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Abstract

HIV therapy and identify the associated covariate factors.

secretion rate following treatment.

Purpose: Plasma albumin, a biomarker for hepatic function, is reported to correspondingly decrease in
concentration as disease severity increases in chronic infections including HIV and TB. Our objective was to develop
a semi-mechanistic disease progression model to quantify plasma albumin concentration changes during TB and

Methods: Plasma albumin concentration data was collected at specified times for 3 months from 262 HIV
participants receiving efavirenz based anti retroviral therapy. Of these, 158 were TB co-infected and on Rifampicin
based anti —tuberculosis co-treatment. An indirect response model with zero order albumin production and first
order elimination was developed in NONMEM version 7.2 to describe our data. Genotype (CYP2B6*6 and 11,
CYP3A5, ABCB1¢.3435C>T and ABCBIrs), TB disease status, baseline age, body weight, plasma creatinine, alanine
transaminase enzyme and CD4" count were the potential model covariates tested.

Results: The proposed model successfully described plasma albumin concentration changes in the study
population. There was a 10.9% and 48.6% increase in albumin production rates in HIV only and TB co-infected
participants respectively. Participants co-infected with TB showed a 44.2% lower baseline albumin secretion rate
than those without TB while ABCB1c.3435C>T mutation was associated with a 16% higher steady state albumin

Conclusion: A semi-mechanistic model describes plasma albumin concentration changes in HIV patients on ART.
Further work is required to establish the utility of the model in monitoring disease progression and predicting
prognosis in HIV and TB co-infected patients in absence of or during treatment.

Keywords: NONMEM,; Disease progression modeling; Semi-mechanistic model; Mathematical model; Albumin;
Tuberculosis; HIV; Anti Retroviral therapy; Efavirenz; Rifampicin

Background

In humans, albumin is the most abundant plasma pro-
tein (55-60% of plasma protein) having a normal plasma
concentration of 3.5-5 g/dl (Bircher et al. 1991). It is ex-
clusively synthesized in the liver. In normal adults, albu-
min is synthesized and released at a zero-order rate of
157-230 mg per kilogram body weight per day into an
exchangeable pool of 3.5-5 grams per kilogram body
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weight. Approximately 38—45% of albumin is intravascu-
lar (Nicholson et al. 2000). Albumin has a half life of
15-20 days (Nicholson et al. 2000, Beeken et al. 1962)
and elimination mainly occurs in the muscles, skin and
kidney (60-80%) and the liver and intestinal tract (10%
each) (Tavill 1972).

Among other functions, albumin binds ligands and
transports endogenous and exogenous substances, in-
cluding several drugs in blood (Tavill 1972). Increase in
plasma albumin is associated with significant reduction
in intracellular penetration and effectiveness of highly
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bound antiretroviral drugs like efavirenz (Avery et al.
2013, Boffito et al. 2003).

Reduced plasma albumin concentrations have been re-
ported in states of chronic infection such as TB, HIV,
Hep B and C (Olawumi and Olatunji 2006, Akinpelu
et al. 2012, Zia and Shankar 2012) and as a result, there
are suggestions for its use as a prognostic marker in pre-
treated HIV and TB patients (Feldman et al. 2003, Graham
et al. 2007, Sudfeld et al. 2013, Alvarez-Uria et al. 2013).
Increased catabolism of albumin due to inflammation,
worsening of nutritional status as well as a direct degen-
erative effect on the liver are reported as the probable
causes of reduction of plasma albumin in states of chronic
infection (Bircher et al. 1991, Kaysen et al. 2002). Owing
to simplicity in terms quantification and low cost of
plasma albumin determination, it could substitute CD4+
and viral load tests (Graham et al. 2007, Kannangai
et al. 2008) as a prognostic marker during care for HIV
and co morbidities such as TB.

A number of modeling techniques have shown robust-
ness and have been applied in prediction of drug con-
centrations, pharmacodynamic outcomes and disease
progression using biomarkers. We developed and vali-
dated a semi-mechanistic non-linear mixed effects model
describing changes in plasma albumin concentration in
HIV and TB patients. The model was used to study
changes in albumin production by the liver and the as-
sociated covariate factors.

Methods

Data description

The current clinical study was nested in a PhD project
(Mukonzo 2011) and utilized secondary data. The data
consisted of 262 ART naive HIV patients, 158 of whom
were co-infected with tuberculosis. The patients were
started on combination ART comprised of Efavirenz,
lamivudine and zidovudine. Those with TB co-infection
had been started on anti-TB treatment (2 months
ethambutol/isoniazid/rifampicin/pyrizinamide, followed
by 4 months of isoniazid and rifampicin) at least 2
weeks prior to starting ART. Blood samples were col-
lected on days 1, 3, 7, 14, 21, 42, 56, and 84 after ART
initiation and serum albumin concentrations measured
using Abbott Aeroset Bromocresol Green (BCG) (Abbot,
Maidenhead, Berkshire, UK) method. In addition, baseline
body weight, age, CYP3A5, CYP2B6*6, CYP2B6*11,
ABCB1c¢.3435C>T and ABCB1 c.4046A>G genotype
were determined. The study procedure was approved by
The Uganda National Council for Science and Technology.
Informed consent was obtained from the participants and
the study was carried out according to the provisions of
the Declaration of Helsinki. Details on study participants
and data collection were previously reported (Mukonzo
2011). Waiver of consent was obtained from Institutional
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review board of the School of Biomedical Sciences,
Makerere University College of Health Sciences to use
the data. Also, the data were analyzed anonymously.

Model development

The model consists of the hepatocyte compartment (N)
which secretes albumin at a zero order rate (Q) (g/dl/hr)
into the central plasma compartment (X) from which
elimination occurs by first order process with an elimin-
ation rate constant K (1/hr). Figure 1. The production
compartment assumes a constant average albumin pro-
duction rate (q) per hepatocyte such that a change in
hepatocyte population results in proportional changes in
the albumin production and secretion rate. Thus, if N,
is the hepatocyte population at a time ¢ (hr), the albumin
production rate at that time is given by:

Qu =N (1)
The hepatocyte population is assumed to change ac-

cording to the Verhulst’s self limiting logistic equation
(Murray 2002).

dN N
SN[ 1- 2
" < Nss> @)
At t:0, N= No.
As t—oo, N=Nj

N is the size of the stable steady state population as de-
termined by the overall health and nutritional status fol-
lowing initiation of anti-TB treatment and HAART. N
may be bigger or smaller than N, The rate at which N
is reached is measured by r (1/hr). ART and anti-TB
treatment alter the natural progression of HIV and TB
diseases respectively thus modifying the degenerative
process of the liver. ART and anti TB treatment have a
protective disease dependent effect on the liver. If fz,, is
the function describing the combined efficacy of treat-
ment, f;.,, reflects exposure in terms of plasma drug
concentrations or doses. It causes a disease dependent
modification of the degenerative effect. According to
Post (Post 2009), the rate of change of Q during treat-
ment is given by:

aQ Q
E - F'Q(I—st) fdmg (3)

Due to absence of pharmacokinetic data in these pa-
tients, the rate of change of hepatocyte population (r)
and drug effect (fy,,,) were combined into one param-
eter R =1 fy,

Therefore changes in albumin secretion rate are de-
scribed by the equation;
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t, is the albumin secretion rate per hepatocyte.

Figure 1 Structure of the disease progression model describing plasma albumin concentration changes in TB-HIV patients. r is the rate
of change of hepatocyte population, N (N,) is the Hepatocyte population at time t, X is the plasma albumin concentration at time t, k is the
albumin elimination rate constant, f4,,q is the effect of ART on the change in hepatocyte population, Q; is the total albumin secretion rate at time

kX

aQ _ Q
i RQ(I—Q—SS> (4)

Thus, if Qy is the albumin secretion rate at the start of
treatment and Q; is the steady state albumin secretion
rate following treatment with a specified regimen, albu-
min secretion rate at any time ¢ during treatment with
the same regimen is given by:

st QO eRt

Q0 = [0 T Qy(eF-1)]

—Qy ast— (5)

Due to sparseness of the data (on average 3 observa-
tions per individual), the kinetics of albumin were mod-
eled using a simplified one compartment with first order
elimination model to minimize the number of parame-
ters to be estimated. The change in elimination rate was
assumed to be negligible and therefore not modeled.

ax
E = Q(t)_kX (6)

If X, is the plasma albumin concentration at the start of
treatment, solving Equation 6 and substituting for Q),
the plasma albumin concentration at time £ is given by:

QO steRt (l_eikt)
k[st + QO(eRt_l)]
At the start of treatment, X is given by X, = Qq/k

hence, the important parameters to be estimated are Q,
Qs R and k.

Xy = Xoe_kt +

(7)

Data analysis

The model was fitted to the data and parameters esti-
mated in a nonlinear mixed effects (“population”) analysis
using NONMEM software version 7.2 (Beal and Sheiner
1980, Boeckmann et al. 1994). The albumin elimination
rate constant K was fixed to the literature value of 0.0336/
day corresponding to a half life of 20.6 days. The popula-
tion model parameter estimates were the fixed effects.
Inter-individual variability in the parameters was modeled
as log-normal distribution. The residual error was mod-
eled as proportional but additive and additive plus pro-
portional error models were also tested. The First Order
Conditional Estimation (FOCE) method was used for
the estimation.

Covariate analysis

Stepwise covariate analysis was performed using an au-
tomated method implemented in PSN software (Lindbom
et al. 2004). The effects of baseline body weight, TB
disease status, CYP3A5, CYP2B6*6, CYP2B6*11, ABC
B1c.3435C>T and ABCB1c.4046A>G genotypes on pa-
rameters Qp, Qss and R were analyzed. CD4 count and
viral load were analyzed as a time varying covariate on
parameters Qgs and R. Each covariate-parameter rela-
tionship was first tested in a univariate manner. Covari-
ates with one degree of freedom were included in the
forward selection (a =0.05) if they reduced the OFV by
at least 3.84, corresponding to a p-value of <0.05, for a
x* distribution. The full covariate model was reached
when the addition of further covariate-parameter rela-
tionships did not decrease the OFV to the specified
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criteria. The covariate-parameter relationships were re-
examined in the backward deletion step in a manner simi-
lar to the forward inclusion step but reversed and with
stricter criteria, corresponding to a significance level of
a = 0.01 (AOFV=6.63 for one less parameter). In addition,
the improvement of the fit in the covariate model was
also evaluated from the change in the inter-individual
variability, residual variability and basic goodness-of-fit
plots (weighted residuals versus predicted concentra-
tions and time, Population predictions versus observed
concentrations and time). The final model was used to
estimate the parameters.

Model evaluation

The dataset was randomly split into two. The larger
dataset of 174 individuals (approximately two thirds of
the whole dataset) was used for model building and
bootstrap validation. A non-parametric bootstrap analysis
was performed as an internal model evaluation technique.
One thousand bootstrap data sets were created from the
model development data set and the developed model was
fit to each bootstrap data set. The percentage of runs that
minimized successfully and estimated the covariance
matrix, together with summary statistics (n, mean, me-
dian, and standard deviation, minimum, maximum) for
the distribution of each model parameter were obtained to
determine bias in any parameter. The final model par-
ameter estimates were compared to the median and the
percentile 95% confidence intervals (CI) of the non-
parametric bootstrap replicates of the final model.

A visual predictive check (VPC) was performed using
the final covariate model to evaluate correspondence be-
tween prediction corrected measurements and the model.
The distribution (median, 5™ and 95™ percentiles) of the
observed albumin concentrations was calculated. The final
covariate model and its parameter estimates were used to
simulate 1000 new datasets and used to calculate 95%
Confidence Intervals for the above mentioned median and
percentiles. The median and the percentiles of the mea-
sured data were plotted together with the confidence in-
tervals from the model. The VPC was stratified on TB
disease status and ABCB1¢.3435C>T genotype.

The final model was applied to the validation data set
by fixing the final parameter estimates of the model
obtained above as the initial parameter values for the
validation model and setting MAXEVAL=0 in the $ES-
TIMATION step, so as to generate predicted concentra-
tions at each time point using the validation dataset of
88 individuals.

The root mean prediction error (imprecision) and the
mean percentage prediction error (bias) were obtained
according to the method proposed by Sheiner and Beal
(1981).
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Results

Out of the 262 participants 99 had only baseline (t=0)
data. The average number of observations per individual
participants was three (3). The demographic characteris-
tics of the study population are summarized in Table 1.

The random effects on parameters Qg and R had high
shrinkage (>40%) and had a very low variability of less
than 107 and were therefore dropped from the model.

The final model described the dataset well as shown
by plots of observation versus predictions (Figure 2a,
2b). The plot of individual weighted residuals versus in-
dividual prediction (Figure 2c) and the plot of weighted
residuals versus time (Figure 2d) show a horizontal scat-
ter indicating that the residual error distribution is ad-
equately handled (Karlsson and Savic 2007).

The parameter estimates of the base model are pre-
sented in Table 2. There is a 33% increase in albumin se-
cretion rate among these patients when ART is initiated.
Additional file 1: Table S1 shows base model parameters
estimated separately for TB co-infected and HIV only
patients. Following treatment, albumin secretion rate
was predicted to increase to Qg which is 9% lower in
TB-HIV patients than in those with HIV only indicating
improvement in hepatocyte function in both groups.
The estimated rate of increase in hepatocyte function(R)
is 25% higher in TB co-infected patients as compared to
those with HIV only. However, these differences between
the two groups were not statistically significant. Covariate
analysis was performed using an automated procedure
with Perl speaks NONMEM (PsN) software. The final
model retained TB disease status and ABCB1¢.3435C>T
genotype as a significant covariates on Q,. TB patients
have a 44.2% less Q than those without TB while patients
with one or more mutations in the ABCB1c¢.3435C>T
gene have a 16% higher Qo than those with homozygous
wild type (ABCB1 3435CC). The final model improved
the fit relative to the base model (AOFV = 101.57, d.f. = 2,
p < 0.01). The final model parameter estimates are shown
in Table 3.

Stability of the model was determined by use of non-
parametric bootstrap technique using PsN. Of the 1000
bootstrap replicates, 950 minimized successfully were
used to generate medians of parameters and percentile
95% confidence interval. As shown in Table 3, the mean
parameter estimates obtained by fitting the final model
to the data were similar to the median of the 950 boot-
strap replicates and were contained within the 95% confi-
dence interval, suggesting a high accuracy of NONMEM
parameter estimates. The NONMEM parameter estimates
also had moderate precision with relative standard errors
of less than 50% for mean parameters and the random
effects.

The validation dataset had 88 individuals and 269 ob-
servations. The mean prediction error was 0.012 with a
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Table 1 Demographic characteristics of the study populations

HIV patients receiving HAART (n=262)

ALL HIV + TB (n=158) HIV only (n=104)
Female (% age) 529 495 (n=74) 61.5 (n =64)
Weight/kg 51 (47 - 58) 50.0 (45.0 - 53.0) 55.0 (50.0 - 60.0)
Age/years 33 (29 - 39) 31 (28 - 37) 37 (31 - 42)
CD4 cell count/ml 97 (40 - 179) 57 (21 -137) 147 (89 — 207)
CD4 cells/ml at 12 weeks 216 (112 - 291) 194 (93 - 277) 247 (167 - 319)

ALT/UI™
ALB/gdI™!

180 (12 - 28.5)
3.02 (2.35 - 3.85)

239 (136 - 326)
257 (213 - 2.97)

140 (11 - 21)
391 (3.38 - 431)

ABCB1 3435CC 205 119 86
ABCB1 3435CT 56 38 18
ABCB1 3435TT 1 1 0

CYP2B6*6 (*1/*1) 116 81 35
CYP2B6%*6 (*1/%6) 19 64 55
CYP2B6*6 (*6/*6) 27 13 14
CYP3AS5 (*0/*0) 59 33 26
CYP3AS5 (*0/*1) 130 86 44
CYP3AS5 (*1/*1) 73 39 34

The genetics data is presented as number of participants with a given genotype. The other characteristics are presented as baseline median values with the

inter-quartile range in brackets.

95% confidence interval of —0.063 to 0.087. The percentage
root mean squared error which is a measure of how far the
prediction error is from zero was 20.61%. Figure 3 is the
visual predictive check of the final model. It shows a resem-
blance in trend and correspondence between observed and
simulated data. The correspondence is stronger in patients
with TB and HIV than in those with only HIV.

Discussion

Plasma albumin concentration is a function of its rate of
synthesis, distribution and degradation. Hypoalbuminemia
is a more common occurrence than hyperalbuminemia.
Rapid changes in plasma albumin (occurring within
hours) are most likely due to changes in elimination rate
(fractional catabolic rate) or distribution of albumin as a
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Figure 2 Basic goodness of fit plots from the final covariate model. Measured albumin concentrations are plotted against the population-
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broken lines, smooth locally weighted least-squares regression. Absolute individual weighted residuals are plotted against the individually fitted
albumin concentration (c) and the conditional weighted residuals are plotted against time (d). Broken lines, a locally weighted least-squares
regression; solid lines, lines of identity.




Bisaso et al. In Silico Pharmacology 2014, 2:3
http://www.in-silico-pharmacology.com/2/1/3

Page 6 of 8

Table 2 Population disease progression parameter estimates for albumin dynamics in TB-HIV patients (base model)

Parameter HIV only Description
Mean RSE (%)
Qy (g/dl/day) 0.1008 3 Baseline albumin secretion rate
Qs (g/di/day) 0.1344 10 Steady state albumin secretion rate
R (1/day) 0.0096 34 Rate of change from Qg to Qs
K (1/day) 0.0336 FIX Elimination rate constant for albumin
IIV_Qp (9CV) 25.1 8 Inter-individual variability in baseline albumin secretion rate
Residual error (proportional) (%CV) 184 5 Variability in the residual error

result of either increased plasma water content or net
movement into the interstitial space. However, because
of its long half life, a sustained fall in albumin suggests
clinically significant deterioration in its rate of synthesis
by the liver (Kaysen et al. 2002, Bircher et al. 1991). The
present study utilized albumin concentration data col-
lected over three months, therefore the model predic-
tions are representative of chronic changes in albumin
concentration.

The present model adequately describes the observed
changes in albumin concentration and predicts popula-
tion observation with minimum bias and error. The
mean baseline albumin concentrations calculated from
the estimated model parameters are similar to those ob-
served. The baseline albumin secretion rate was signifi-
cantly lower in patients co-infected with TB and HIV
than in those with HIV only.

Individuals with ABCB1¢.3435CC genotype had a 16%
lower value of Q, than those with ABCB1c¢.3435CT and
ABCB1c.3435TT implying that presence of a mutation is
associated with higher albumin secretion rates before
treatment with ART. It is not immediately clear why this
is the case since this single nucleotide polymorphism
(SNP) has also been associated with predisposition to

Table 3 Parameter estimates of full covariate model

ART and rifampicin based anti-TB Drug Induced Liver
Injury (DILI) through a possible low transport activity
(Yimer et al. 2011, Thiebaut et al. 1987).

Notably however is that when modeled as time varying
covariates, neither CD4 count nor viral load had signifi-
cant effects (p<0.05) on the model quantitative measures
of disease progression and prognosis (R or Q). This is
possibly explained by the fact that albumin concentra-
tions improve secondary to overall health improvement
upon initiation of HAART and anti-TB treatment. This
therefore implies that although albumin may be a cheap
and suitable prognostic marker for monitoring HIV dis-
ease, co-morbidities and ART, there is need for valid-
ation studies.

Disease progression modeling, a technique that was
employed by the current study remains one of the most
robust ways for prediction of associations and multiple
covariate analysis. The model developed in this study is
robust and has stable parameter estimates, satisfactorily
describes the data and has a high predictive capacity.
Nevertheless the model has limitation including the esti-
mation of albumin kinetics using a simple one compart-
ment model rather than the known two compartment
kinetics as well as inability to model and estimate the

Parameter Original dataset Bootstrap datasets

Mean *RSE (%) Median 95% Cl lower limit 95% Cl upper limit
Qo (g/dl/day) 0.0864 2 0.0864 0.084 0.0912
Qg (HIV only) 0.1248 14 0.1248 0.108 0.1296
Qo (ABCB1 mutation) 0.1008 34 0.1008 0.0864 0.1056
Qg (g/dl/day) 0.1464 16 0.1440 01176 0.3288
R (1/day) 0.0072 45 0.0072 0.001927 0.0144
K (1/day) 0.0336 FIX 0.0336 NA NA
Random effects parameters for both HIV only and TB-HIV
IV_Qq (%CV) 15.0 14 14.6 1.1 193
Residual error (proportional) (%CV) 18.2 5 181 16.8 19.8

*(NONMEM covariance step output).
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variability. This was because of very sparse data which
could not allow estimation of several parameters. We
were also unable to model the change in albumin elim-
ination rate partly because of the sparse data but also
because our objective was to study the albumin produc-
tion dynamics. Other limitations included the assumed
negligible maturation time of new hepatocytes, as well
as lag time between synthesis and secretion of albumin
by hepatocytes as compared to the study period of three
months.

Notwithstanding the limitations highlighted here, this
model had high precision and low bias in prediction
thus it can be used to predict plasma albumin concen-
tration in individual patients. It is useful in predicting
prognosis (Mehta et al. 2006) and could be useful in de-
scribing pharmacokinetics of albumin bound drugs in
these patients. In addition, our model provides a basis
for extended models describing treatment effects,

comparing different treatment regimens as well as ac-
counting for direct drug toxicity on the liver.

Conclusion

In conclusion, the proposed one compartment semi-
mechanistic model described changes in plasma albumin
concentration following initiation of HAART in HIV pa-
tients with or without TB. Changes in albumin synthesis
and secretion could influence changes in plasma albumin
concentrations in patients on HAART. ABCB1¢.3435C>T
genotype and TB disease status are significantly associated
with albumin secretion rates before initiation of ART in
patients receiving HIV and TB co-treatment. The model
could be useful in studying the variation in pharmacoki-
netic profiles of drugs that are highly protein bound in
these patients during different stages of treatment with
HAART. More work needs to be done establish the utility
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of this model in monitoring disease progression and pre-
dicting prognosis in HIV and TB patients.

Additional file

Additional file 1: Table S1. Population disease progression parameter
estimates for albumin dynamics in HIV and TB-HIV patients (base model).
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