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ABSTRACT

Motivation: Mass spectrometry (MS)-based high-throughput quanti-

tative proteomics shows great potential in large-scale clinical bio-

marker studies, identifying and quantifying thousands of proteins in

biological samples. However, there are unique challenges in analyzing

the quantitative proteomics data. One issue is that the quantification of

a given peptide is often missing in a subset of the experiments, espe-

cially for less abundant peptides. Another issue is that different MS

experiments of the same study have significantly varying numbers of

peptides quantified, which can result in more missing peptide abun-

dances in an experiment that has a smaller total number of quantified

peptides. To detect as many biomarker proteins as possible, it is

necessary to develop bioinformatics methods that appropriately

handle these challenges.

Results: We propose a Significance Analysis for Large-scale

Proteomics Studies (SALPS) that handles missing peptide intensity

values caused by the two mechanisms mentioned above. Our

model has a robust performance in both simulated data and prote-

omics data from a large clinical study. Because varying patients’

sample qualities and deviating instrument performances are not avoid-

able for clinical studies performed over the course of several years, we

believe that our approach will be useful to analyze large-scale clinical

proteomics data.

Availability and Implementation: R codes for SALPS are available at

http://www.stanford.edu/%7eclairesr/software.html.

Contact: wenzhong.xiao@mgh.harvard.edu

Supplementary information: Supplementary materials are available

at Bioinformatics online.
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1 INTRODUCTION

Mass spectrometry (MS) in large-scale clinical studies provides

new insights into how disease affects our bodies at the molecular

level (Altelaar et al., 2013; Paczesny et al., 2010), identifying

and quantifying thousands of proteins in patients’ samples.

Even though MS is a powerful tool in biomedical research, it

is subject to white noise, chemical noise and stochastic variation,

needing robust and sophisticated bioinformatics algorithms

(Nesvizhskii, 2010; Ryu, 2014). One of the challenges in analyz-

ing MS data is the absence of peptide abundance in a subset of

the measurements. Peptides are often not observed because of

their low intensities. And this intensity-dependent missing trend

can introduce bias into downstream analyses when it is ignored.

Wang et al. (2006) suggested a normalization procedure using the

top-L ordered statistics of peptide intensities in each sample (L is

a user-defined threshold) and proposed an imputation approach.

Karpievitch et al. (2009) modeled the random missing mechan-

ism and the peptide intensity-dependent missing mechanism

assuming that instrument detection thresholds vary from one

peptide to the other. Wang et al. (2012) carried out an inten-

sity-based analysis and a presence/absence analysis separately

and controlled their false discovery rates. In Wang et al.

(2012), they argued that logistic regressions were not adequate

to analyze presence/absence data when all intensity values were

missing for one group. However, it is not a problem of the lo-

gistic regression, but rather a problem of the test statistics in the

logistic regression. In the situation when all or almost all peptide

abundances are missing, Wald tests overestimate P-values of the

significant tests, but log-likelihood ratio tests do work reliably

(Hauck and Donner, 1977). Thus, using a mixture model ap-

proach with proper test statistics instead of fitting two models

separately may be better.
Another challenge in the MS data analysis is that experiments

sometimes have different total numbers of quantified peptides.

This phenomenon is often observed in MS studies (Wang et al.,

2006) and is inevitable for large-scale clinical studies because the

studies are often performed over the course of several years. The

quality of patient samples varies because of their different stor-

age time and the performance of the instrument(s) changes due

to the tuning of the MS instruments or the degradation of the

liquid chromatography (LC) columns over time. Varying total

numbers of quantified peptides result in unequal numbers of

missing peptide values across experiments. An experiment with

a smaller total number of quantified peptides has more missing

peptide abundances. For example, let us assume that Experiment

A produced 4000 quantified peptides and Experiment B pro-

duced only 2000 quantified peptides because the quality of bio-

logical sample B was not as good as A. Then, Experiment B has

2000 missing peptide intensities compared with Experiment A.

Now, to investigate this missing mechanism further, assume that

one peptide named X is present in Experiment A, but absent in*To whom correspondence should be addressed.
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Experiment B. Another peptide named Y is present in both

experiments. The reason why peptide X is absent in

Experiment B but present in Experiment A can be one of the

following: (i) peptide X is less abundant in Experiment B than in

Experiment A (intensity-dependent missing mechanism); (ii) pep-

tide X is not abundant enough to be in the top 2000 quantified

peptides (total quantification-dependent missing mechanism); or

(iii) peptide X is missing at random. Here, the total quantifica-

tion-dependent missing mechanism should not be confused with

the intensity-based missing mechanism. The total quantification-

dependent missing mechanism implies that peptide X may be less

abundant than peptide Y that is listed in the top 2000 quantified

peptides of Experiment B. However, such missing values are not

informative because we are not comparing peptide X with pep-

tide Y (at least not in this article), but comparing the abundances

of the peptide X between the Experiment A and B. Thus, it

would introduce bias if we blindly use the censored approach

proposed previously, assuming the missing values are caused

by the lower abundance of peptide X in Experiment B compared

with Experiment A. Karpievitch et al. (2009) and Wang et al.

(2012) did not deal with the issue of total quantification-

dependent missing values.

Figure 1 demonstrates a peptide expression profile with the

intensity-dependent missing values and the total quantification-

dependent missing values. A colored cell represents observed

peptide abundance, while a white cell represents missing peptide

abundance. Two different colors—blue and red—represent two

sample groups (i.e. controls versus patients). The missing values

in part A of Figure 1 are only from the intensity-dependent

missing mechanism. The missing values in part B result from

both the intensity- and total quantification-dependent missing

mechanisms. Because the missing values resulting from the vary-

ing total quantification are not informative, one way to deal with

these missing values is to remove them.
In this article, we propose a Significance Analysis for Large-

scale Proteomics Studies (SALPS) that filters the total-

quantification-dependent missing values and makes use of the

intensity-dependent missing values. Using simulated data, we

show how SALPS performs with the missing values generated

from the two mechanisms. Finally, we demonstrate our model

performance using proteomics data of human blood monocytes

in a large-scale clinical study of trauma patients.

2 METHOD

2.1 Definitions

Here we define the terms frequently used in this article. A peptide is a

short chain of amino acids or a substring of a protein; thus, multiple

peptide sequences observed in an experiment can come from the same

protein. In a typical high-throughput proteomics study, the levels of the

peptides are quantified by the peak intensities in the LC-MS spectra.

Because one peptide eluted over time, the peptide intensity was a sum

of peak intensities of multiple LC/MS spectra. A quantified peptide was a

peptide with non-zero peptide intensity in a given experiment. One pep-

tide with the same sequence could have multiple charge states (i.e. 2, 3 or

4). One could either combine all charge states of the same peptide and use

it as one peptide intensity or treat the peptide with different charge states

as different peptides and used them as separate peptide intensities. In our

data analysis, we used the latter approach.

2.2 Significance Analysis for Large-scale Proteomics

Studies

Censored regression with filtering This section describes how we

used intensity-dependent missing values using a censored regression and

how we filtered quantification-dependent missing values. Our censored

regression was a mixture of two models: a probit regression that modeled

presences/absences of peptide intensities and a linear regression that mod-

eled peptide intensities. For each protein, a censored regression was con-

structed as the following:

yijl=

(�+Pi+Gj+�ijl ifmijl=0;

0 ifmijl=1;

�ijl�Nð0; �
2Þ;

mijl�BernoulliðpijÞ

pij=�ð�0+P0i+G0jÞ;

ð1Þ

where i=1; :::;m was the index of a peptide, j=1, 2 was the index of a

group and l=1; :::; nj was the index of a biological replicate within a

group. yijl represented a log-transformed intensity of peptide i measured

in biological replicate l of study group j. yijl was positive whenmijl= 0. �2

represented the variance of y given covariates. mijl represented an indica-

tor variable—whether a peptide quantification was absent (=1) or not

(=0). pij was a probability of missing peptide quantification. � was the

standard cumulative normal distribution. �0 estimated a proportion of

peptide intensities that were absent at random. We also adjusted the

differences in the intensity values and missing rates between peptides by

adding Pi and P0i terms. It was known that even though peptides from the

same protein had the same abundance in a biological sample, their peak

Fig. 1. An example of the peptide experiment profile measured in a MS

proteomics study. The rows and columns of this profile represent peptides

and experiments, respectively. Different colors imply different groups (i.e.

control versus patients). A colored cell represents the abundance of a

peptide observed, while a white cell represents a missing observation of

peptide abundance. The missing values in part A are only from the in-

tensity-dependent missing mechanism, and in part B from both the in-

tensity- and total quantification-dependent missing mechanisms
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intensities and missing rates varied because of their different ionization

efficiencies and detectibilities (Tang et al., 2006). Thus, it was necessary to

adjust these differences.

Equation (1) contained peptide terms and group terms for both the

linear regression part and the probit regression part. Here, we let �g=G2

�G1 and �g=G02 � G01 for a convenience. Then, a positive value of �g
implied that a protein of interest was more abundant in Group 2 com-

pared with Group 1. A negative value of �g implied that the protein had

less missing values in Group 2 compared with Group 1. Thus, �g and �g
had opposite signs in the ideal case.

Before constructing the final censored regressions and testing for the

differential proteins, we removed the total quantification-dependent miss-

ing values by determining the filtering threshold such that high propor-

tions of �g and �g had opposite signs. Graphically, it attempted to

remove the vertical white spaces in part B in Figure 1. First, we obtained

a median value of observed intensities from all experiments for each

peptide. According to these median peptide intensities, we assigned

ranks to the peptides in a descending order. Then, we let kil be a ratio

between the rank of peptide i and the total number of quantified peptides

in Experiment l. For instance, if peptide i was ranked in 2000th place and

Experiment l had 1000 quantified peptides, then its k value would be

2ð=2000
1000Þ. Next, we fit the model (1) after filtering the missing values

with various thresholds of k scores. (We expressed the threshold of k’s

as kth.) We measured the percentage of �g and �g having opposite signs

with various kth values in {1, 1.5, 2, 2.5, . . .}. Then, we chose the kth that

produced the largest percentage of �g�g50 and filtered all missing values

with their k values greater than kth.

After filtering the total quantification-dependent missing values, we

were left with the intensity-dependent missing values and constructed

the final model (1). The likelihood of this model was the following:

L=
Y
ijl

½ð1� pijÞ��ð�ðyijl � �ijÞÞ�
1�mijl ½pij�

mijl ; ð2Þ

where �ij=�+Pi+Gj.

Maximum likelihood estimates of parameters were same as the linear

regression and probit regression. Thus, we estimated these parameters

using a standard package of linear regression and probit regression

in R. This model reduced to a probit regression when all peptide intensity

values in one group were missing, while it reduced to a linear regression

when all peptides intensity values were present. This model was similar

to a lognormal Hurdle regression commonly used in economics

(Wooldridge, 2010).

Hypothesis testings We used a bootstrap approach to detect proteins

whose abundances or missing rates were different between Group 1 and

2. The null hypothesis of interest was H0 : G1=G2=G01=G02=0. We let

our test statistics �2	=� 2ðlogðL0Þ � logðLÞÞ where L0 was a likelihood

for the model without group terms for both linear regression and logistic

regression parts. Then, we constructed a null distribution of �2	 by

permuting subject group labels and estimated P-values based on the

null distribution. To correct multiple testing errors, q-values were com-

puted for each protein using Storey (2002). An alternative way to estimate

P-values is to use the likelihood-ratio test assuming that �2	 under the

null has chi-square distribution. However, the bootstrap gave more ac-

curate q-values than likelihood ratio tests (See Supplementary Materials),

and thus, we used the bootstrap approach to test H0.

As mentioned previously, for detected differential proteins with small

q-values, it is ideal to have �g�g50. But, we can sometimes have proteins

with �g�g40. In other words, in the ideal situation, if the peptides from

Protein X were more abundant in Group 2 than 1, then the intensities of

these peptides were supposed to be more frequently present in Group 2.

However, sometimes, these peptides can appear less frequently in

Group 2, but the difference in these frequencies between two groups

was not significant. This would be more evident when �g was close to

zero. For example, in the situation when Protein X was actually more

abundant in Group 2 than 1, two of 100 peptides intensities were missing

for Group 2, and one of 100 peptides intensities was missing for Group 1.

Then, Group 1 had smaller missing rate for Protein X, but the difference

in the missing rates between two groups was negligible.

Thus, we further tested two null hypotheses, H0G : G1=G2=0 and

H0G0 : G01=G02=0 noting that �g=G2 � G1=0 and �g=G02 � G01=0.

We restricted these tests to the differential proteins with q-values 5qth
(i.e. qth=0.01) and with �g�g40. Because it was not plausible to use

bootstrap for these tests, we used likelihood ratio tests. By taking a sign

of either �g or �g (not both) with a smaller P-value, we determined

whether a protein of interest is more or less abundant in Group 1 than 2.

2.3 Datasets

Simulated data We generated several simulated datasets that were

aimed to reflect real MS data. The different simulated datasets contained

various proportions of total quantification- and intensity-dependent miss-

ing values. Details of simulation procedures and parameters were shown

in the Supplementary Materials. In brief, peptide intensities were gener-

ated from the linear regression part of (1). Concerning the missing mech-

anisms, we had three parameters of interest, 
1, 
2 and b. 
1 represented

the magnitude of association between mean peptide intensities and miss-

ing rates (
1 2 ð0; 1�). A larger 
1 indicated a stronger association between

peptide intensities and peptide missing rates in the data. 
2 ranged in (0,1]

and represented the magnitude of association between k values and miss-

ing rates. The values of b were the probabilities that missing values were

generated from the total quantification-dependent missing mechanism.

A higher b value would produce a larger portion of part B in Figure 1.

Monocyte proteomics data of trauma patients The data were gen-

erated by the National Institutes of Health large-scale collaborative pro-

gram, Inflammation and Host Response to Injury Consortium. The study

was reviewed and approved by the institutional review boards at each

participating site. Blood monocyte samples of 147 trauma patients were

collected within 12h after the injury. Among 141 patients, 77 patients had

complicated recovery and 64 patients had uncomplicated recovery (Xiao

et al., 2011). Our interest was to find the proteins whose abundances were

different between these two recovery groups.

Samples were prepared using 18O-labeled universal reference-based ap-

proach described in Qian et al. (2010) and analyzed by MS. Each experi-

ment contained peptides from a pool sample and from an individual

patient sample. Peptides from the pool sample were labeled with 18O

and used as universal standards. (We will call peptides from the pool

sample as heavy-labeled peptides and peptides from the individual patient

sample as light-labeled peptides.) Both heavy- and light-labeled peptides

were identified and quantified at false discovery rate 1%, and homoge-

neous proteins were grouped by MaxQuant (Version 1.4.1.2) (Cox and

Mann, 2008). The light-labeled peptide abundances were normalized by

their paired heavy-labeled peptide abundances. These normalized light-

labeled peptide abundances were used for SALPS.

3 RESULTS

3.1 Simulation results

SALPS had good performances in detecting differential proteins.

Here, we compared SALPS with two alternative approaches.
One approach was to omit missing data and to carry the linear

regression on the remaining data. This is known as the complete
case analysis. Here, we denote it as LinearC. The variants of the

complete case data analysis were often used in the proteomics
(Oberg et al., 2008; Radulovic et al., 2004; Ryu et al., 2008;

Wang et al., 2003). The other approach was the linear regression

with imputation (denoted as LinearI). It is a simple approach
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that handles intensity-dependent missing data. In this approach,
we obtained the minimum observed peptide intensity for each

peptide and replaced missing values of the corresponding peptide
with this minimum value.
As shown in Figure 2, SALPS identified more differential pro-

teins than LinearC and LinearI in most of the parameter space,
(
1, 
2, b). The only exception was when there was a relatively
weak association between peptide intensities and missing values

(a smaller value of 
1). In this case, SALPS performed slightly
worse than LinearC (Fig. 2a). But, the difference in the number

of differential proteins at q50.01 was 3.8% on average (See
Supplementary Materials). While SALPS performed the best or
very close to the best, the performances of LinearC and LinearI

fluctuated. Fixing parameters, bð=0:50Þ and 
2ð=0:50Þ, LinearC
performed better than LinearI for a smaller value of 
1 (Fig. 2a
and b). For a bigger value of 
1, LinearI performed better
(Fig. 2c). This was expected because LinearI does not perform
well when missing rate of peptide intensities does not reflect the

peptide intensities much.
We also investigated the relationship between the model per-

formances and the proportion of part B (represented by b) in

Figure 1. Again, our model performed the best or close to the
best as the parameter, b, varies. However, as the proportion of
part B increased (bigger b value), LinearC performed better than

LinearI (Fig. 2f). As the proportion of part B decreased, LinearI

performed better (Fig. 2d and e). This implies that the missing
values have valuable information when experiments have similar

total numbers of quantified peptides and that it is better to
remove missing values when experiments have different total
numbers of quantified peptides. SALPS also performed well

with varying 
2. More simulations with varying 
2 values were
also found in the Supplementary Materials.
In addition, we compare the performance of Karpievitch et al.

(2009) and Wang et al. (2012) in the simulated datasets. Wang
et al. (2012) performed better than Karpievitch et al. (2009), but

not as good as LinearI, LinearC and SALPS (Supplementary
Figure 5S). For example, in the simulation dataset, where
b=0:50; 
1=0:75; 
2=0:50, the numbers of truly differentially

expressed proteins detected by LinearI and LinearC are475%
of the true differential proteins detected by SALPS, but this per-

centage reduced to550% for Karpievitch et al. (2009) and Wang
et al. (2012).
Because in the simulated data, the true set of differential pro-

teins was known, we computed the actual q-values based on the
number of proteins that were falsely classified as differential pro-
teins. Our q-values based on the bootstrap-based tests were close

to the actual q-values (Fig. 2). The dotted lines in Figure 2
represented the actual q-values given the number of significant
proteins. The dotted lines of SALPS were close to their estimated

(solid) lines.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Simulation results showing the number of differentially expressed proteins versus q-value at varying parameter values of (b, 
1). b was the

probability that missing values were generated from the total quantification-dependent missing mechanism. 
1 was the magnitude of association between

mean peptide intensities and missing rates. 
2 was the magnitude of association between k values and missing rates (
2=0:50). The solid lines were based

on the estimated q-values, while the dotted lines were based on the actual q-values
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At estimated q50.01, �99% of differential proteins detected

were from the true set of differential proteins for all three

approaches. When b=0:50; 
1=0:75; 
2=0:50, SALPS detected

2273 proteins from the true set of differential proteins (q50.01).

At the same q-value threshold, LinearC and LinearI detected

2007 and 2060 proteins from the true set, respectively. A total

of 1760 proteins were detected by all three approaches.

3.2 Monocyte proteomics data results

SALPS performed well in the monocyte proteomics data of

trauma patients. Using this dataset, we were interested in iden-

tifying proteins of which the abundance was different between

two patients groups (uncomplicated versus complicated recovery

patients). SALPS detected 78 differential proteins at q50.0001

and 107 differential proteins at q50.01. These proteins were

known to be associated with inflammatory response, immunolo-

gical disease and organismal abnormalities. For examples, matrix

metalloproteinase 8 (MMP8) was detected as significant by only

SALPS. Matrix metalloproteinses were well known to be import-

ant in various inflammatory diseases (Lagente and Boichot,

2008). Specifically, Quintero et al. (2010) had shown that

MMP8 in monocytes reduced acute lung inflammation and

injury in mice. In our proteomics data of monocytes from pa-

tients, MMP8 was more abundant in patients of uncomplicated

recovery than complicated recovery, which aligned well with the

anti-inflammatory role of MMP8. Besides, damage-specific bind-

ing protein (DDB1) was not detected as significant by LinearC,

but by SALPS and LinearI. In our monocytes proteomics data,

the complicated recovery patients had more DDB1 proteins in

their monocytes than the uncomplicated patients within 12 h

after the injury. This could indicate that complicated recovery

patients needed more DDB1 proteins for DNA repair (Dualan

et al., 1995). However, as part of the cullin4-DDB1 E3 ubiquitin

ligase complex, multiple studies had shown that DDB1 was

essential for viruses to escape from innate immune sensing

(Andrejeva et al., 2002; Laguette et al., 2014; Leupin et al.,

2003; Precious et al., 2005). Further studies are needed to discern

the functional impact of differentially expressed DDB1 in trauma

patients.
In terms of the number of differential proteins, the perform-

ance of SALPS was better than the traditional approaches

(Fig. 3). Our approach detected �25 and 300% more differential

proteins than LinearI and LinearC, respectively (q50.01). Over

96 and 90% of differential proteins detected by LinearC and

LinearI were also detected by SALPS at the same q threshold.

LinearI worked well in this dataset identifying more differential

proteins than LinearC. In contrast, when we applied these algo-

rithms to another dataset, while SALPS still performed the best,

LinearC performed better than LinearI (see Supplementary

Materials). The algorithms of Karpievitch et al. (2009) and

Wang et al. (2012) did not converge when applied to the mono-

cyte proteomics data.
The percentage of �gB�gB50 was 81.31% at q50.01. For the

rest of proteins with �gB�gB40, testing H0� and H0� determined

whether the proteins were more abundant (or had less missing

rate) in the complicated recovery patients than the complicated

recovery patients.

4 DISCUSSION AND CONCLUSION

We developed a SALPS and demonstrated its performance. As

shown in our simulation studies (Fig. 2), it was important to

recognize the different causes of peptide missing values and to

handle them appropriately. Our model was flexible enough to

handle missing values from different sources.
There are a few things we want to mention about our pro-

posed approach. First, we used a (log)normal distribution in the

linear regression part. However, one can use a truncated normal

distribution in place of the normal distribution. This model

would be the truncated normal hurdle model (Wooldridge,

2010). Second, we used the percentage of opposite signs between

�gB and �gB to determine the filtering threshold (kth). One can

also use a rank correlation between group covariates in linear

regression and probit regression and chose kth that gives the

smallest rank correlation. Third, SALPS estimates more param-

eters than the traditional approaches (e.g. 2 p parameters were

estimated in SALPS versus p parameters in LinearI and

LinearC), thus demands larger sample sizes.
Nowadays, large-scale proteomics studies have become in-

creasingly important in biomedical research. Such a study

can provide a large-scale assessment of the relationship be-

tween proteomics and clinical outcomes. Potential protein

biomarkers can be used to further develop diagnostic and thera-

peutic targets. To detect as many potential protein biomarkers

as possible with high confidence, it is important to use the

appropriate bioinformatics algorithm. The development of

SALPS was motivated by analyzing an ongoing multicenter clin-

ical study to examine the proteomic response to severe injury in

blood leukocytes, which currently includes MS analysis of42100

samples of isolated monocytes, T cells and neutrophils from

trauma patients. We believe that SALPS can provide the valu-

able information in such large-scale population proteomics

studies.

Fig. 3. Monocytes proteomics results of trauma patients. Shown are the

number of proteins detected as differentially expressed between patients

with uncomplicated and complicated recovery
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