
that lead to delayed intestinal dysfunction, fibrosis, and 
clinical complications. In conclusion, injury of vascular 
endothelium is important in the pathogenesis of the 
intestinal radiation response. Endothelial-oriented 
interventions are appealing strategies to prevent or treat 
normal tissue toxicity associated with radiation treatment 
of cancer.

© 2007 The WJG Press. All rights reserved.
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INTRODUCTION
There are currently more than 10 million cancer survivors 
in the United States[1]. The exponential increase in the 
cancer survivor population has led to a stronger focus on 
reducing treatment-related side effects, thus prompting a 
more proactive approach aimed at acquiring a better un-
derstanding of  the molecular and cellular basis of  treat-
ment-related side effects, and at developing interventions 
to ameliorate or prevent long term toxicities of  cancer 
therapy. 

Approximately 70% of  all cancer patients receive 
radiation therapy at some point during the course of  their 
disease and radiation therapy plays a critical role in 25% of  
all cancer cures[2]. Recent advances in treatment delivery, 
such as the development of  dose-sculpting techniques, 
have led to an overall reduction in normal tissue exposure 
during radiation therapy. Nevertheless, normal tissue 
radiation toxicity remains the single-most important dose-
limiting factor in radiation therapy and a major obstacle to 
uncomplicated cancer cures. 

More than 200 000 patients in the United States 000 patients in the United States000 patients in the United States 
undergo localized radiation therapy for abdominal, pelvic, 
and retroperitoneal malignancies each year. During 
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Abstract
This review summarizes the current state of knowledge 
regarding the role of endothelial dysfunction in the 
pathogenesis of early and delayed intestinal radiation 
toxicity and discusses various endothelial-oriented 
interventions aimed at reducing the risk of radiation 
enteropathy. Studies published in the biomedical 
literature during the past four decades and cited in 
PubMed, as well as clinical and laboratory data from our 
own research program are reviewed. The risk of injury 
to normal tissues limits the cancer cure rates that can 
be achieved with radiation therapy. During treatment of 
abdominal and pelvic tumors, the intestine is frequently 
a major dose-limiting factor. Microvascular injury is 
a prominent feature of both early (inflammatory), as 
well as delayed (fibroproliferative) radiation injuries 
in the intestine and in many other normal tissues. 
Evidence from our and other laboratories suggests 
that endothelial dysfunction, notably a deficiency of 
endothelial thrombomodulin, plays a key role in the 
pathogenesis of these radiation responses. Deficient 
levels of thrombomodulin cause loss of vascular 
thromboresistance, excessive activation of cellular 
thrombin receptors by thrombin, and insufficient 
ac t ivat ion o f prote in C, a p lasma prote in w i th 
anticoagulant, anti-inflammatory, and cytoprotective 
properties. These changes are presumed to be critically 
involved in many aspects of early intestinal radiation 
toxicity and may sustain the fibroproliferative processes 
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treatment of  such tumors, the bowel is almost invariably 
exposed and the risk of  intestinal radiation injury 
(radiation enteropathy) is often the most important dose-
limiting factor. 

Radiation enteropathy is classified as early (acute) or 
delayed (chronic). Early radiation enteropathy occurs 
during or shortly after radiation therapy. It is a consequence 
of  death of  rapidly proliferating crypt cells, resulting in 
epithelial barrier breakdown and mucosal inflammation 
(radiation mucositis). Delayed radiation enteropathy, by 
convention, occurs three months or later after radiation 
therapy. Chronic radiation enteropathy is characterized 
by vascular sclerosis and progressive intestinal wall 
fibrosis, leading to intestinal dysfunction (e.g., dysmotility 
or malabsorption) and structural injury (e.g., stricture 
formation, fistulas, or perforation). In addition to radiation-
induced cell death, radiation enteropathy is the result of  a 
complex interplay among a plethora of  pathophysiological 
processes, including activation of  the coagulation system, 
inflammation, epithelial regeneration, tissue remodeling 
and collagen deposition. These processes are orchestrated 
by a large number of  cell types and interacting molecular 
signals, including cytokines and growth factors, as well 
as various molecules on the endothelial cell surface[3]. 
Functional perturbation of  these endothelial cell molecules 
is collectively referred to as endothelial dysfunction. 

ENDOThElIal DysfUNCTION IN EaRly 
aND DElayED RaDIaTION ENTEROpaThy
Effects of ionizing radiation on the vascular endothelium
Endothelial cells form the inner lining of  blood vessels and 
cover a total surface area of  4000-7000 m2[4]. Endothelial 
cells are highly dynamic and participate in a multitude 
of  physiological functions, including maintenance of  

blood fluidity, control of  vasomotor tone, trafficking of  
cells and nutrients, and growth of  new blood vessels[5]. 
Under normal conditions, endothelial cells maintain an 
antithrombotic and anticoagulant balance by exerting 
molecular control of  platelet aggregation, coagulation and 
fibrinolysis[6]. 

An increasing body of  evidence shows that injury 
of  the microvasculature plays a central role in early and 
delayed radiation responses in many normal tissues, 
including the intestine. Notably, microvascular injury may 
be responsible for the unique self-perpetuating nature 
of  chronic radiation fibrosis[7-13]. A model depicting 
how endothelial cell dysfunction may contribute to and 
sustain post-radiation inflammatory and fibroproliferative 
responses in the intestine is shown in Figure 1.

The high radiation sensitivity of  the microvasculature 
is to a large extent attributable to the endothelial cells[14]. 
Radiation induces a plethora of  morphological and 
functional alterations in endothelial cells, including 
apoptosis, detachment from the basement membrane, 
and increased endothelial permeability, resulting in fibrin 
deposition in the interstitial space[15,16].

The role of  endothelial apoptosis in early intestinal 
radiation toxicity, particularly in the so-called acute 
gastrointestinal radiation syndrome, has been a much 
debated issue for a number of  years. The debate 
originated from reports that mice deficient in the enzyme 
acid sphingomyelinase are protected from radiation-
induced endothelial cell apoptosis, and that these mice 
also exhibit decreased levels of  crypt cell apoptosis 
and decreased lethality after total body irradiation[17]. 
Because endothelial cell apoptosis, but not apoptosis 
of  the crypt epithelium, is sphingomyelin-dependent, 
the interpretation of  this finding, together with a 
substantial body of  additional supportive evidence, was 
that endothelial cell apoptosis appears to be a major 
contributor to early intestinal radiation toxicity and that 
there may be a causal relationship between endothelial cell 
apoptosis and crypt cell apoptosis. There has, however, 
been considerable controversy related to the extent and 
significance of  endothelial apoptosis in the intestinal 
microvasculature after radiation exposure, and to whether 
or not there is a direct relationship between endothelial 
apoptosis and apoptosis in the crypt epithelium[18]. 
Despite this controversy, it may be possible to reconcile 
these seemingly contradictory findings. It is well known 
from other areas of  gastrointestinal pathophysiology that 
genetic manipulations or pharmacologic interventions that 
preserve the intestinal microcirculation after an insult have 
a protective effect on the gut epithelium and the intestinal 
mucosa. Therefore, it is conceivable that radiation-induced 
endothelial cell apoptosis may be the bellwether, or “tip 
of  the iceberg” that indicates a state of  dysfunction of  
the intestinal microvasculature, and that it is the state of  
endothelial dysfunction that adversely affects the radiation 
tolerance and/or repair capacity of  the crypt epithelium. 

Loss of  thromboresistance is a major feature of  
endothelial dysfunction after exposure to ionizing 
radiation. Radiation induces adhesion and aggregation of  
platelets and development of  platelet-fibrin thrombi[19-22], 

Figure 1  Model of interaction between epithelial and endothelial radiation injury 
in the intestine demonstrating how endothelial dysfunction may exacerbate 
the early intestinal radiation response and “drive” the cycle of chronicity of 
intestinal radiation fibrosis. Radiation causes epithelial crypt cell death, leading to 
insufficient replacement of the villus epithelium, and breakdown of the epithelial 
barrier that normally separates intestinal tissue from the intraluminal contents of 
the intestine. Simultaneously, radiation causes endothelial dysfunction, notably 
loss of thromboresistance and increased expression of chemokines and adhesion 
molecules. The combination of loss of epithelial barrier function and endothelial 
dysfunction enhances the post-radiation inflammatory response, inhibits restitution 
of the epithelium, and promotes extracellular matrix deposition.
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as wel l as adhesion of  inf lammator y cel ls to the 
endothelium[23-25] with subsequent perivascular leukocyte 
infiltration. The molecular basis underlying the loss of  
endothelial thromboresistance is complex and includes 
increased expression of  tissue factor[26,27], von Willebrand 
factor (vWF)[28-30], and platelet activating factor (PAF)[31]; 
reduction in fibrinolytic activity[32-34]; and radiation-induced 
reduction in the expression of  prostacyclin (PGI2), the 
PGI2 receptor[35-37], and thrombomodulin (TM)[12,38]. 
Studies performed in our laboratory suggest that radiation-
induced loss of  TM may play a particularly important role 
in the pathogenesis of  radiation enteropathy. 

The thrombomodulin-protein C system 
Endothelial TM is a transmembrane glycoprotein located 
on the luminal surface of  endothelial cells in most normal 
blood vessels. TM forms a complex with thrombin, and 
essentially converts thrombin from a pro-coagulant to 
an anticoagulant by changing its substrate specificity. 
Thrombin, when in complex with TM, no longer 
cleaves fibrinogen to form fibrin and no longer activates 
cellular thrombin receptors, but instead activates protein 
C, thereby limiting further thrombin generation and 
counteracting thrombin’s many coagulant, inflammatory, 
and fibroproliferative effects (Figure 2). In addition, both 
TM and activated protein C (APC) have important intrinsic 
anti-inflammatory properties.

Recent studies have demonstrated the importance 
of  TM in attenuation of  inflammatory responses in a 
variety of  settings, such as, endotoxin-induced tissue 
damage, glomerulonephritis, and atherosclerosis[39-42]. 
O n e m e ch a n i s m by w h i ch T M e xe r t s i t s a n t i -
inflammatory properties involves APC. APC inhibits 
leukocyte chemotaxis and leukocyte adhesion, suppresses 
inflammatory cytokine production, reduces endothelial 
cell apoptosis, and maintains endothelial cell barrier 

function[43-48]. In addition, recent studies have shown that 
TM has potent intrinsic anti-inflammatory properties by 
virtue of  its N-terminal domain binding and inhibiting 
high mobility group box 1 protein (HMGB1)[49]. 

Clinical and preclinical studies performed in our 
laboratory have shown that radiation causes a striking 
(80%-90%) and sustained reduction in endothelial TM%-90%) and sustained reduction in endothelial TM-90%) and sustained reduction in endothelial TM 
expression in intestinal microvasculature[12,50,51]. The 
reduction in TM appears to be due to a combination of  
direct oxidative damage [52,53], and down regulation of  
TM at the gene expression level by radiation-induced 
inflammatory cytokines such as interleukin 1 (IL1), tumor 
necrosis factor a (TNFa) and transforming growth 
factor b (TGFb) [54-57], and increased release of  TM 
from the endothelial cell membrane into the circulation 
(ectodomain shedding) by granulocyte proteinases and 
other inflammatory mediators[58].

Thrombin and cellular thrombin receptors
In the normal situation, thrombin is rapidly removed from 
the microcirculation by complex formation with TM. Local 
deficiency of  TM, such as occurs after irradiation, leads 
to decreased thrombin clearance and insufficient protein 
C activation, resulting in accumulation of  thrombin. 
Moreover, the expression of  tissue factor, a critical initiator 
of  thrombin generation, can also be triggered by radiation, 
both in vitro and in vivo[26,27]. Hence, radiation enhances 
thrombin generation both through the intrinsic and the 
extrinsic pathway. 

Thrombin induces gap formation between endothelial 
cells, resulting in increased vascular permeability[59-62]. 
Consequently, thrombin may pass through the endothelial 
cell layer into the vessel wall and extravascular tissues. 
Studies performed in our laboratory show that radiation 
causes deposition of  enzymatically active thrombin 
on the vascular endothelium, in the vascular wall of  
small arteries, as well as in the extravascular connective 
tissue[27]. Thrombin bound to extracellular matrix remains 
functionally active and able to generate fibrin and interact 
with surrounding cells [63,64]. We have demonstrated 
increased deposition of  fibrin in irradiated intestine that 
co-localizes with enzymatically active thrombin[27].

Thrombin, in addition to its central role in coagulation, 
activates a variety of  cell types including endothelial cells, 
smooth muscle cells, leukocytes, and platelets, thereby 
enhancing many inflammatory and fibroproliferative 
processes.  For example, thrombin has chemotactic activity 
for monocytes and leukocytes and stimulates the migration 
of  these cells to sites of  injury[65]. Thrombin stimulates 
fibroblast chemotaxis[66], fibroblast proliferation[67,68], 
and fibroblast procollagen production[69]. Thrombin also 
enhances proliferation and migration of  smooth muscle 
cells (SMC) and promotes SMC procollagen synthesis[70-72]. 

The cellular effects of  thrombin are mediated by 
activation of  cell surface thrombin receptors, proteinase 
activated receptors (PARs), a 4-member G-protein coupled 
receptor subfamily. Proteinase activated receptor 1 (PAR1) 
is the biologically most relevant among the PARs[71-75]. 
Studies performed in our laboratory show that radiation 
upregulates PAR1 expression in endothelium, SMC, 
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Figuge 2  The coagulation cascade. Simplified diagram of the coagulation 
“cascade” with the intrinsic, extrinsic, and common pathways. Note how 
thrombomodulin, located on the luminal surface of endothelial cells, forms 
a complex with thrombin, which is converted from a pro-coagulant to an 
anticoagulant and how activated protein C (APC) limits thrombin generation by 
feed-back into the intrinsic and common coagulation pathways. See text for further 
details.
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and myofibroblasts, particularly in areas of  fibrosis[27]. 
Increased expression of  PAR1 in SMC may be particularly 
important in the context of  intestinal wall fibrosis. This 
is because, in the intestine, SMC rather than fibroblasts 
are the predominant producers of  collagen. Analogous 
to our observations in radiation enteropathy, upregulation 
of  PAR1 occurs in a number of  other vascular disorders, 
including neointima formation after mechanical injury[73], 
as well as in response to injury-related cytokines and 
growth factors. Figure 3 depicts a model for how deficient 
levels of  TM after radiation exposure, with subsequent 
increased thrombin formation and upregulation of  
PAR1, may contribute to and sustain inflammatory and 
fibroproliferative responses in irradiated tissues. Consistent 
with this model, in vivo studies performed in our laboratory 
have confirmed that scavenging active TGFb1[76], inhibiting 
platelet aggregation[77], inhibiting thrombin function[27], 
mucosal immunomodulation[78], or inhibiting PAR1 
(unpublished data, 2005) all ameliorate various aspects of  
early and/or delayed radiation enteropathy. These studies 
are consistent with the notion that thrombin is a key link 
between downregulated TM and radiation-induced vascular 
and intestinal fibrosis. 

Platelets 
Thrombin, in addition to the properties described above, 
also has major effects on blood platelets. Platelets are 
the first cellular elements at the site of  endothelial injury, 
where they initiate the hemostatic and inflammatory 
responses and contribute to the local cytokine milieu[79].  
In vivo and in vitro studies have demonstrated that radiation 
enhances platelet adhesion[80] and platelet aggregation in 
the microvascular network[19,20]. The anti-platelet agent, 
acetylsalicylic acid (ASA, aspirin) may ameliorate certain 
aspects of  intestinal and renal radiation toxicity[81-83]. 

Platelet adhesion, aggregation, and secretion are 
regulated by several mediators that are recognized by platelet 
surface receptors. Thrombin is a powerful platelet agonist 
and PARs mediate most of  the actions of  thrombin on 
platelet function[84]. Hence, PAR1 activating peptide (PAR1-
AP) triggers complete platelet aggregation similar to the 
aggregation induced by thrombin. Adenosine diphosphate 

(ADP) is stored in platelet granules and is released in 
response to primary agonists, including thrombin. Thus, part 
of  the response of  platelets to thrombin is via autocrine 
and paracrine effects by secreted ADP[85]. In fact, some 
studies suggest that PAR1-AP-induced aggregation may be 
entirely dependent on release of  ADP[86]. ADP potentiates 
multiple platelet responses including the initiation of  platelet 
aggregation (by receptor P2Y1) and the subsequent full 
aggregation and stabilization of  platelet aggregates (by 
receptor P2Y12)[87,88]. Recent studies from our laboratory 
and others show that inhibition of  ADP-induced platelet 
aggregation by clopidogrel or ticlopidine ameliorates early 
and delayed intestinal radiation toxicity[77,89]. 

Activated platelets directly elicit an inflammatory 
response by the production of  free radicals and by the 
release of  potent inflammatory mediators, such as, TGFb, 
PAF, thromboxane, platelet derived growth factor, and IL1, 
which all contribute to chemoattraction and activation of  
inflammatory cells[79,90]. The ubiquitous proinflammatory, 
immunosuppressive, and fibrogenic growth factor, TGFb, 
has been implicated in radiation injury such as skin, liver, 
heart, kidney, lung and intestine[76,91-93]. Platelets contain 
TGFb in about 100-fold higher amounts than other 
types of  cells or tissues. We have observed that TGFb 
is expressed at significantly higher than normal levels 
after irradiation[94-96]. Moreover, our studies in radiation 
enteropathy were the first to demonstrate a mechanistic 
role for TGFb in radiation-induced tissue toxicity[76].

ENDOThElIal-ORIENTED appROaChEs 
TO MODUlaTE RaDIaTION
ENTEROpaThy
As described in the previous sections of  this review, radia-
tion induces a plethora of  changes in the microvascular 
endothelium. Some of  these changes are transient, but 
may contribute to aspects of  early radiation enteropathy. 
Other changes are sustained and may play direct roles in 
the pathogenesis of  intestinal radiation fibrosis and in the 
mechanisms of  chronicity and progression of  injury. The 
postradiation shift in the thrombohemorrhagic balance to-
ward procoagulation and the accompanying cellular effects 
that are the consequences of  this shift represent particu-
larly promising targets for intervention (Table 1).

Table 1  Potential pharmacological strategies for modulating 
post-radiat ion endothel ia l  dysfunction to amel iorate 
development of radiation enteropathy and some of their 
respective limitations

Intervention Major limitation
Platelet aggregation inhibitors Narrow therapeutic window (bleeding)
Direct thrombin inhibitors Narrow therapeutic window (bleeding)
Thrombin receptor blockers Blocks only cellular thrombin effects
Recombinant thrombomodulin Does not restore endothelial 

thrombomodulin
Activated protein C Only partly blocks the effects of 

preformed thrombin
Statins Non-specificity
Pentoxifylline Non-specificity
Vitamin E Non-specificity and variable efficacy

Figure 3  Proposed model linking radiation-induced endothelial dysfunction to 
chronic inflammation and progressive intestinal fibrosis via chronic PAR1 activation. 
Radiation causes TM deficiency in endothelial cells, leading to insufficient 
“scavenging” of locally formed thrombin. Thrombin exerts pro-coagulant, pro-
inflammatory, mitogenic, and pro-fibrogenic effects on mesenchymal cells (smooth 
muscle cells, fibroblasts, and myofibroblasts), as well as other cell types in the 
irradiated tissue. Feed-back by cytokines and other inflammatory mediators 
sustains the endothelial TM deficiency and thus contributes to the chronicity of 
radiation injury.
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Many of  the conventional inhibitors of  blood clotting 
have been tested in the attempt to ameliorate normal 
tissue radiation toxicity. The inconsistent results of  these 
interventions are likely a result of  the use of  non-specific 
drugs with multiple actions, use of  compounds with 
dose-limiting side-effects (primarily bleeding), and/or 
a too narrow focus on coagulation without appropriate 
consideration of  the cellular effects of  thrombin and 
the anti-inflammatory properties of  the TM-protein C 
pathway. For example, while heparin is a highly effective 
anticoagulant, at therapeutic concentrations heparin 
reduces the affinity of  thrombin for TM and the rate 
of  protein C activation[97], and heparin administered at 
the time of  irradiation actually exacerbates radiation-
induced intestinal tissue injury[98]. The direct thrombin 
inhibitor, hirudin, ameliorates radiation enteropathy, but 
is less effective than an inhibitor of  ADP-induced platelet 
aggregation, clopidogrel[27]. A possible explanation of  these 
findings may be that thrombin inhibition also reduces 
thrombin-induced protein C activation and thereby the 
anti-inflammatory actions of  APC. In contrast, inhibition 
of  ADP-induced platelet aggregation targets processes 
downstream of  thrombin and does not influence APC in 
the same manner. These observations are consistent with 
results from other studies showing that direct thrombin 
inhibition enhances leukocyte-endothelial cell interaction in 
endotoxin-induced sepsis[99] and, despite a favorable effect 
on collagen accumulation, does not affect inflammatory 
cell recruitment in bleomycin-induced lung injury[100].

Particularly attractive and presumably safe approaches 
to modulate radiation-induced endothelial dysfunction 
are to administer exogenous recombinant TM and APC, 
to restore endothelial cell TM, and/or to block the 
downstream effector of  thrombin, PAR1.

Recombinant human soluble TM (rhsTM) is composed 
of  the active, extracellular domain of  TM. rhsTM activates 
protein C[101], reduces thrombin generation[102], and prevents 
thrombosis in vivo[103-105]. The efficacy of  rhsTM has been 
demonstrated in other situations associated with deficiency 
of  endothelial TM, such as disseminated intravascular 
coagulation, experimental sepsis, and multiple system 
organ failure[42,105,106]. rhsTM also inhibits smooth muscle 
proliferation and vascular neointimal hyperplasia[107,108]. 
Although rhsTM has not yet been tested in the context 
of  radiation toxicity, it is conceivable that rhsTM may be 
beneficial in normal tissue radiation toxicity. The objective 
would be to provide TM by the exogenous route for a 
limited period of  time and thus allow TM to regenerate on 
the endothelial surface.

Synthetic TM mimics are compounds that change 
thrombin’s substrate specificity in a fashion similar to TM 
and thus cause thrombin to activate protein C[109]. This 
is a new class of  antithrombotic agents that exploits the 
powerful natural protein C anticoagulant pathway. This 
approach may be particularly appealing in the context of  
radiation enteropathy, because localized radiation does not 
cause protein C deficiency, but rather induces a decrease 
in local protein C activation due to lack of  functional 
TM. However, while the TM mimics may have a superior 
therapeutic profile compared to direct thrombin inhibitors, 

TM mimics suitable for use in vivo are not yet available.
Replacement therapy with recombinant APC (rAPC) 

is another strategy that might allow endothelial function 
to recover and thus interrupt the vicious cycle that leads 
to radiation-induced organ dysfunction. APC possesses 
a number of  properties that are different from those 
of  conventional anticoagulants, including potent anti-
inflammatory and cytoprotective activities[110-113]. Studies by 
others have shown that rAPC prevents the lethal effects 
of  E. coli-associated sepsis in animal models and improves 
the outcome of  patients with severe sepsis[114], and that 
short-term rAPC administration ameliorates lung fibrosis 
in bleomycin-induced lung injury[115]. Administration 
of  rAPC during the early postradiation phase warrants 
investigation as an approach to mitigate radiation 
enteropathy development. 

A particularly interesting approach to upregulate and/
or restore endothelial TM is treatment with inhibitors of  
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 
reductase, for example, the lipid-lowering statins. In 2003, 
we and a Japanese group demonstrated independently 
that statins, in addition to inhibiting the biosynthesis of  
cholesterol, strongly upregulate TM gene expression, 
protein levels, and function[116,117] and counteract the effects 
of  TNFa on endothelial TM[116]. It was subsequently 
shown that statins attenuate radiation pneumonitis[118] and 
early radiation-induced intestinal toxicity[119]. Whether the 
radioprotective properties of  statins are indeed attributable 
to their effect on TM expression or to other non-lipid-
related statin effects, and whether the beneficial effect of  
statins in experimental models of  normal tissue radiation 
toxicity can be translated to the clinical situation remains 
to be shown.

Pentoxifylline as monotherapy or in combination 
with tocopherol (vitamin E) is another approach that 
may ameliorate normal tissue radiation toxicity in some 
tissues by decreasing endothelial dysfunction and restoring 
endothelial TM. Pentoxifylline is a methylxanthine 
derivative with potent hemorrheologic properties. It 
improves blood fluidity by multiple effects such as 
increasing the deformability of  red blood cells and 
leukocytes, preventing the aggregation of  platelets, and 
decreasing plasma viscosity. It was originally developed 
for treatment of  regional microcirculation disorders such 
as intermittent claudication and cerebrovascular disease. 
However, recent studies have shown that pentoxifylline 
possesses anti-inflammatory and immunomodulatory 
properties[120-122] and can be used as an adjuvant in the 
treatment of  a diverse group of  diseases, including 
sepsis and severe acute respiratory distress syndrome. 
Pentoxifylline increases endothelial TM expression and 
prevents hypoxic- and TNFa-induced reduction in TM 
expression[123,124]. Pentoxifylline also inhibits TF expression 
and counteracts activation of  the coagulation cascade by 
endotoxin[125]. Clinical studies suggest that pentoxifylline 
may reverse rad ia t ion- induced chronic sk in and 
subcutaneous tissue fibrosis[126]. Beneficial effects have also 
been observed in radiation-induced ulcer healing, as well 
as in radiation-induced toxicity in lung, intestine, uterine, 
breast, and jaw muscles[127-131]. Nevertheless, a number 
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of  negative animal studies[132,133] and several inconclusive 
clinical reports highlight the need for further studies to 
define the benefits, indications, and mechanisms of  action 
of  pentoxifylline in radiation fibrosis. 

Inhibition of  PAR1 may prove to be a particularly 
effective strategy to reduce radiation-induced normal 
tissue toxicity. Because PAR1 antagonists are specific for 
the cellular actions of  thrombin, it does not interfere 
with formation of  the thrombin-TM complex and 
therefore does not reduce activation of  protein C. 
Furthermore, since PAR1 inhibitors do not interfere 
with fibrin generation, they will likely be associated with 
fewer bleeding complications than other anticoagulants. 
Several peptide and non-peptide (small molecule) PAR1 
antagonists are under development[134,135]. Some act on the 
extracellular portion of  the receptors[134], whereas others 
act as intracellular inhibitors of  signal transduction from 
receptors to G proteins[135]. Studies of  PAR1 inhibition as 
an approach to reduce normal tissue radiation toxicity are 
currently underway in our laboratory.

CONClUsIONs
Normal tissue toxicity, including intestinal radiation 
toxicity, is the main dose-limiting factor during radiation 
therapy of  cancer. Radiation enteropathy adversely impacts 
the therapeutic efficacy of  radiation therapy, as well as 
the quality of  life of  long term cancer survivors. Clinical 
and preclinical evidence strongly suggests that endothelial 
dysfunction plays a critical role in the pathogenesis of  early 
and delayed radiation enteropathy. Various endothelial-
oriented pharmacological interventions are currently 
under development for the purpose of  preventing or 
treating radiation enteropathy. Strategies aimed at restoring 
or preserving endothelial TM or blocking the thrombin 
receptor, PAR1, hold particular promise, especially if  
interventions can be targeted to specific tissues or cellular 
compartments. 
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