
IntroductIon
Fibrosis is a complex tissue disease whose predominant 
characteristics are the excessive and abnormal deposition 
of  extracellular matrix (ECM) components[1,2], that may 
affect various organs, including lung, liver, kidney and skin. 
From a clinical point of  view, fibrosis may be considered 
as a somewhat irreversible state of  scar tissue, during 
which resolution of  the healing process does not occur. 
Long-term activation of  fibroblasts in the affected organs 
results in massive fibrous ECM deposition and excessive 
fibroblast/myofibroblast proliferation, thus contrasting 
with normal wound healing during which feedback 
mechanisms counterbalance the initial fibroblast activation 
into myofibroblasts[3].

Much attention is focused on the role of  many 
cytokines and growth factors, a group of  diverse molecules 
derived from blood cells such as platelets, or elaborated 
locally by mesenchymal and epithelial cells, that contribute 
to the fibrogenic process[1,4]. Among them, the profibrotic 
proteins transforming factor-β (TGF-β) and connective 
tissue growth factor (CTGF) are considered master 
switches for the induction of  the fibrotic program. TGF-β 
induces fibroblasts to synthesize and contract ECM[5,6], 
and CTGF, induced by TGF-β, is considered as a critical 
downstream mediator of  TGF-β effects on fibroblasts[7,8]. 
In this overview, we will discuss the progress made in 
understanding the central role of  TGF-β in fibrotic 
diseases.

tGF-β And rEcEPtorS ActIVAtIon 
TGF-β activation
More than 60 TGF-β family members have been 
identified in multicellular organisms. Among these, there 
are three TGF-βs, five activins and at least eight Bone 
Morphogenetic Proteins (BMPs), all encoded by distinct 
genes (Figure 1)[9]. The three mammalian TGF-β isoforms, 
TGF-β1, 2, and 3 are secreted as latent precursor 
molecules (LTGF-β) that contain an amino-terminal 
hydrophobic signal peptide region, the latency associated 
peptide (LAP) region and the C-terminal potentially 
bioactive region[10]. The LTGF-β is usually complexed 
with latent TGF-β-binding proteins (LTBP), requiring 
activation into a mature form for receptor binding and 
subsequent activation of  signal transduction pathways. 
The LTBP is removed extracellularly by either proteolic 
cleavage by various proteases such as plasmin, thrombin, 
plasma transglutaminase, or endoglycosylases, or by 
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Abstract
Transforming growth factor-β (TGF-β), a prototype 
of multifunctional cytokine, is a key regulator of 
extracellular matrix (ECM) assembly and remodeling. 
Specifically, TGF-β isoforms have the ability to induce 
the expression of ECM proteins in mesenchymal cells, 
and to stimulate the production of protease inhibitors 
that prevent enzymatic breakdown of the ECM. Elevated 
TGF-β expression in affected organs, and subsequent 
deregulation of TGF-β functions, correlates with the 
abnormal connective tissue deposition observed during 
the onset of fibrotic diseases. During the last few 
years, tremendous progress has been made in the 
understanding of the molecular aspects of intracellular 
signaling downstream of the TGF-β receptors. In 
particular, Smad proteins, TGF-β receptor kinase 
substrates that translocate into the cell nucleus to act 
as transcription factors, have been studied extensively. 
The role of Smad3 in the transcriptional regulation of 
typeⅠcollagen gene expression and in the development 
of fibrosis, demonstrated both in vitro  and in animal 
models with a targeted deletion of Smad3 , is of critical 
importance because it may lead to novel therapeutic 
strategies against these diseases. This review focuses 
on the mechanisms underlying Smad modulation of 
fibrillar collagen expression and how it relates to fibrotic 
processes. 
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physical interactions of  the LAP with other proteins, such 
as thrombospondin-1[11]. 

TGF-β receptors
Signaling by TGF-β family members occurs through typeⅠ 
(TβRI) and type Ⅱ (TβRⅡ) receptors (Figure 2). Five 
type Ⅱ and seven typeⅠreceptors, termed Activin-
receptor-like kinases (ALKs) have been identified in 
vertebrates[12]. TβRI and TβRⅡ are similar transmembrane 
serine/threonine kinases, but typeⅠreceptors have a 
conserved Gly/Ser-rich (GS box) upstream from the 
kinase domain. In the absence of  ligand, TβRI and TβRⅡ  
are present as homodimers in the plasma membrane[13]. 
Ligand binding induces the assembly of  typeⅠand 
type Ⅱ receptors into complexes, within which TβRⅡ 
phosphorylates and activates TβRI. This phosphorylation 
event is associated with activation of  TβRI kinase and 
subsequent downstream signalling[12].

tGF-β SIGnALLInG BY SMAd ProtEInS
Smad proteins
Signaling from activated TβRI to the nucleus occurs 
predominantly by phosphorylation of  cytoplasmic 
protein mediators belonging to the Smad family[9]. 
The receptor-associated Smads (R-Smads; Smad1, 2, 
3, 5 and 8) are recruited to activated TβRI by auxiliary 
proteins such as Smad Anchor for Receptor Activation 
(SARA)[14]. They all consist of  two conserved Mad-
homology (MH) domains that form globular structures 
separated by a linker region[15]. The N-terminal MH1 
domain has DNA-binding activity, whereas the C-terminal 
MH2 domain has protein-binding and transactivation 
properties. Upon phosphorylation by activated TβRI 
on two serine residues within a conserved-SS(M/V)S- 
motif  at the extreme C terminus, activated R-Smads form 

heteromeric complexes with a Co-Smad, Smad4, and are 
translocated into the nucleus where they may function 
as transcription factors directly or in association with 
other DNA-binding factors[9,12,16]. Finally, the inhibitory 
Smads, Smad6 and Smad7, act in an opposing manner 
to R-Smads to antagonize signaling. They compete with 
R-Smads for binding to activated TβRI and thus inhibit 
the phosphorylation of  R-Smads and/or recruit E3-
ubiquitin ligases to activated TβRI, resulting in receptor 
degradation[16]. Additionally, they may recruit protein 
phosphatase-1 (PP1) to the receptor complex, resulting in 
the dephosphorylation, thus inactivation, of  the receptors 
via the catalytic subunit of  PP1, GADD45[9]. Once in 
the nucleus, Smad proteins activate transcription through 
physical interactions and functional cooperation of  DNA-
binding Smads with sequence-specific transcription factors 
and with the coactivators CBP and p300. The R-Smads 
MH1 domain can bind directly to DNA except in the case 
of  Smad2 where a 30 amino acid insertion in this domain 
prevents DNA binding. The minimal Smad3/4-binding 
element (SBE) contains only four base pairs, 5’-AGAC-3’, 
but there are reports of  binding to other G/C-rich 
sequences[9,16,17].

tGF-β rEGuLAtIon oF ExtrAcELLuLAr 
MAtrIx GEnE ExPrESSIon
The net accumulation of  collagen in tissue fibrosis is a 
result of  an imbalance between enhanced production 
and deposition and impaired degradation of  ECM 
components, mostly collagens (Figure 3). To date, about 
25 types of  collagens have been identified. All collagen 
molecules consist of  three polypeptides, so-called α-chains. 
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Some collagens are homopolymers with each of  the three 
polypeptides being identical, while other collagens are 
heterotrimers with two or three distinct α-chains. TypeⅠ 
collagen, the major component of  ECM is composed of  
two α1 (Ⅰ) chains and one α2 (Ⅰ) chain which are the 
products of  two genes, COL1A1 and COL1A2. After 
translation, the pro-α1 (Ⅰ) and pro-α2 (Ⅰ) polypeptides 
chains enter into the endoplasmic reticulum where specific 
proline and lysine residues are hydroxylated to form 
hydroxyproline and hydroxylysine. This event allows the 
pro-α chains to combine with other chains by hydrogen 
bonds and form the triple helix procollagen structure. 
Procollagens are then secreted through the Golgi apparatus 
in the extracellular space, where the N-terminal and 
C-terminal propeptides are cleaved by specific proteases. 
The mature processed collagen molecules aggregates to 
form larger collagens[18]. Abnormalities in any step of   
typeⅠcollagen production may result in abnormally 
elevated synthesis of  typeⅠcollagen which, in turn, causes 
tissue fibrosis.

Several studies have shown that exaggerated tissue 
deposition of  typeⅠcollagen during the fibrotic process 
is largely due to an increase in the rate of  transcription 
of  the corresponding genes[2,19,20]. To date, numerous 
efforts have been made to identify the signal transduction 
pathways involved in the transcription of  typeⅠcollagen 
genes by TGF-β. Original works demonstrated that TGF-
β-responsive sequences regarding the human promoter 
of  COL1A1 are located between 174 and 84 bp from the 
transcription start site, which region contains a binding site 
for Sp1 and an element with the canonical NF-1 binding 
motif[21]. Regarding the human COL1A2 promoter, 
original works demonstrated that a 135-bp region of  the 
promoter within 330-bp of  the transcription start site 
could confer responsiveness to TGF-β[22,23]. The minimal 
TGF-β-response element was further refined to the region 
between nucleotides -271 and -235. The latter contains 
potential overlapping cis-element for Smad and AP-1, 
which are both implicated in COL1A2 transactivation 
by TGF-β[24]. Several Sp1 binding elements contribute to 
basal gene expression, and may represent targets for anti-
fibrotic intervention[25]. Cooperation between Smad3 and 

Sp1 to transactivate the COL1A2 promoter have also been 
described, and it has been shown that Smad-p300/CBP 
interactions are critical for TGF-β driven COL1A2 gene 
transactivation[26, 27]. Other transcriptional coactivators such 
as SRC-1 may also participate in TGF-β effects[28].

By the end of  the year 2000, only approximately 
12 genes were known to contain Smad-responsive 
regions, binding Smad complexes directly or indirectly. 
All Smad gene targets identified downstream TGF-β 
were Smad3-dependent including COL7A1[29], PAI-1[30], 
and COL1A2[31]. Using a combined cDNA microarray 
promoter transactivation approach, we have identified 
new Smad3/4 gene targets in cultured dermal fibroblasts: 
COL1A1, COL3A1, COL5A2, COL6A1, COL6A3 , 
and TIMP-1. In addition, we identified 49 immediate-
early TGF-β target genes. Their activation by TGF-β is 
rapid and does not require protein neo-synthesis or JNK 
activity. Furthermore, their activation was blocked by 
overexpression of  the inhibitory Smad, Smad7, and did 
not occur in Smad3-deficient mouse fibroblasts. Thus, we 
demonstrated that the Smad signaling pathway is crucial 
for simultaneous activation of  skin fibrillar collagen 
genes (COL1A1, COL1A2, COL3A1 and COL5A2) by 
TGF-β[32]. Besides playing a large part in the regulation 
of  the expression of  ECM components, Smads have 
been identified as capable of  mediating the inhibitory 
activity of  TGF-β on interstitial collagenase (matrix 
metalloproteinase-1, MMP-1) gene activation by pro-
inflammatory cytokines, such as IL-1β[33], another mean 
by which the Smad pathway is likely to contribute to 
exacerbated ECM deposition.

tGF-β In huMAn SKIn FIBroSIS 
dISEASES
Keloids represent a dysregulated response to cutaneous 
wounding that results in an excessive deposition of  
collagen with a severely debilitating outcome for the 
affected patients. Several studies have demonstrated that 
TGF-β1 is expressed at greater levels in keloid fibroblasts 
when compared with normal dermal fibroblasts[1]. In 
addition, increased expression of  TβRI and TBRⅡ, and 
increased phosphorylation of  Smad3 in keloid fibroblasts, 
have also been reported[34], supporting the hypothesis 
that TGF-β/Smad signaling plays a central role in keloid 
pathogenesis. Furthermore, the activation of  Smad 
signaling, importantly that of  Smad3, appears to be one 
facet of  the complex epithelial-mesenchymal interactions 
in keloid pathogenesis, resulting in active keratinocyte 
proliferation and collagen production by fibroblasts[35].

Skin tissue fibrosis may also be a sequel of  both 
radiotherapy or accidental exposure to gamma irradi-
ation[36]. Superficial fibrosis is a sequel in humans after 
radiotherapy[37], and is characterized by induration of  the 
dermis and the subcutaneous tissue. In cases of  radiation 
accidents, high doses of  radiation can be delivered to the 
skin and severe skin burns can be observed, resulting in 
the development of  extensive fibronecrotic tissues[36,38]. 
The concept concerning the initiation of  radiation 
damage proposes that a cascade of  cytokines is initiated 
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immediately after irradiation, during the clinically silent 
period, persists for long periods of  times, and leads to 
the development of  late damage[39]. The involvement of  
TGF-β in this early cascade has been reported in various 
irradiated tissues including skin, intestine, mammary 
gland and lung[36]. For example, in skin fibrotic samples 
from soldiers that suffered accidental irradiation in Lilo, 
Georgia, 1997, gene expression studies for collagen typeⅠ 
and Ⅲ, and TGF-β1 showed that these three genes are 
specifically overexpressed. In addition, TGF-β1 protein 
was overexpressed in fibronecrotic skin both in the scar 
epidermis and in the fibrotic dermis[36].

Systemic sclerosis (SSc) is a heterogeneous and 
generalized connective tissue disorder characterized by 
micro-vascular and larger vessel lesions, with consequent 
induration and thickening of  the skin, fibrotic degenerative 
changes in muscles, joints and viscera, mainly the intestinal 
tract, the heart, the lungs and the kidneys. Although 
the mechanisms involved in the pathological increase 
of  collagen expression in SSc have not been entirely 
elucidated, extensive recent efforts have been devoted 
to study the role of  TGF-β signaling pathway by Smad 
proteins[40]. Immunohistochemical analysis of  skin biopsies 
performed in non lesional areas from SSc patients and 
analysis of  fibroblast cultures showed that Smad2 and 
Smad3 expression and their nuclear translocation were 
increased in these SSc patients[41]. More recently Dong 
et al[42]. reported reduction of  Smad7 expression in SSc 
derived fibroblast cultures as compared to fibroblast 
cultures from unaffected areas of  the same patients, 
suggesting that a defective Smad7 feedback inhibition 
could play a role in TGF-β hyper-responsiveness in SSc. 

TGF-β has also been implicated as being a key 
mediator in a number of  fibrotic diseases in organs other 
than skin. For example, an increased expression for 
TGF-β has been documented during the phase of  tissue 
remodeling in several forms of  acute or chronic lung 
disease[43], such as rapid progressive pulmonary fibrosis[44], 
idiopathic pulmonary fibrosis[45], scleroderma[46], or 
cystic fibrosis[47]. In the cardiovascular system, mounting 
evidence supports the notion that TGF-β1 stimulates the 
progression of  cardiac fibrosis during cardiac hypertrophy 
and heart failure[48]. In the kidney, TGF-β is closely 
associated with renal interstitial fibrosis, in which normal 
glomerular tissue is replaced by ECM, leading to organ 
failure[49]. Epithelial-to-Mesenchymal transdifferentiation 
induced by TGF-β may contribute to tubular atrophy 
and generation of  interstitial myofibroblasts, leading to 
concomitant tubulo-interstitial fibrosis[50]. In advanced 
liver fibrosis resulting in cirrhosis, liver failure, and portal 
hypertension, TGF-β fibrotic action is broadly associated 
with its ability to lead transdifferentiation of  hepatic 
stellate cells into myofibroblasts[51]. 

Smad3, A KEY MEdIAtor oF FIBrotIc 
ProcESSES
The most direct evidence supporting the involvement 
of  Smad3 in fibrosis came from the use of  mice with a 
targeted deletion of  Smad3[52]. For example, skin from 

Smad3-/- mice exposed to a single dose of  30 to 50 Gy of  
gamma-irradiation showed significantly less epidermal 
acanthosis and dermal influx of  mast cells, macrophages, 
neutrophils and decreased expression of  TGF-β than 
skin from wild type littermates suggesting that inhibition 
of  Smad3 could decrease tissue damage and reduce 
fibrosis after exposure to ionizing radiations[53]. In another 
experimental model of  fibrosis, mice deficient in Smad3 
exhibited suppressed typeⅠprocollagen mRNA expression 
and reduced hydroxyproline content in the lungs compared 
with wild-type mice treated with bleomycin. Furthermore, 
loss of  Smad3 greatly attenuated morphological fibrotic 
responses to bleomycin in the mouse lungs[54]. Likewise, 
transient overexpression of  active TGF-β1 in lungs, using 
adenoviral vector-mediated gene transfer, resulted in 
progressive pulmonary fibrosis in wild-type mice, whereas 
no fibrosis was seen in the lungs of  Smad3-/- animals[55]. 
Conversely, C57BL/6 mice with bleomycin-induced lungs 
receiving an intratracheal injection of  a recombinant 
adenovirus expressing Smad7 demonstrated suppression 
of  typeⅠprocollagen mRNA, reduced hydroxyproline 
content, and no morphological fibrotic responses in the 
lungs, indicated that gene transfer of  Smad7 prevents 
bleomycin-induced lung fibrosis[56]. More recently, using 
mice with targeted deletion of  Smad3, Roberts et al[57]. 
demonstrated that lack of  Smad3 prevents the epithelial-
to-mesenchymal transition of  lens epithelial cells following 
injury, and attenuates the development of  fibrotic 
sequelae. Together, these various experimental approaches 
demonstrate the direct implication of  Smad3 activation 
downstream of  TGF-β in the pathogenesis of  pulmonary 
fibrosis.

connEctIVE tISSuE GroWth FActor
Although TGF-β has long been regarded as a pivotal 
growth factor in the formation and maintenance of  con-
nective tissues and as a major driving influence in many 
progressive fibrotic diseases, attention has recently focused 
on the role of  connective tissue growth factor (CTGF) in 
fibrosis. For example, Systemic sclerosis (SSc) fibroblasts 
demonstrate constitutive over-expression of  CTGF that 
promotes migration, proliferation and matrix produc-
tion. Specifically, in fibroblasts cultured from SSc lesions, 
CTGF mRNA and protein are constitutively expressed, 
even in the absence of  exogenously added TGF-β[58]. In 
normal adult fibroblasts, TGF-β induces the expression of  
CTGF via a functional Smad3 binding site in the CTGF 
promoter. However, mutation of  the Smad binding site 
does not reduce the high level of  CTGF promoter activity 
observed in dermal fibroblasts cultured from lesional areas 
of  scleroderma patients. Thus, the maintenance of  the 
fibrotic phenotype in scleroderma fibroblasts, as visualized 
by excess CTGF expression, appears to be independent of  
Smad-dependent TGF-β signaling[59]. The increased level 
of  CTGF protein and mRNA is also associated with the 
accumulation of  fibroblasts/myofibroblasts and collagen 
deposition in the persistence of  late intestinal radiation 
fibrosis[60]. Interestingly, Balb/c mice that lack CTGF in- Interestingly, Balb/c mice that lack CTGF in-
duction upon stimulation with bleomycin, can be trans-
formed into fibrosis-sensitive individuals by generation of  
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a CTGF-rich environment using transient overexpression 
of  CTGF by adenoviral gene transfer. In this context, 
silencing CTGF expression with siRNA demonstrated 
therapeutic potential to prevent liver fibrosis by inhibiting 
hepatic stellate cells activation[61]. Together these observa-
tions suggest that CTGF is an important mediator in the 
pathogenesis of  fibrosis and can be act as an enhancer of  
TGF-β/Smad3 fibrotic response[62].

PErSPEctIVES For thErAPEutIc 
IntErVEntIon
Tremendous progress has been accomplished over the 
past several years in the understanding of  the initial steps 
of  TGF-β intracellular signalling. The identification of  
Smad proteins as direct links between the cell surface 
and the nucleus has allowed for the elucidation of  critical 
events leading to gene activation by TGF-β. Specifically, 
an increasing body of  evidence demonstrates that Smad3 
plays a crucial role during the fibrotic process both in vitro  
and in vivo. These observations suggest that blocking the 
TGF-β/Smad3 pathways may promise opportunities 
for treatment of  fibrotic diseases. In particular, several 
endogenous inhibitors of  TGF-β/Smad3-mediated 
gene expression have been discovered. Firstly, Smad7 
induction by IFN-γ, a well known anti-fibrotic cytokine, 
blocks TGF-β/Smad signalling pathway. In this context, 
halofuginone a low molecular weight plant alkaloid used 
as a coccidiostat for poultry, was effective in inhibiting 
dermal fibrosis in the tight skin mouse of  scleroderma, 
and radiation-induced fibrosis[63-65]. Thus, halofuginone, 
which has demonstrated efficacy and tolerance in humans, 
could become an effective and novel therapy for example 
for liver fibrosis[66]. Secondly, activation of  the MAP 
kinase JNK, whether by cytokines such as TNF-α or 
by pharmacologic molecules such as 5-fluoro-uracyl, 
blocks the transcriptional outcome of  the TGF-β/Smad3 
signaling pathway by induction of  c-Jun phosphorylation 
which, direct ly interferes with Smad3-dependent 
transcription (Figure 4)[67-72]. Thirdly, cAMP was shown 
to inhibit TGF-β Smad3/4 dependent transcription via 

a protein kinase A-dependent mechanism[73]. However, 
several hurdles remain before the TGF-β/Smad3 pathway 
can be considered a perfect therapeutic target in situations 
such as fibrosis. The identification of  alternate signalling 
pathways for TGF-β remains critically important. For 
example, the role of  Smad2 downstream of  TGF-β is 
rather poorly understood. Identification of  Smad2 target 
genes will likely shed some light on alternate mechanisms 
by which TGF-β may affect connective tissue remodeling. 
Likewise, recent evidence for a role of  the Rho pathway 
in the pathogenesis of  radiation-induced enteritis suggest 
that inhibition of  Rho pathway by pravastatin, an inhibitor 
of  Rho isoprenylation, may also promise opportunities for 
new therapeutic perspectives[74]. 
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