. Inter-
estingly, we found that melatonin treatment reduced the
expression of GFAP and RCA-1 in mSOD1%%*A ALS mice
[98]. High oral doses of melatonin delayed disease progres-
sion and increased longevity in SOD1%%*A mice [98]. In a
clinical safety study, high-dose rectally administered mela-
tonin was well tolerated in patients with SALS [98]. How-
ever, melatonin has two weaknesses: a relatively short half-
life (#2 = 20-50 min in adults) and multiple binding sites.
Future research should be directed at identifying analogs
and further drug design to overcome melatonin’s weak-
nesses and strengthen its neuroprotective effects in slowing
disease progression in ALS.

The hematopoietic growth factor erythropoietin (EPO)
inhibits apoptotic neuronal changes [99]. Non-hematopoi-
etic erythropoietin derivatives, including asialo and carba-
mylated erythropoietin, improve motor behavior and reduce
motor neuron loss. They reduce the activation of microglia
and astrocytes in vivo and in vitro [100]. EPO prevented
neuronal injury and early motor neuron degeneration and
delayed the onset of motor deterioration in female animals
without prolonging survival [101]. EPO levels in the CSF
have been reported to be decreased in ALS patients [102].

Minocycline is an antibiotic approved by the FDA for
the treatment of bacterial infection. As an anti-apoptotic
agent, it inhibits the release of cytochrome c, the activation
of caspase-1 and -3, reactive microgliosis, as well as p38
mitogen-activated protein kinase [103—105]. Minocycline
improved muscle strength, increased longevity, and delayed
the onset of motor neuron degeneration in G93A mice
[103] and SOD1%*R mice [106]. 1t also reduced micro-
glial activation in G93A mice [107]. Moreover, a cocktail
of minocycline and creatine offered additive neuroprotec-
tion, improving motor performance and extending survival
in mSOD1%%*A mice [82]. TCH346 treatment at disease
onset slowed disease progression, increased lifespan, and
preserved both body weight and motor performance in a
mouse model of mutant with progressive motor neuronopa-
thy [108]. Additionally, TCH346 prevents p53-related neu-
ronal apoptosis. However, chronic subcutaneous treatment



Neuroprotective agents and mechanisms in ALS

4737

with TCH346 offers no benefit in high-copy SOD19%34
mice [109].

zVAD-fmk is a broad caspase inhibitor that delays dis-
ease onset and mortality in mSOD1%%2 mice. zZVAD-fmk
inhibits caspase-1 activity as well as caspase-1 and cas-
pase-3 mRNA upregulation [92, 110]. However, because
zVAD-fmk is too toxic for human use, development of
safer versions is under way.

Oxidative damage and anti-oxidative agents

Several neuroprotective agents with antioxidant capabilities
have been studied in relation to ALS. Here we summarize
their neuroprotective effects and the success of some anti-
oxidants that target the oxidative stress pathogenic pathway
in ALS animals.

Manganese porphyrin (AEOL10150), an antioxidant
and a free-radical scavenger, markedly extends survival of
mSOD1%4 mice when administered at symptom onset
[111] as well as improving motor neuron architecture and
reducing astrogliosis. Manganese porphyrin also shows
anti-inflammatory properties [112]. Rasagiline (AZI-
LECT), a monoamine oxidase inhibitor used in the treat-
ment of Parkinson’s disease [113], has neuroprotective
properties via its antioxidant activity and has demonstrated
mitochondrial protection [114]. Rasagiline, either alone or
in combination with riluzole, improves both motor perfor-
mance and survival in mSOD1%%** mice [114].

Various metals are cytotoxic to motor neurons, lead-
ing to neurodegeneration. The lipophilic metal chelators
DP-109 and DP-460 chelate calcium, copper, and zinc;
both extended survival, improved motor performance, and
reduced spinal cord cell loss and oxidative damage mark-
ers, as well as decreased reactive astrogliosis and micro-
gliosis in ALS mice [115]. Iron dysregulation promotes
oxidative damage, and altered iron homeostasis has been
found in ALS patients [116]. The HFE gene is involved
in iron regulation, and HFE polymorphism is increased in
ALS patients [117]. The multifunctional iron-chelating
drugs M30 and HLA20 reduce neurotoxicity induced by
the peroxynitrite ion generator SIN-1 and H202, augment
the expression of iron metabolism—related protein Tfr in
NSC-34 cells [118], and prevent G93A SOD1-induced tox-
icity. M30 significantly delays disease onset and extends
the survival of mSOD1%%** mice [119]. Thus, metal chela-
tors may become a source for screening drugs against ALS.

H202 and UV light produce oxidative stress and cyto-
toxicity in SH-SYSY cells. These effects are reversed by
treatment with N-acetyl-L-cysteine (NAC), an antioxi-
dant [120]. NAC improves survival and delays the onset
of motor impairment in G93A mice [121], and the NAC
precursor glutathione significantly reduced lower motor
neuron degeneration in the wobbler mouse [122]. The

antioxidant vitamin E (a-tocopherol) slows the onset and
progression of paralysis in ALS mice, implying a possible
future role in ALS prevention [123].

Inflammatory pathways and anti-inflammatory agents

Inflammation plays a major role in the pathogenesis of
motor neuron death in ALS, and neuroinflammation accel-
erates disease progression.

Selective mutant expression of SOD1 in motor neurons
did not progress to ALS disease [124, 125], while reduc-
tion of mSODI1 in motor neurons delayed disease onset
and slowed early progression but had no benefit in terms of
later disease progression and survival [126, 127]. A mixture
of wild-type and mSODI1 in motor neurons was not suffi-
cient to trigger disease onset [128, 129], and total ablation
of mSODI1 expression (in either astrocytes or microglia)
slowed disease progression and extended survival [126,
127, 130]. Together, these findings indicate that ALS is not
motor—neuron autonomous and that glial cells play impor-
tant roles in motor neuron degeneration.

Evidence further supports the contention that expres-
sion of mSOD1 in motor neurons dominantly and primarily
initiates ALS pathogenesis (in other words, affects disease
onset and early stages of the disease), whereas neighbor-
ing cell types other than motor neurons (including micro-
glia, astrocytes, and Schwann cells) as well as other cells
interact both with damaged motor neurons and each other
to mediate and affect ALS disease progression and duration
[131, 132].

Rather than playing simply a supportive role, astrocytes
surrounding motor neurons provide nutrients, maintain
the homeostatic environment, and carry out multiple func-
tions. Impaired astrocytic functions including extracellular
glutamate clearance and neurotrophic factors release have
been implicated in ALS disease. Astrogliosis is present at
symptomatic stages of ALS mice [97, 133] and may pre-
cede and drive the deterioration of motor activities in ani-
mal models of ALS [134, 135], while astrogliosis is detect-
able in post-mortem spinal cord tissue from fALS and
SALS patients [136]. Accumulating evidence shows that
astrocytes may modulate microglial activation and infil-
tration, speeding disease progression [127, 137, 138]. We
and other researchers have reported that astrocytes carrying
ALS-causing genes, especially mutated SOD1, as the non-
cell autonomous components in ALS pathogenesis, may
play a critical role in stimulating damage and degeneration
of neighboring motor neurons [58, 137-143]. The selective
toxicity induced by mSODI1 astrocytes is involved in mul-
tiple mechanisms including activation of oxidative stress,
secretion of toxic factors, disruption of Ca*t oscillations,
Whnt signaling dysfunction, and glutamate- and mGIluR5-
mediated excitotoxicity [32, 58, 143-145]. Astrocytes
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derived from familiar ALS and sporadic ALS patients are
similarly toxic to motor neurons [146]. On the other hand,
wild-type glial cells extend the survival of mSOD1 motor
neurons [144].

Microglial cells immigrate from the periphery and enter
the brain and spinal cord through the BBB in response to
damaged motor neurons. Indeed, activated microglia are
implicated in the pathogenesis of ALS, and the intensity
of microglial activation is correlated with the severity of
motor neuron damage [131, 147, 148]. The fact that pro-
gression can be slowed by selectively decreasing mSOD1
in microglia or the addition of microglia expressing nor-
mal SOD1 suggests that mSODI1 affects disease progres-
sion more than disease initiation [126, 130]. In addition,
by wrapping full-length axons of lower motor neurons in
myelin, neighboring Schwann cells protect signal trans-
duction. However, there are controversial reports that other
glial-type oligodendrocytes and NG2 cells are involved in
ALS pathogenesis [131]. Additionally, T lymphocytes also
play arole in mSOD1-caused ALS [149, 150].

Below we summarize a number of protective agents tar-
geting inflammatory pathways shown in animal models to
demonstrate beneficial effects against ALS.

Cyclooxygenase-2 (COX-2) is a key molecule in the
inflammatory pathogenic pathway in ALS. Expressed in
spinal astrocytes and neurons, COX-2 catalyzes prostaglan-
din 2, which stimulates glutamate release from astrocytes
via a calcium-dependent pathway [151-155].

Moreover, along with cytokines, reactive oxygen spe-
cies, and free radicals, COX-2 is involved in the inflam-
matory process in the central nervous system [156]. The
COX-2 inhibitor and anti-inflammatory agent CELEBREX
(celecoxib) significantly delays the onset of weakness and
weight loss and prolongs survival of ALS mice; the admin-
istration of CELEBREX in mice provides significant pres-
ervation of spinal neurons and reduced astrogliosis and
microglial activation [157].

TNF-a activates microglia and introduces neuronal
apoptosis, and elevated levels of TNF-a have been found in
the spinal cords of G93A mice and serum of humans with
ALS [158-160]. TNF-a in the lumbar spinal cord of G93A
mice is increased before symptom onset and loss of motor
neurons and is correlated with pathological progression,
indicating that activation of inflammation (including TNF-
a) plays a critical role in ALS pathogenesis [161, 162].

Both thalidomide and its analog lenalidomide are immu-
nomodulatory agents that inhibit TNF-a production, atten-
uate weight loss, enhance motor performance, decrease
motor neuron death, and significantly increase survival
in mSOD1%%*A mice when administered prior to onset of
disease [133]. When administered after symptom onset,
lenalidomide also provides neuroprotection in mSOD19%34
mice [1]. The anti-inflammatory and immunomodulatory
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properties of both agents play a role in their neuropro-
tection; both reduce the expression of proinflammatory
cytokines [1, 133]. Microglial activation was ameliorated
and neuronal loss was reduced in lenalidomide-treated
mice [1].

Cannabinoids produce anti-inflammatory actions via
cannabinoid receptor 2 (CB2) and cannabinoid recep-
tor 1 (CB1). There is significant temporal elevation of
CB2 mRNA and CB2-related activation of microglia/
macrophages in the spinal cord of G93A mice [24] and
in post-mortem human ALS samples [163]. Cannabinoids
ameliorate disease progression in animal models of ALS.
Ag—tetrahydrocannabinol (THC), the major effective active
ingredient of cannabis, is a CB2 antagonist. It delays motor
impairment and prolongs survival when administered either
before or after disease onset in ALS mice [164]. A°-THC
is also anti-excitotoxic, reducing oxidative damage in vitro
[164]. AM-1241 is a CB2 selective agonist that prolongs
survival in mSOD1%%A mice when administered either
after disease onset [165] or at symptom onset [24]. Can-
nabinoids may prove useful in the treatment of ALS.

Conclusions

Except for riluzole, promising results from animal models
of ALS have not translated well into humans. For instance,
talampanel, CELEBREX, and thalidomide did not succeed
in phase 1II trials in ALS patients [166—168], while minocy-
cline, olesoxime, and TCH346 failed in large phase III or
phase II/III clinical trials among ALS patients [169, 170].
These results highlight the challenges in predicting human
clinical trial success from animal models of disease [171].
Applying rational design to produce significant improve-
ments over current ALS preclinical studies should help pro-
duce more reliable and translatable results.

The translational failures may be explained in part by
the following: (i) though SOD1%%** transgenic mice have
been the most common model for therapeutic agent stud-
ies, there is genetic variation/mutation among ALS patients
[172]. To what extent the SOD1 mouse model faithfully
represents human ALS disease remains debatable; it may
more accurately represent a small fraction of fALS rather
than sALS patients [173, 174]. Unanswered questions
include (1) how generalizable the drugs targeting patho-
genic mechanisms of mSOD1%** mice are to other ani-
mal models of ALS, and whether similar events occur in
human ALS. Given the difficulty of treating a progressive
disease with symptoms appearing in late adulthood, besides
the timing of drug treatment before or on onset, mice tri-
als could be more carefully designed, controlled, and
elaborated to make them more translatable to the clinic,
(2) methodological flaws such as randomization, blinded
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outcome assessment, and sample size calculation should
be corrected [175], and more accurate controls such as sib-
ling matched controls and monitoring the copy number of
transgenes would improve the design of pre-clinical trials,
and (3) Clinical trials have been marked by the failure to
determine the correct dosage and ideal duration, inappro-
priate sample sizes, and poor selection of timing factors to
identify a person as eligible. It may be necessary to identify
a primary outcome for measurement other than survival,
with biomarkers providing information on target engage-
ment and effects on disease progression [173, 176-178].

The neurobiology of ALS is complicated by multiple
pathogenic mechanisms; which one(s) will predominate in
any particular patient remains unpredictable. Drug candi-
dates that ameliorate symptoms (including damage to mus-
cle function) but provide no benefits in terms of survival or
delayed onset are still valuable and informative for further
investigation. A pleiotropic neuroprotective agent targeting
multiple mechanisms may be most promising.

Of the current clinical trials, both melatonin [97, 98] and
A°-THC [179], though in the early stages of clinical study,
have multiple modes of action, including anti-oxidant, anti-
excitotoxity, and anti-inflammatory effects. Along with
their protection against apoptosis and mitochondrial dam-
age (in the case of melatonin), those qualities may predict
strong showings in further investigations. In addition, cef-
triaxone’s effects against excitotoxity and apoptosis imply
great promise. Melatonin’s indole core skeleton may facili-
tate further rational drug design and analog search, while
the CB2 receptor’s non-selective or selective agonist/antag-
onists may provide a novel source of candidate drugs for
screening against ALS. On the other hand, finding a single
“magic bullet” for this heterogeneous disease may be dif-
ficult, and it is likely that the most effective treatment will
turn out to be a combination therapy involving drugs that
target pathogenic pathways.

Further direction of basic research should focus on
deepening our understanding of the mechanisms underly-
ing ALS pathogenesis, highlighting first/early triggers of
this disease. Given the common appearance of reactive
microglial and astroglial cells in ALS, Alzheimer’s dis-
ease, Parkinson’s disease, and Huntington’s disease, the
notion of “non-cell autonomous” neurodegeneration has
been applied to these neurodegenerative diseases. Further
research on the biology, function, activation mechanisms,
and regulation of astrocyte and microglial cell function is
urgently needed and should make significant contributions
to the discovery of therapeutic agents that will slow ALS
disease progression, benefiting SALS and fALS patients, as
well as those suffering from other neurodegenerative dis-
eases. We anticipate that the accumulating knowledge of
pathogenic mechanisms, drug discovery, and drug bioavail-
ability, along with the evidence gathered in experimental

preclinical studies and human trials, will soon yield more
effective therapies for ALS.
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