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ABSTRACT

Motivation: To assess the potential of different types of sequence

data combined with de novo and hybrid assembly approaches to im-

prove existing draft genome sequences.

Results: Illumina, 454 and PacBio sequencing technologies were

used to generate de novo and hybrid genome assemblies for four

different bacteria, which were assessed for quality using summary

statistics (e.g. number of contigs, N50) and in silico evaluation tools.

Differences in predictions of multiple copies of rDNA operons for each

respective bacterium were evaluated by PCR and Sanger sequencing,

and then the validated results were applied as an additional criterion to

rank assemblies. In general, assemblies using longer PacBio reads

were better able to resolve repetitive regions. In this study, the com-

bination of Illumina and PacBio sequence data assembled through the

ALLPATHS-LG algorithm gave the best summary statistics and most

accurate rDNA operon number predictions. This study will aid others

looking to improve existing draft genome assemblies.

Availability and implementation: All assembly tools except CLC

Genomics Workbench are freely available under GNU General Public

License.

Contact: brownsd@ornl.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The development and evolution of next-generation sequencing

(NGS) platforms has dramatically changed biological studies in

recent years (Mavromatis et al., 2012). Assembly of DNA reads

to correctly reconstruct genomes is an essential task to facilitate

genomic studies, and a variety of assembly algorithms and meth-

ods for quality evaluation have been developed (Nagarajan and

Pop, 2013). However, most sequenced genomes are incomplete

owing to technical difficulties, time and the expense leading to an

increasing disparity in quality and usefulness between finished

and draft genomes in databases (Chain et al., 2009).

Because of their low cost, accuracy and high throughput,

Illumina platforms have dominated the sequencing industry

(Mavromatis et al., 2012). Short read sequencing technologies

have limited power to resolve large repetitive regions even

within relatively small microbial genomes (Nagarajan and Pop,

2013). The so-called ‘third generation’ single-molecule sequen-
cing technology developed by Pacific Biosciences (PacBio) has

been compared with several NGS platforms (Quail et al., 2012).

Read lengths up to 14 kb have been reported for PacBio RS I

chemistry (Nagarajan and Pop, 2013) and nearly 27kb for RS II

chemistry (Brown et al., 2014).
Repetitive DNA such as ribosomal DNA (rDNA) operons

present one of the greatest technical challenges during the assem-

bly process, which is exacerbated when repeat sequence regions

are longer than the read lengths (Treangen and Salzberg, 2012).

In many cases, where repetitive DNA is present, short read
genome assemblies remain highly fragmented and often only

achieve high-quality draft status (Chain et al., 2009). The relative

value of a finished genome (Fraser et al., 2002), technical chal-

lenges (Hurt et al., 2012; Treangen and Salzberg, 2012) and what

is missing from finished versus draft quality genomes

(Mavromatis et al., 2012) have been discussed previously.

Several strategies proposed and implemented for improving
genome assemblies include the use of varying size fragment

libraries, longer length reads, gap-closure software and postpro-

cessing to detect misassemblies (Treangen and Salzberg, 2012).
Recently, draft genome sequences for 41 bacteria isolated from

the Populus deltoides rhizosphere and endosphere were obtained

using an Illumina Hiseq2000 instrument, and the genomes were

represented by 187 contigs, on average (Brown et al., 2012b). An

additional two genomes were unsuitable for publication at that

time because of high contig numbers, and 10 of the 43 genomes
contained4280 contigs. The aim of this study was to compare

and select the most appropriate NGS technology combinations,

assembly protocol and parameter optimization to improve the

genome assemblies of the Rhizobium sp. strain CF080 and

Burkholderia sp. strain BT03 that originally proved problematic,

as well as two other strains, Pseudomonas sp. strain GM41 and

Pseudomonas sp. strain GM30 of biological interest. In addition
to a variety of in silico techniques for evaluation of genome assem-

blies, a PCR and Sanger sequencing strategy was used to validate

rDNA operon predictions and further assess the assemblies.

2 METHODS

DNA sequence data generation: Illumina paired-end (PE) sequencing has

been described (Brown et al., 2012b). Illumina mate-pair (MP) libraries

with an average insert size of 6 kb were prepared using the Nextera*To whom correspondence should be addressed.
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mate-pair Sample Preparation Kit following the manufacturer’s proto-

cols, and sequencing was completed on a MiSeq instrument. Roche 454

libraries were prepared following the ‘Rapid Library Preparation’ method

according to manufacturer’s recommendations for single-end pyrose-

quencing using the Roche 454 GS FLX System and Titanium

XLR70+ kit (Roche 454). PacBio sequencing data were generated at

the Genome Sequencing and Analysis Core Resource at Duke

University using the PacBio RS-I instrument, C2 chemistry and one

SMRT cell per genome. Raw sequence data from all the platforms are

available through the NCBI SRA database under accession number

SRP010852.

Sequence data trimming, filtering, annotation and assembly: Quality

trimming and filtering of Illumina reads was performed as described pre-

viously (Brown et al., 2012b). The assemblers used for the de novo and

hybrid assembly, their respective versions and assembly recipes are pro-

vided in the Supplementary Information (Section S1). The final assem-

blies were annotated by the Prodigal gene calling algorithm (Hyatt et al.,

2010) and Integrated Microbial Genomes system (Markowitz et al.,

2012). The best hybrid assemblies for strain CF080, GM30, BT03 and

GM41 were deposited at the NCBI GenBank database under accession

numbers AKKC00000000, AKJP00000000, AKKD00000000 and

AKJN00000000, respectively.

Assessment of genome assembly quality and rDNA analysis: The in silico

evaluation of assemblies was performed using computing genome assem-

bly likelihoods (CGAL) (version 0.9.6) and REAPR (version 1.0.16)

tools, rDNA operon prediction was performed using RNAmmer soft-

ware (version 2.3.2) and alignments were created using Geneious software

(version 6.1.5) (Auckland, New Zealand). PCR amplification and Sanger

sequencing protocols are provided (Supplementary Section S1,

Supplementary Tables S1 and S2).

3 RESULTS AND DISCUSSION

3.1 Sequencing details

Illumina PE data were available (Brown et al., 2012b), and add-

itional sequencing was performed using Roche 454, Illumina MP
and PacBio RS-I platforms. The average read lengths and cover-

age values from each sequencing platform are summarized

(Table 1). Previously published draft genome assemblies gener-

ated from Illumina PE reads (Brown et al., 2012b) were im-
proved using combined data from the different sequencing

platforms and hybrid assembly protocols.

A non-hybrid assembly method HGAP has been developed
that requires 80–100� of PacBio sequence coverage (Chin

et al., 2013), and several recent studies have shown that assembly

of PacBio data alone generated the most complete and accurate

de novo assemblies for several bacteria (Brown et al., 2014; Koren
et al., 2013). In this study, de novo assembly of PacBio RS I data

only with the HGAP method generated poor-quality assemblies

(highly fragmented with low N50 values and having smaller

genome size than expected), which was likely because of the rela-
tively low sequence coverage (18–32�). Hence, hybrid assemblies

for these four strains were compared using summary statistics,

assembly evaluation tools and rDNA content. The performance

of each hybrid assembly algorithm is described below. However,
for new PacBio sequence data generation, one should aim for

4100� coverage using the RS II Sequencing System, which can

obtain better genome assemblies (Chin et al., 2013).
In a recent example, a closed, high-quality genome sequence

for Clostridium autoethanogenum DSM10061 was generated

using only the latest single-molecule DNA sequencing

technology and without the need for manual finishing (Brown
et al., 2014). Comparison of the PacBio assembly to assemblies

based on shorter read DNA technologies (454, Ion Torrent, and
Illumina) showed they were confounded by the large number

repeats and their size, which in the case of the rRNA gene op-
erons were �5kb. The C. autoethanogenum PacBio sequence
data cost �US$ 1500. A detailed cost-analysis for different se-

quence data types has been reported (Koren et al., 2013). Longer
reads, greater sequencing depth, the random nature of single

molecule sequencing errors and its cost and assembly perform-
ance suggests this technology will be increasingly used to produce
finished microbial genomes (Koren et al., 2013).

3.2 Assembly of data from Illumina PE

The initial assemblies of Illumina PE reads were mostly gener-

ated using CLC genomics workbench (CLC) (Brown et al.,
2012b). We used the same dataset and alternative assembly al-
gorithms such as Velvet (Zerbino and Birney, 2008), SOAP (Luo

et al., 2012), ABySS (Simpson et al., 2009), MaSuRCA (Zimin
et al., 2013) and SPAdes (Bankevich et al., 2012), which obtained

improved assembly statistics. The SPAdes assembler generated
the best summary statistics using Illumina PE reads with an ex-
ception of strain CF080. The ABySS assembler performed con-

sistently for all four strains, as it generated similar statistics to the
SPAdes assembler as well as generating the best assembly for

strain CF080 using PE data. The performance of the
MaSuRCA assembler was genome and data dependent, as it
generated poor assembly statistics for strain BT03 and GM30

while reasonable assembly statistics for strain CF080 and GM41
(Supplementary Table S3).

3.3 Assembly of Illumina PE and MP data

MP libraries are capable of resolving repetitive regions and struc-
tural variants while increasing the accuracy and size of assembled

contigs (Ribeiro et al., 2012). Short reads could be best
assembled through de Bruijn Graph (DBG) assembly approach

(Miller et al., 2010). The PE-MP hybrid assemblies generated by
DBG-based ABySS, SOAP, Velvet and MaSuRCA were only
slightly better than the previously published PE-only assemblies

(Brown et al., 2012b), whereas greater improvements in summary
statistics were obtained by SPAdes and ALLPATHS-LG assem-

blers (Table 2). In this study, the ALLPATHS-LG algorithm
(Butler et al., 2008) outperformed the SPAdes assemblies in
terms of contig numbers and generated superior hybrid assem-

blies. The optimal performance of ALLPATH-LG can be

Table 1. Summary of sequence data coverage

NGS Technology Illumina

PE

Illumina

MP

Roche

454 SE

PacBio

Avg. Read Length (bp) 100 150 565 5456

BT03 240x* 24x 15x 18x

CF080 475x 41x 26x 20x

GM41 520x 46x 24x 32x

GM30 520x 36x 26x NA

Note: *x defines raw read coverage value.
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attributed to a specific type of library requirement where PE and

MP reads are designed to overlap each other and can be joined to
yield roughly twice the read length of individual reads

(Nagarajan and Pop, 2013). In recent years, the ALLPATHS-

LG algorithm has arguably won the Assemblathon (Earl et al.,

2011) and GAGE (Salzberg et al., 2012) competitions by using
this assembly approach.

3.4 Hybrid assembly of Illumina and Roche 454 data

Longer reads from 454 platform could be best assembled

through overlap-layout-consensus approach (Miller et al.,

2008). The assembly of native, shotgun 454 reads through

Newbler generated better summary statistics as compared with

PE data alone (Table 2). One 454-Illumina hybrid assembly ap-

proach involved merging the 454-only assembly with Illumina

reads by PHRAP (version 1.09) (de la Bastide and McCombie,

2007) or Minimus (version 3.0.1) (Sommer et al., 2007) to extend

contigs. In this study, PHRAP and Minimus merged assemblies

often generated aberrant results (e.g., 1–2Mb genome assemblies

for 5–6Mb Pseudomonas genomes) and contained a high number

of singleton (non-assembled) sequences. Additionally, hybrid as-

sembly is supported by the CLC, MaSuRCA and Celera (Miller

et al., 2008) assemblers. Hybrid assembly of Illumina and 454

reads was expected to exceed the 454 only assembly statistics

based on earlier studies (Brown et al., 2012a). However, CLC

did not substantially improve the assembly statistics. MaSuRCA

Table 2. Summary of de novo and hybrid assembly results

Strain Library type No. of

contigs

Maximum

contig size (kb)

N50

(kb)

Genome

size (Mb)

No. of

scaffolds

Max Scaffold

size (kb)

N50

(kb)

Genome

size (Mb)

Software

CF080 PE 1039 335 75 7.54 897 631 383 7.56 CLC

PE* 90 694 237 8.20 69 646 331 7.20 ABySS

454 71 1058 236 7.01 — — — — Newbler

Pacbio-454 102 799 187 7.06 — — — — PBcR

PE-454 57 1225 483 7.02 — — — — Newbler

PE-MP 163 1413 597 7.12 103 4100 4100 7.21 MaSuRCA

PE-MP* 40 1535 626 7.04 12 4813 4813 7.10 ALLPATHSLG

PE-MP-454 252 4095 4095 7.23 249 4095 4095 7.23 MaSuRCA

PE-MP-454* 32 1341 615 7.01 — — — — Newbler

PE-MP-454-Pacbio — — — — 6 4102 4102 7.04 AHA

PE-MP-Pacbio 25 2395 1779 7.04 23 2395 1844 7.04 SPAdes

PE-MP-Pacbio 16 1885 671 7.04 5 4797 4797 7.05 ALLPATHSLG

GM41 PE 164 308 75 6.61 89 599 137 6.64 CLC

PE* 101 436 165 6.64 96 679 183 6.64 SPAdes

454 112 236 89 6.61 — — — — Newbler

Pacbio-454 80 371 140 6.79 — — — — PBcR

PE-454 96 345 143 6.63 — — — — Newbler

PE-MP 157 621 279 6.70 117 2057 1560 6.71 MaSuRCA

PE-MP 86 436 183 6.71 80 681 183 6.72 SPAdes

PE-MP* 62 415 107 6.65 5 3919 3919 6.72 ALLPATHS-LG

PE-MP-454 66 345 159 6.62 — — — — Newbler

PE-MP-454-Pacbio — — — — 17 1007 666 6.67 AHA

PE-MP-Pacbio 73 653 292 6.68 68 1070 292 6.69 SPAdes

PE-MP-Pacbio* 13 2562 1393 6.68 4 2835 2408 6.68 ALLPATHSLG

GM30 PE 180 184 59 6.14 55 567 227 6.17 CLC

PE* 61 662 186 6.15 52 662 208 6.16 SPAdes

454 74 326 133 6.14 — — — — Newbler

PE-454 54 801 183 6.15 — — — — Newbler

PE-MP 50 661 240 6.20 45 661 333 6.20 SPAdes

PE-MP* 44 472 229 6.16 4 6208 6208 6.21 ALLPATHSLG

PE-MP-454 32 543 298 6.15 — — — — Newbler

BT03 PE 690 155 29 10.64 422 295 63 10.77 CLC

PE* 397 363 80 10.82 386 363 85 10.83 SPAdes

454 305 344 59 10.75 — — — — Newbler

Pacbio-454 235 565 99 11.40 — — — — PBcR

PE-454 315 344 70 10.82 — — — — Newbler

PE-MP 806 240 59 10.95 457 1997 1161 11.04 MaSuRCA

PE-MP 362 364 77 11.16 355 364 85 11.17 SPAdes

PE-MP* 135 562 177 10.91 22 2542 1282 11.11 ALLPATHSLG

Note: *Defines the optimal assembly statistics for particular combination of library types as assembled by more than one assembler. The best assembly is shown in bold.

The hybrid assembly statistics which were worse than the PE assemblies are not included in above table. The complete table of de novo and hybrid assemblies is available

through Supplementary Table S3.
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hybrid assemblies with PE-MP-454 combination generated im-

proved N50 values but contained high number of contigs as

compared with 454 only assemblies of four strains

(Supplementary Table S3).
The Newbler software supports fasta/fastq input along with

native 454 reads. However, when quality-trimmed Illumina reads

or draft assembly of Illumina reads were used as additional

input, Newbler failed to complete the assembly process. This

was likely because of the large size of Illumina data or long

fasta sequences, respectively. Therefore, draft assemblies were

cut into 1.5kb pseudo reads with 300bp overlap using fb_dice.pl

script from the FragBlast module (http://www.clarkfrancis.com/

codes/fb_dice.pl) and assembled together with native 454 reads

using Newbler (Fig. 1), as described previously (Brown et al.,

2012a), which alleviated failure issues and resulted in substantial

improvements in N50 statistics, and appropriate genome size

estimates were maintained (Table 2). The in silico approach to

generate 1.5 kb overlapping pseudo reads was influenced by the

quality of initial draft assembly. Shredding of PE-MP hybrid

assemblies (which had better summary statistics) achieved

better results as compared with shredding of PE only assemblies.

Therefore, it appears that even when using this shredding tech-

nique, generating the optimal draft genome assemblies from

Illumina data before the shredding is an important step towards

successful hybrid assembly. Any misassembly in the initial assem-

bly risks being propagated into the hybrid assembly.
To attain insight into the draft assembly generation, summary

statistics of previously published draft assemblies of 43 bacterial

isolates (Brown et al., 2012b) generated using four different as-

semblers are given (Supplementary Tables S4 and S5), and im-

portant parameters that influenced the assembly process are

described below. Poor-quality sequencing reads can adversely

affect the assembly process (Salzberg et al., 2012), and we

observed that quality-based trimming of raw data gave �15-

fold improvements in N50 statistics. The assembly of PE

Illumina reads by the ABySS and SPAdes assembler generated

highest N50 statistics when compared with results from the

Velvet, SOAP and CLC assemblers (Supplementary Tables

S3–S5). Different Kmer values were tested (Chikhi and

Medvedev, 2014) and optimal summary statistics were obtained

at higher Kmer values, up to 60, and beyond this value summary

statistics deteriorated (Supplementary Tables S4 and S5). The

increase in raw read coverage up to 300� generated concomitant

increases in N50 values, while beyond 300� coverage, the N50
statistics did not increase (Supplementary Fig. S1). Therefore, the

quality and sequence coverage of raw reads, Kmer value and
appropriate assembly algorithm selection are essential param-

eters for optimization of draft genome assemblies. We recom-

mend using the ABySS assembler with Illumina PE data and
ALLPATHS-LG or SPAdes assembler with Illumina PE-MP

data for optimal results. Although we used N50 statistics for
the initial short listing of assemblies, it should be noted that

large N50 values are not always indicative of assembly quality,

and additional validation should be performed using various
bioinformatics tools as described by (Koren et al., 2014) and

rDNA analysis approach described below.

3.5 Hybrid assembly of Illumina, 454 and PacBio data

Single molecule sequencing technology currently produces the

longest read lengths across all NGS platforms, and the perform-
ance of PacBio RS sequencing system has been compared with

other NGS platforms recently (Liu et al., 2012; Quail et al.,

2012). The longer reads generated with the PacBio system have
the potential to exceed the longest repeats in most bacterial gen-

omes and greatly improve the genome assemblies (Koren et al.,
2013). However, PacBio sequencing technology has a high error

rate, which has been reported as being 18% (Nagarajan and Pop,

2013). Different hybrid assembly protocols have been developed
to overcome the high error rates associated with the single

molecule sequencing technology and limitations of short-read

technologies (Bashir et al., 2012; English et al., 2012; Koren
et al., 2012; Ribeiro et al., 2012). Various hybrid assembly proto-

cols to improve earlier assemblies were pursued and results are
described below.

3.5.1 PacBio corrected Reads (PBcR) pipeline The higher error

rate associated with PacBio technology obscures the read align-
ments and complicates the assembly process. Most genome as-

semblers are unable to handle this high error rate, and hence

error correction becomes necessary to unlock the full potential
of longer reads for de novo assembly. The PBcR pipeline uses

higher fidelity Illumina and/or 454 reads to trim and correct the
individual long-read sequences and generates hybrid consensus

with499.99% base-call accuracy (Koren et al., 2012). We used

454 reads to correct errors in PacBio reads through the PBcR
pipeline, which were then assembled via the Celera assembler

(Miller et al., 2008). The PBcR hybrid assembly statistics were

similar to those generated with PE-MP and PE-454 combin-
ations (Table 2). The PBcR assemblies contained few collapsed

repeats as compared with other assemblies (Supplementary Table
S6), which is likely a product of longer, corrected reads. It should

be noted that like HGAP, the PBcR pipeline is also capable of

performing self-correction and non-hybrid assembly of PacBio
reads when sufficient (�100�) coverage is available. However,

because of the PacBio coverage limitation we could not perform
the self-correction approach.

3.5.2 The AHA scaffolding method The AHA scaffolding ap-
proach (Bashir et al., 2012) is available through the SMRT ana-
lysis package (version 2.0, Pacific Biosciences), and it uses any

previous assembly to which longer PacBio reads are aligned

using the BLASR algorithm (Chaisson and Tesler, 2012) to

Fig. 1. Overview of 454 and Illumina hybrid assembly. Representation of

shredding approach to generate 454 and Illumina hybrid assembly
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create higher, ordered scaffolds. We used the best contig assem-
bly generated through PE-MP-454 combination and error cor-
rected PacBio reads as an input to AHA protocol. The resulting

scaffolds were ranked second best after the ALLPATHS-LG
(Table 2).

3.5.3 ALLPATHS-LG The ALLPATHS-LG recipe uses a

mixture of three data types, where Illumina PE and MP reads
are assembled first using DBG approach, and then PacBio reads
are incorporated to patch coverage gaps and resolve repeats

(Maccallum et al., 2009). The ALLPATHS-LG method requires
all inputs in raw format and uses its own error correction pipe-

line. ALLPATHS-LG assemblies with PE-MP combination were
found to be superior to the numerous other protocols compared
here and consistent with earlier studies (Earl et al., 2011; Salzberg

et al., 2012). Incorporation of PacBio reads with this method
further improved the assembly results up to ‘noncontiguous fin-

ished’ quality (Table 2). However, incorporation of PacBio reads
was memory intensive, the software crashed multiple times on a
high memory (132 GB) server, and it was unable to assemble the

BT03 genome. This behaviour may be attributed to some com-
bination of computational memory limitation; higher genome

BT03 size (�11Mb); and its content (the genome contained nu-
merous phage and transposon sequences). Our datasets con-
tained one MP library with �6kb insert sizes and achieved

near-finished genome assemblies. Ribeiro et al. used multiple
MP libraries with insert sizes ranging from 2–6kb and were

able to generate finished or near-finished assemblies for different
bacterial genomes (Ribeiro et al., 2012). Hence, inclusion of mul-
tiple MP libraries of varying length could be a possible path to

further improve the assemblies in the future.

3.5.4 SPAdes Recent GAGE-B comparisons identified SPAdes
as one of the best algorithms for bacterial genome assemblies using
Illumina data. Consistent with previous findings, SPAdes per-

formed well to assemble our four genomes using Illumina PE-MP
data. Recently SPAdes added support for the PacBio data, which

allowedadirect comparisonof its performancewithALLPATHS-
LG for PE-MP-PacBio combinations. The overall summary stat-
istics generated by both assemblers were similar butALLPATHS-

LG assemblies always contained lower contig numbers than
SPAdes. Notably, SPAdes seamlessly assembled the PE-MP-

PacBio combination for strain BT03 for which ALLPATHS-LG
encountered crashing issues associated with memory limitation.

3.5.5 Gap-filling by PBJelly algorithm The PBJelly method
(English et al., 2012) aligns PacBio/454 reads to the scaffold as-

sembly to extend the contigs and resolve the gaps. The PBJelly
algorithm was applied to the best scaffolded assemblies generated

by ALLPATHS-LG together with the PacBio reads. PBJelly was
able to fill up (64, 99 and 93%) gaps in BT03, CF080 and GM41
genomes, respectively (Table 3). Many microbial genomics ana-

lyses depend on the finished genomes and single unbroken contig
is important for a wide range of disciplines (Koren et al., 2013).

Scaffolded assemblies are helpful in the genome finishing process
and are used to determine contig order and contig overlap
(Nagarajan et al., 2010; Swain et al., 2012). Long range PacBio

reads offer an attractive opportunity to reduce the number of
gaps and resolve unidentified base-pairs (N’s) in the scaffolds,

which reduces the overall cost of manual finishing.

3.6 Assembly quality assessments and comparisons

Although the assembly metrics such as N50 and contig numbers

are widely used for the assembly evaluation, they may not always

correlate well with the actual quality of the assembly (Nagarajan

and Pop, 2013) and several other bioinformatics approaches and

metrics have been developed to assess assembly quality

(Gurevich et al., 2013; Hunt et al., 2013; Koren et al., 2014;

Rahman and Pachter, 2013). The CGAL is one recent approach

that incorporates genome coverage and assembly accuracy into

the evaluation without need of reference sequence and combines

them into a single metric score (Rahman and Pachter, 2013). The

CGAL software ranked the SPAdes assemblies as highest, while

ALLPATHS-LG and MaSuRCA assemblies have scores close to

the SPAdes assemblies (Supplementary Table S7). The REAPR

genome assembly evaluation tool generates a positional error call

metric, assesses potential collapsed repeats and single base-by-

base scores (Hunt et al., 2013). The REAPR evaluation gener-

ated the least number of error calls for the ALLPATHS-LG

assemblies generated with Illumina only (PE-MP) data

(Supplementary Table S6). CGAL and REAPR both assigned

high rankings to ALLPATHS-LG assemblies likely reflecting

their higher accuracy and depth of coverage.

On the other hand, hybrid assemblies using 454/PacBio reads

that had better summary statistics were assigned with lower

CGAL scores and a large number of error calls by REAPR

(Supplementary Tables S6 and S7). These inconsistent scores

by CGAL/REAPR are possibly because of the design limitation

of these in silico evaluation tools, which cannot currently use

454/PacBio reads during the evaluation. The 454/PacBio reads

may have included data for repetitive regions that are not

spanned by the Illumina reads and reported as errors based on

evaluation by Illumina reads. To improve the consensus accuracy

of PacBio assemblies, we performed assembly polishing using the

Quiver tool (Chin et al., 2013). However, low coverage of PacBio

reads may not have achieved the required base-call quality and

contributing toward low scores by in silico evaluation tools.

REAPR detected fewer collapsed repeats in the assemblies

using PacBio reads (Supplementary Table S6), and this suggests

that the longer PacBio reads better resolved repetitive regions.
Reciprocal blastp analyses were conducted using proteins pre-

dicted from the draft and the best hybrid assemblies to gain

insights into potential protein encoding differences (Table 4).

The majority (87–98%) of proteins were unchanged by assembly

improvements supporting the notion that for some studies draft

quality genome sequences may be sufficient. However, a

Table 3. Summary of PBJelly gap-filling results

Description BT03 CF080 GM41

aInput assembly

statistics

Number of Gaps 96 7 5

Total Gap Length (bp) 195,912 2,880 3,475
bPBJelly assembly

statistics

Number of Gaps 26 2 3

Total Gap Length (bp) 70,100 30 232

Note: aGap statistics for the best scaffold assembly.
bGap statistics after application of PBJelly algorithm.
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substantial number of proteins were longer after assembly im-

provement, and a number of new proteins were predicted in most

cases. The majority of newly predicted proteins were for hypo-

thetical proteins, and others included genes with predicted regu-

latory functions or metabolic genes such as for a putative nitric

oxide dioxygenase. The number of potential missing genes will be

genome and assembly-specific, and this is difficult to assess in the

absence of available finished reference genomes (Fraser et al.,

2002).

3.7 Assembly validation

The CGAL and REAPR evaluation methods were only able to

rank the assemblies based on number of errors, and verification

of the error calls would require finished reference genome se-

quences, which were beyond the scope of the present study.

Therefore an additional level of verification was necessary to

better assess assembly accuracy. As genome assemblers are

often confounded by large repetitive regions (e.g. 5–7kb rDNA

operons), (Treangen and Salzberg, 2012) accurate prediction of

rDNA operon was selected as an additional criterion to assess

the assembly accuracy and to gain insight into potential system-

atic issues.
Several copies of 5S, 16S, and 23S rDNA elements were pre-

dicted for strains CF080, GM41, GM30 and BT03, and in this

study, the complete rDNA operon is defined as an arrangement

of 5S, 16S, and 23S rDNA elements in single operon structure on

a single contig. rDNA genes were predicted by the RNAmmer

program (Lagesen et al., 2007) and predictions were tested using

a PCR-based approach. Briefly, oligonuclelotides were designed

to bind to DNA regions that were 50 and 30 to the predicted

rDNA operons and give amplified products of a predicted size.

Additional internal oligonucleotides were designed to amplify

and sequence end regions. Correct assembly of the rDNA

operon was expected to generate a PCR product in the desired

size range, while an incorrectly assembled rDNA operon would

fail to amplify or give unexpected sequence lengths. Measured

and expected product sizes for positive PCR reactions for each

rDNA operon in each strain are shown (Supplementary Table

S1), along with the length of DNA sequence that was verified by

Sanger sequencing (Supplementary Table S2). These presumptive

positive results support this experimental approach, although the

entire PCR product could be sequenced by primer-walking for

increased assembly confidence.

3.7.1 rDNA operons in Rhizobium sp. strain CF080 Summary
statistics and bioinformatics assessment suggested the

ALLPATHS-LG assembly was optimal for strain CF080

(Table 2, Supplementary Tables S4, S6 and S7) and three

rDNA operons, and their flanking chromosomal regions were

predicted on three separate contigs (Fig. 2). The SPAdes assem-

bly with PE-MP-PacBio combination have also predicted three

rDNA operons and similar arrangement as in ALLPATHS-LG

assemblies. Three copies of rDNA operons have been detected

within six finished Rhizobium genomes sequences. The �7 Mb

ALLPATHS-LG genome assembly supported predictions for

three rDNA operons that were validated by PCR and Sanger

sequencing. ABySS generated an assembly that was �8 Mb in

size and it supported predictions for six rDNA operon copies

(Fig. 2). However, the ABySS assembly was unable to resolve

regions of DNA that were 50 and 30 of different rDNA operons

leading to their duplication within the assembly (Fig. 2). The

rDNA operon duplication in the ABySS assembly accounts for

a portion but not all of the higher genome size reported. Previous

studies that used the ABySS assembly method have also noted

that ABySS assembler predicted larger genome sizes as compared

with other methods (Haridas et al., 2011; Salzberg et al., 2012)

but did not identify the specific reasons for these higher genome

sizes. The Velvet and CLC algorithms were able to assemble only

one complete rDNA operon in strain CF080 and unable to pre-

dict flanking chromosomal regions; this is likely a contributing

factor to these assemblies being more fragmented (Table 2).

Hence, the ALLPATHS-LG assembly having the best summary

statistics and accurate prediction of three copies of rDNA op-

erons was selected as the best assembly for strain CF080. An

analysis of rDNA operons in Pseudomonas sp. strains GM41

and GM30, and in Burkholderia sp. strain BT03 are presented

(Supplemental Fig. S2).

3.8 Comparison of assembly approaches

In this study, we examined a variety of de novo genome assembly

methodologies for four novel bacterial isolates that do not have

existing reference sequences. There are a large number of differ-

ent assemblers and different parameters that one can use for de

novo studies. Numerous recent studies report continued assembly

developments and comparisons, which reflects the importance of

generating a high-quality, representative genome sequence

(Bradnam et al., 2013; Powers et al., 2013). It has been shown

that a number of assemblers perform well when a single metric is

considered but few perform consistently across a set of quality

metrics. In this study, in addition to a range of in silico methods,

we experimentally examined rDNA operons predictions from

different assemblies, which provided an additional criterion for

assembly quality assessment.

4 CONCLUSIONS

The ABySS and SPAdes software generated the best assembly

statistics when only PE Illumina reads were used. ABySS assem-

bler performed well consistently for all four genomes and also

Table 4. Comparison of Open Reading Frames (ORFs) predicted in draft

and improved genome assemblies

Strains CF080 BT03 GM30 GM41

aTotal ORFs 6684 10 056 5511 5975
bNo. of unchanged ORFs 5819 9385 5424 5881

No. of longer ORFs 786 413 77 71

No. of shorter ORFs 64 205 10 15

No. of new ORFs 15 53 0 8

Note: aTotal number of open reading frames predicted in improved genome assem-

bly by Prodigal gene calling algorithm.
bNumber of open reading frames in improved genome assemblies as compared with

draft assemblies.
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correctly identified multiple copies of rDNA operons (Fig. 2,

Supplementary Fig. S2). As expected, additional sequencing

data from each NGS platform improved the assembly statistics

(Table 2). Hybrid assemblies with PE-MP data combinations

were superior as compared with PE-454 combinations.

However, the superiority of the PE-MP combination can likely

be attributed to the excellent performance of the ALLPATHS-

LG and SPAdes algorithms. Inclusion of PacBio data resulted in

substantial improvements in assembly statistics but success was

dependent on the selection of assembly approach. The PBcR

assembly statistics were comparable with that of the PE-454

combination. The AHA and PBJelly methods facilitated scaf-

folding and gap-filling, respectively and would be helpful

during genome finishing. Among the 11 de novo and hybrid as-

sembly protocols tested here, the ALLPATHS-LG assembler

with the combination of PE-MP-PacBio data generated the

best results and also provided the most accurate rDNA operons

predictions, except in the case of the BT03 genome, where com-

putational resource limitations prevented evaluation. These re-

sults underscore the importance of comparing multiple

appropriate algorithms and key parameters for genome assem-

bly. Our results were consistent with earlier studies that demon-

strated the advantage of including longer PacBio reads (Roberts

et al., 2013; Shin et al., 2013) and our hybrid assembly results

with PacBio data demonstrate the power of these longer reads to

better resolve repetitive sequence regions. The evaluation frame-

work described here should prove useful for others looking to

improve existing draft genome sequences.

Our results showed that by using complementary libraries,

sequencing technologies and appropriate hybrid assembly proto-

cols, dramatic improvements in assembly quality for bacterial

genomes could be obtained. The rDNA operon analysis through

PCR and Sanger sequencing provided additional confidence for

the assembly accuracy. The genomes for strains GM41 and

GM30 were previously defined as ‘high-quality draft’ (Brown

et al., 2012b) using described criteria (Chain et al., 2009), while

previous assemblies for CF080 and BT03 consisted of 1039 and

690 contigs, respectively. The improved CF080 and BT03 gen-

omes are now represented by 16 and 135 contigs, respectively.

CF080 and GM41 assemblies can now be termed as

‘noncontiguous finished’, where automated improvements have

been performed and most of the gaps have been resolved (5 and 4

scaffolds, respectively). The GM30 and BT03 can be termed as

‘improved high-quality draft’.
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