
Vol. 30 no. 19 2014, pages 2818–2819
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu390

Sequence analysis Advance Access publication June 14, 2014

The Scramble conversion tool
James K. Bonfield
DNA Pipelines, Wellcome Trust Sanger Institute, Cambridgeshire, CB10 1SA, UK

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: The reference CRAM file format implementation is in Java.

We present ‘Scramble’: a new C implementation of SAM, BAM and

CRAM file I/O.

Results: The C implementation of for CRAM is 1.5–1.7� slower than

BAM at decoding but 1.8–2.6� faster at encoding. We see file size

savings of 34–55%.

Availability and implementation: Source code is available at http://

sourceforge.net/projects/staden/files/io_lib/ under the BSD software

licence.

Contact: jkb@sanger.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on January 15, 2014; revised on May 30, 2014; accepted on

June 12, 2014

1 INTRODUCTION

Storage capacity has been the primary driver behind the devel-

opment of the CRAM format (Cochrane et al., 2013). The

CRAM format (Fritz et al., 2011) is a practical implementation

of reference-based compression and is a viable alternative to the

earlier BAM format (Li et al., 2009). CRAM is now the preferred

submission format for the European Nucleotide Archive.
The initial CRAM prototype was in Python, quickly followed

by a Picard (http://picard.sourceforge.net/) compatible Java ref-

erence implementation (https://www.ebi.ac.uk/ena/about/cram_

toolkit). We identified a need for a C implementation, which

was implemented as part of the Staden Package’s (Staden

et al., 1999) ‘io_lib’ library.

Our primary conversion tool is named Scramble. It can read

and write SAM, BAM and CRAM formats using a unified

Application Programming Interface (API).

2 METHODS

We will not cover the CRAM file format here except to note that CRAM

internally separates data by type before compressing with Zlib (Deutsch

and Gailly, 1996). Thus, we have regular blocks of quality values, blocks

of sequence names and blocks of auxiliary tags, each of which may be

compressed using different Zlib parameters. A key efficiency observation

is that using the run-length-encoding strategy (‘Z_RLE’) is considerably

faster than the default strategy, while also often offering slightly higher

compression ratios for quality values. It also allows for applications to

potentially omit decoding of irrelevant data types. Note that these tricks

are not possible in the BAM format, as all data types are interleaved

within the same Zlib blocks.

Our implementation periodically samples both Z_RLE and the default

strategy on data blocks to determine the optimal method. This ensures

rapid speed without loss in compression ratio.

Multi-threading is implemented using a thread pool, shared by both

encoding and decoding tasks. This contrasts well when compared with

Samtools that can only parallelize file encoding. It also permits the most

efficient use of threads when converting between differing file formats,

automatically balancing the encoder and decoder work loads. Note that

our SAM encoding and decoding is single threaded.

3 RESULTS AND DISCUSSION

We tested our implementation against the reference Java

Cramtools implementation as well as existing BAM implemen-

tations in C (Samtools) and Java (Picard). The test data used

were a 4� coverage of a Homo sapiens sample (ERR317482)

aligned by BWA, with a further 1000 Genomes, and a 654�

coverage Escherichia coli test set included in the Supplementary

Material.
A breakdown of the file size by item type within the Scramble

CRAM output can be seen in Table 1. The impact of lossy com-

pression on quality values was also tested by applying Illumina’s

quantizing system that portions the 40 distinct values into eight

new bins (http://res.illumina.com/documents/products/whitepa

pers/whitepaper_datacompression.pdf). This reduced the file

size by 39%; however, even in the reduced file the quality

values still accounted for the bulk of the storage costs.
Table 2 shows the time taken to read and write formats from

the various tools along with their resultant file sizes. For encod-

ing, it is clear that the C implementation of CRAM is consider-

ably faster than the Java implementation and also beats Picard/

Samtools BAM speed despite the use of the Intel-tuned Deflate

implementation by Picard. This is almost entirely down to the

Table 1. CRAM breakdown by file percentage

Data type File % age

(40 Quality bins)

File % age

(8 Quality bins)

Quality values 80.9 68.6

Sequence identifiers 8.3 13.7

Auxiliary tags 3.9 6.4

Flags 1.5 2.5

Alignment position 1.4 2.4

CIGAR string 1.4 2.3

Sequence bases 1.3 2.1

Template position/size 0.6 1.0

Mapping quality 0.2 0.4

Other/overhead 0.5 0.8

Note: Total file sizes for ERR317482: 3.46Gb for 40 bins, 2.11Gb for 8

bins.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://sourceforge.net/projects/staden/files/io_lib/
http://sourceforge.net/projects/staden/files/io_lib/
mailto:jkb@sanger.ac.uk
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu390/-/DC1
http://picard.sourceforge.net/
https://www.ebi.ac.uk/ena/about/cram_toolkit
https://www.ebi.ac.uk/ena/about/cram_toolkit
``
''
``
''
which
cramtools 
as
x
S
x
E. Coli 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu390/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu390/-/DC1
Information
-
8
http://res.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf
http://res.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf
,
Intel 
XPath error Undefined namespace prefix


use of Z_RLE for encoding quality values. Decoding of CRAM
is not as fast as C BAM, but it is comparable with the widely

used Picard’s BAM decoder. The nature of a column-oriented
CRAM file allows for the samtools flagstat equivalent to run
considerably faster. We also observe that the CRAM files pro-

duced by Scramble are around 9% smaller than those produced
by Cramtools.jar.
Scramble has full multi-threading support for both reading and

writing of BAM and CRAM file formats. It scales nearly linearly

up to 16 cores, but with some performance inefficiencies becom-
ing visible in CRAM with high core counts, especially for decod-
ing. The results for conversion timings can be seen in Figure 1.

4 CONCLUSION

We have demonstrated that the C implementation of CRAM
performs well, beating Samtools, Picard and Cramtools for

encoding speed. Decoding speed is not as efficient as Samtools
but is still comparable with Picard and nearly twice as fast as the

Java CRAM implementation. Also notable is that the nature of

CRAM means some read operations (for example, flagstat and

index) are faster than with BAM.
CRAM is not yet capable of achieving the top compression

ratios, using 3.96 bits/base with 40 quality bins and 2.05 bits/base

with 8 bins compared against only 3.16 and 1.52 for fqz_comp

(Bonfield and Mahoney, 2013), and 41 bits per read name in

CRAM versus 23 bits in fqz_comp. This demonstrates room

for improvement in future CRAM versions, partially achieved

by replacing Zlib with arithmetic coding or an Asymmetric
Numerical System (Duda, 2013).

Scramble is not a drop-in replacement for the Samtools API;

however, a port of the CRAM components of Scramble has been

made to the HTSlib library and is available within Samtools
version 1.0, available at https://github.com/samtools/.

ACKNOWLEDGEMENT

The authors would like to acknowledge Vadim Zalunin for his

assistance and collaboration with re-implementing the CRAM

specification.

Funding: Wellcome Trust (098051).

Conflict of interest: none declared.

REFERENCES

Bonfield,J.K. and Mahoney,M.V. (2013) Compression of FASTQ and SAM format

sequencing data. PLoS One, 8, e59190.

Cochrane,G. et al. (2013) Facing growth in the european nucleotide archive.Nucleic

Acids Res., 41, D30–D35.

Deutsch,P. and Gailly,J.L. (1996) ZLIB compressed data format specification ver-

sion 3.3. RFC 1950.

Duda,J. (2013) Asymmetric numeral systems: entropy coding combining speed of

Huffman coding with compression rate of arithmetic coding. arXiv:1311.2540.

Fritz,M.H.-Y. et al. (2011) Efficient storage of high throughput DNA sequencing

data using reference-based compression. Genome Res., 21, 734–740.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 16, 2078–2079.

Staden,R. et al. (1999) The staden package, 1998. In: Misener,S. and Krawetz,S.A.

(eds) Bioinformatics Methods and Protocols. Humana Press, New York, NY,

pp. 115–130.

Tischler,G. and Leonard,S. (2013) Biobambam: tools for read pair collation based

algorithms on BAM files. arXiv:1306.0836.

Table 2. 9827_2#49.bam (ERR317482)

40 quality bins 8 quality bins

Tool Format Read(s) Write(s) Flagstat Index Size (Gb) Read(s) Write(s) Flagstat Index Size (Gb)

Scramble BAM 76.9 773.6 76.9 – 6.50 63.3 1063.6 63.3 – 4.80

Scramble CRAM 117.1 307.8 28.2 2.5 3.46 111.1 299.6 27.3 2.1 2.11

Cramtools CRAM 223.1 1333.2 – 48.4 3.78 209.0 1217.1 – 63.8 2.33

Samtools BAM 89.1 759.0 89.1 81.1 6.50 69.6 1053.8 69.6 64.7 4.80

Picard BAM 120.8 518.4 – 124.8 6.52 111.9 460.6 – 113.1 4.90

Note: User+System CPU times in seconds for encoding and decoding along with the produced file size. The timings correspond to a single 2.2GHz Intel Xeon E5-2660 (of

16). The data were in the file system cache, and so these tasks are CPU-bound. Note that not all tools provide index and flagstat equivalents for all file formats, and so timings

are omitted in these cases. Bold values represent the fastest or smallest figure in each column.

Fig. 1. Real time taken to convert from 230Gb BAM to BAM

(Scramble, Samtools) and BAM to CRAM (Scramble) formats. The

system was a 16 core 2.2GHz Intel Xeon E5-2660 with a local RAID

XFS file system. Tests on slower disks and with smaller locally cached

data files are in the Supplementary Material, including benchmarks of

Sambamba (https://github.com/lomereiter/sambamba) and Biobambam

(Tischler and Leonard, 2013)

2819

The Scramble conversion tool

to
column 
samtools 
-
,
to
from 
https://github.com/samtools/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu390/-/DC1
https://github.com/lomereiter/sambamba

