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ABSTRACT
Background Regional lymph node status has long
been used as a dichotomous predictor of clinical
outcomes in cancer patients. More recently, interest has
turned to the prognostic utility of lymph node ratio
(LNR), quantified as the proportion of positive nodes
examined. However, statistical tools for the joint
modeling of LNR and its effect on cancer survival are
lacking.
Methods Data were obtained from the NCI SEER
cancer registry on 6400 patients diagnosed with
pancreatic ductal adenocarcinoma from 2004 to 2010
and who underwent radical oncologic resection. A novel
Bayesian statistical approach was developed and applied
to model simultaneously patients’ true, but
unobservable, LNR statuses and overall survival. New
web development tools were then employed to create an
interactive web application for individualized patient
prediction.
Results Histologic grade and T and M stages were
important predictors of LNR status. Significant predictors
of survival included age, gender, marital status, grade,
histology, T and M stages, tumor size, and radiation
therapy. LNR was found to have a highly significant,
non-linear effect on survival. Furthermore, predictive
performance of the survival model compared favorably to
those from studies with more homogeneous patients and
individualized predictors.
Conclusions We provide a new approach and tool set
for the prediction of LNR and survival that are generally
applicable to a host of cancer types, including breast,
colon, melanoma, and stomach. Our methods are
illustrated with the development of a validated model
and web applications for the prediction of survival in a
large set of pancreatic cancer patients.

INTRODUCTION
Cancer is a class of complex diseases in which a
host of factors affect survival outcomes. Differences
in survival have been observed by patient demo-
graphic and genetic characteristics; by disease type,
including tumor location, size, histologic grade,
and stage; and by treatment regimen. Statistical
methods have been used extensively in cancer
research to identify important predictors of survival
and to develop prognostic models. Such models are
needed to describe the survival experiences of
patients, compare the effectiveness of treatments,
and identify sub-populations for whom treatments
are more or less effective.
Numerous research studies have focused on

cancer metastasis to regional lymph nodes as a pre-
dictor of clinical outcomes. Nodal status has long

been analyzed as a dichotomous variable, and con-
sistently found to be associated strongly with sur-
vival.1 More recently, interest has turned to the
utility of nodal status quantified numerically as the
number of positive nodes (PN) or as the lymph
node ratio (LNR), defined as the number of PN
divided by the total number examined.2–5 Interest
in these measures stretches across many different
cancers, including pancreatic, esophageal, stomach,
colon, breast, and melanoma. A complicating factor
in the analysis of PN and LNR is that the number
of lymph nodes harvested is highly variable across
individual patients. Some studies have used statis-
tical methods to determine the number of har-
vested nodes needed to ensure accurate prognosis.4

However, in a majority of published survival ana-
lyses, differences in numbers of examined nodes
have been ignored or dealt with by restricting ana-
lysis to patients with similar numbers. Such
approaches are disadvantageous because of their
potential for bias, decreased power, and increased
prediction errors.
Our present research is motivated by an interest

in making inference about LNR and its effect on
survival. Although our methods are relevant to
several different cancer sites, we have chosen to
develop and apply them to pancreatic cancer
because of our experience with the disease, its
public health importance as the fourth deadliest
cancer,6 and the interest of others in LNR as a pre-
dictor of pancreatic cancer survival. An important
aim of our work is to provide the pancreatic cancer
community with an improved analysis approach
and prognostic model.
Prognostic models are of interest in clinical prac-

tice for the prediction of patient outcomes. Results
of fitted models are available in a variety of forms.
Tabular and graphical summaries can be found in
print publications. Due to publication limitations,
these tend to be restricted to small numbers and
combinations of factors at which results are pre-
sented. Nomograms have been developed as graph-
ical calculators for prognostic models.7 They have
the advantages of providing predictions over the
full ranges of all predictor variables involved,
requiring no mathematical knowledge of the under-
lying model, and occupying a small amount of
physical space. However, nomograms provide only
point estimates, do not provide prediction errors,
and may not exist for some complex models.
Because of the increasing complexity of models and
the availability of software tools, interactive graph-
ical user interfaces for survival prediction are
becoming increasingly popular.
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In this paper, we develop a prognostic model for the predic-
tion of LNR and its effect on cancer survival. Our work repre-
sents a new approach for LNR analysis. It is distinct from others
in that: (1) differences in numbers of nodes examined are
adjusted for directly in the analysis, while including all patients;
and (2) simultaneous inference is available for LNR and sur-
vival. Our methods are presented as follows. First, a fully
Bayesian statistical modeling framework is developed. Then,
real-time prediction is made possible with the implementation
of an interactive web-based interface. Finally, model develop-
ment, validation, and inference are performed in an analysis of
a large, population-based sample of Surveillance, Epidemiology,
and End Results (SEER) pancreatic cancer patients.

METHODS
Data
Data on patients diagnosed with pancreatic cancer were
obtained from the April 2013 update of the National Cancer
Institute (NCI) SEER.8 SEER includes 18 population-based
registries that cover approximately 28% of the United States’
population. Patient-level information on cancer diagnoses,
patient demographics, and survival are routinely collected by
the SEER registries and made publicly available as de-identified
records.

We restricted our analysis to a subset of the SEER data.
Specifically, analysis was limited to patients who had a histo-
pathologic diagnosis of pancreatic ductal adenocarcinoma
(SEER primary site recodes C250-3 or C257-9, and ICD-O-3
histology codes 8140, 8480, 8481, 8490, or 8500) as their only
malignancy and who had undergone radical oncologic resection,
including pancreaticoduodenectomy, distal pancreatectomy, or
total pancreatectomy. In 2004, SEER implemented the
Collaborative Stage coding system9 to help ensure standardized
reporting of cancer staging. Given the importance of accurate
staging in the prediction of cancer survival, only patients from
the new reporting period (2004–2010) were included. In add-
ition, patients were excluded if their cancer-reporting source
was a nursing/convalescent home, hospice, autopsy, or death
certificate. Patients with less than 1 month of follow-up and

with indeterminate values for key predictor variables were also
excluded, including those with unknown race (N=20), unasses-
sable primary tumor (N=131), unknown tumor size (N=313),
unknown regional lymph node counts (N=137), and unknown
radiation therapy (N=9). The resulting analysis subset included
6400 patients, and is summarized in tables 1 and 2. Likewise,
figure 1 summarizes the relationship between numbers of lymph
nodes examined and observed LNRs, and shows the
subject-to-subject variability in nodes examined as well as the
smaller number of nodes on which LNRs are based at the upper
and lower ends of the spectrum.

BAYESIAN MODELING APPROACH
A Bayesian modeling framework was developed for the predic-
tion of LNR and survival. Bayesian modeling is characterized by
its allowance of prior information, specified as prior distribu-
tions, to be formally combined with new data, through their
sampling distributions, to obtain a posterior distribution from
which probability statements can be made about all model para-
meters. The parameters of particular interest in this study are
the true, but unobserved, LNRs. In our Bayesian approach,
these are simultaneously modeled with logistic regression and
included as predictors in a Cox regression model for overall sur-
vival. Modeling details are provided in the following sections.
Inclusion of prior information is an advantage of the approach,
as are its ability to accommodate the complex, hierarchical
model and provide realistic prediction errors. Conversely, model
complexities require that the posterior distribution be estimated
with computationally intensive simulation methods.

Lymph node ratio model
At cancer diagnosis, patient lymph nodes are often biopsied to
test for evidence of disease spread. Previous studies have
observed associations between the percentages of PN (LNR) and
clinical outcomes, and there is increasing interest in LNR as a
prognostic marker. However, the number of nodes biopsied is
relatively small and can vary from patient to patient.
Accordingly, the observed LNR merely provides an estimate of
the true proportion positive among all nodes. Such estimates

Table 1 Descriptive summaries of the follow-up, demographic, and treatment variables for the SEER pancreatic cancer patients

Variable Levels N (%) Mean (SD) Range HR* (95% PI)

Follow-up (months) 6400 (100) 17.6 (15.4) 1–83 –

Status Dead 4133 (64.6)
Alive 2267 (35.4)

Age 6400 (100) 65.2 (10.8) 29–93 †

Gender Male 3204 (50.1) 1.0
Female 3196 (49.9) 0.84 (0.77–0.91)

Marital status Married 4126 (64.5) 1.0
Widowed 796 (12.4) 1.18 (1.03–1.34)
Single 671 (10.5) 1.10 (0.95–1.24)
Divorced 654 (10.2) 1.18 (1.03–1.34)
Unknown 153 (2.4) 0.98 (0.74–1.24)

Race White 5291 (82.7) 1.0
Black 636 (9.9) 1.13 (0.97–1.28)
Other 473 (7.4) 1.10 (0.94–1.28)

Radiation therapy None 3876 (60.5) 1.0
Before surgery 221 (3.5) 0.68 (0.52–0.85)
After surgery 2283 (35.7) 0.74 (0.68–0.80)
Before and after 20 (0.3) 0.71 (0.29–1.17)

*HR estimates from multivariable analysis of overall survival (MCSE ≤0.001).
†Summarized in figure 6.
MCSE, Monte Carlo SE; PI, posterior density intervals.
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will be more precise in patients with larger numbers of biopsied
nodes (total lymph nodes, TLN). Thus, statistical analyses of
LNR should account for differences in TLN. Moreover, there
may be other clinicopathologic factors associated with LNR that
could be utilized to increase precision in its estimation. This
section presents a statistical model that accounts for TLN and
incorporates other factors in the estimation of LNR.

Our approach is a logistic regression model for the true pro-
portions pi of positive lymph nodes in patients i ¼ 1; . . . ;N. In

particular, the observed numbers of PN y ¼ ðy1; . . . ; yNÞ are
assumed to have conditionally independent binomial distribu-
tions with probabilities pi and sample sizes ni equal to the total
numbers of examined nodes. The logit of the probability is, in
turn, defined to be a linear combination of predictors xLN;i and
normally-distributed random effects gi. Letting DLN denote a
dataset containing the observed sample sizes and predictors, and
uLN ¼ {bLN; g1; . . . ;gN; s

2} the unknown model parameters;
the data contribution in analyses is in the form of the sampling
distribution

p(yjuLN;DLN) ¼
YN
i¼1

ni
yi

� �
p
yi
i (1� pi)ni�yi

log
pi

1� pi

� �
¼xTLN;ibLN þ gi

gijs2 �N(0;s2):

Systematic LNR differences across values of the predictors are
captured by the bLN effects, and between-patient variance with
s2. To reflect a lack of prior information in this part of the
Bayesian model, the following vague prior distributions are spe-
cified:

bLN �N(0;diag{1000})

s2 �Inv�Gamma(0:001; 0:001):

Results from the logistic model will be summarized with
odds ratio ðORÞ¼exp(DxTb), computed at clinically meaningful

Figure 1 Scatter plot of total lymph nodes examined (TLN) versus
observed lymph node ratio (LNR). The colors and legend represent the
number of subjects at each point, and the solid line a smoothing spline
fit to the TLN and LNR data points. 6174 SEER subjects in the analysis
dataset had at least one examined node and are included in the plot.

Table 2 Descriptive summaries of cancer diagnoses for the SEER pancreatic cancer patients

Variable Levels N (%) Mean (SD) Range HR* (95% PI)

Grade I 594 (9.3) 0.81 (0.69–0.94)
II 3107 (48.6) 1.0
III 2195 (34.3) 1.30 (1.19–1.41)
IV 53 (0.8) 1.29 (0.80–1.83)
Unknown 451 (7.0) 1.11 (0.93–1.31)

Histology Adenocarcinoma
Mucinous 255 (4.0) 0.65 (0.53–0.77)
Mucin-producing 38 (0.6) 0.65 (0.53–0.77)
Other 3735 (58.3) 1.0

Carcinoma
Infiltrating duct 2335 (36.5) 1.04 (0.96–1.13)
Signet ring cell 37 (0.6) 0.65 (0.53–0.77)

Regional nodes Total examined 6400 (100) 13.8 (9.5) 0–85 †

Number positive 6400 (100) 2.2 (3.0) 0–31
T stage T1 387 (6.0) 0.94 (0.74–1.15)

T2 974 (15.2) 0.89 (0.78–0.99)
T3 4690 (73.3) 1.0
T4 349 (5.5) 1.53 (1.27–1.80)

M stage M0 5953 (93.0) 1.0
M1 382 (6.0) 1.65 (1.40–1.89)
MX 65 (1.0) 1.18 (0.77–1.62)

Tumor site Head 4828 (75.4) -
Tail 577 (9.0) -
Body 366 (5.7) -
Overlapping lesion 250 (3.9) -
Duct 94 (1.5) -
Other 285 (4.5) -

Tumor size (cm) 6400 (100) 3.5 (2.0) 0.1–50.0 †

*HR estimates from multivariable analysis of overall survival (MCSE ≤0.001).
†Summarized in figure 6.
MCSE, Monte Carlo SE; PI, posterior density intervals.
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changes DxT in the predictors, and with the predictive distribu-
tion of p at subject-specific values of the predictors.

Survival model
Unlike other studies that have examined the effect of observed
LNR on clinical outcomes, we study the effect of true LNR dir-
ectly. In particular, a unified modeling approach is taken in
which true LNR and its effect on overall survival are estimated
simultaneously. Advantages of the approach include more accur-
ate prediction errors, utilization of all data sources (biopsy, pre-
dictors, and survival) for LNR estimation, and accommodations
for patients without biopsied nodes. An added advantage of our
treatment of LNR is that we model the continuous functional
form of its effect on survival.

Our analysis approach for overall survival, defined as time
from diagnosis to death or censoring, is based on the Cox
regression model of the general form

l(t;x) ¼ l0ðtÞexpðxTbÞ

in which rate of death from any cause is equal to a population-
specific hazard rate l0ðtÞ times multiplicative effects of subject-
specific predictors x and coefficients β. Following the model for-
mulation of Kalbfleisch10 and Ibrahim et al,11 a semi-parametric
Bayesian approach is used in the analysis. Given below is the
sampling distribution of observed follow-up times
t¼ (t1; . . . ; tN), death indicators d ¼ (d1; . . . ; dN), and dataset
DS of predictor variables xS;i; conditional on unknown model
parameters uS ¼ {bp;bS; dL0(s1); . . . ; dL0(sJ)}. Indicator func-
tions I{A} return a value of 1 if A is true and 0 otherwise.
Model terms s1 , . . . , sJ are the unique death times, augmen-
ted with s0 ¼ 0 and sJþ1 ¼ 1. Parameter
dL0(sj) ¼ L0(sj)� L0(sj�1) denotes the incremental change in
the cumulative baseline hazard in time interval j, p ¼ {pi}

N
i¼1

are the logistic-modeled LNR parameters defined previously,
and h(pi) is an arbitrary set of basis functions (eg, polynomials,
splines, categorical indicators) with which to model the LNR
effect.

p(t;djp;uS;DS)¼
YN
i¼1

exp �PJ
j¼1

(I{ti�sj}�I{(ti ;di)¼(sj ;1)})dL0(sj)hi

 !

�QJ
j¼1

[1�exp(�dL0(sj)hi)]
I{(ti ;di )¼(sj ;1)}

8>>>><
>>>>:

9>>>>=
>>>>;

hi¼exp(h(pi)TbpþxTS;ibS)

Intuitively, each term in the product above represents the prob-
ability of patient i remaining alive at the end of his or her
follow-up period (0;ti] if censored (di¼0), and the probability
of dying (di¼1) otherwise. Their product is thus the probability
of the set of observed survival outcomes, conditional on the
model parameters. Prior distributions on the parameters are spe-
cified as

bp�N(0;diag{1000})

bS�N(0;diag{1000})

dL0(sj)�g(dL�
0(sj)c;c);

where dL0(sj) has a prior mean dL�
0(sj) and variance dL�

0(sj)=c.
We model the prior mean as having an exponential distribution
with rate parameter r so that dL�

0(sj)¼r(sj�sj�1). Elicitation of
prior information is more naturally obtained for the cumulative

survival function S0(t)¼exp(�L0(t)), where

L0(t)¼
XJ
j¼1

I{t�sj}dL0(sj):

The choice of an exponential distribution for dL�
0(sj) induces a

gamma prior on the cumulative hazard with the same exponen-
tial distribution mean; namely,

L0(t)�gamma r
XJ
j¼1

I{t�sj}�(sj�sj�1)

" #
c;c

 !

�gamma r
XJ
j¼1

I{sj�t,sjþ1}�sj

" #
c;c

 !
:

Since the cumulative survival function is simply a transformation
of the cumulative hazard, values of hyperparameters r and c can
be chosen to reflect prior information about baseline survival.
In the proportional hazards model being fit, the baseline sur-
vival function represents the reference group of subjects whose
predictor variables all equal zero. To facilitate specification of
the prior, variables were coded to set the reference group at the
mean and modal values of continuous and categorical predictor
variables, respectively. Accordingly, we set r=0.03 and c=1.5 to
specify a prior distribution with median survival time having a
mean of 18 months and a 0.05–0.95 quantile range of 4–
76 months (figure 2), which reflect median survival among the
reference group of patients at our institution and our uncer-
tainty in the survival function.

Results from our survival analysis will be summarized with
hazard ratios ðHRÞ ¼ exp(DxTb) for clinically meaningful
changes in the predictors and with cumulative survival functions
S(t) ¼ S0(t)h at select values of the predictors.

Posterior simulation
The LNR and survival models, described previously and sum-
marized in online supplementary figure S1, are fit simultan-
eously as a single hierarchical model in the Bayesian approach.
Inference is then based on the joint posterior distribution of all
model parameters, given the data; which is proportional to the

Figure 2 Mean (solid line) and 90% probability intervals (dashed
lines) for the prior distribution induced on the baseline hazard function.
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product of the sampling and prior distributions, as given below.

p(uLN;uSjy;DLN;t;d;DS)/p(t;djuLN;uS;DS)p(yjuLN;DLN)p(uLN)p(uS)

/p(t;djp;uS;DS)p(yjuLN;DLN)p(uLN)p(uS)

Since the posterior is of a complicated form for which inference
cannot be made directly, Markov chain Monte Carlo methods
were employed to simulate samples from the posterior. In par-
ticular, the Stan software12 was used for model implementation
and simulation. To assess convergence of samples to the poster-
ior, parallel chains were simulated with different starting values
and evaluated with the multivariate potential scale reduction
factor of Brooks and Gelman13 as provided by the ‘coda’ R
package.14

Final results of the SEER data analysis will be summarized
with posterior means and 95% highest posterior density inter-
vals (PI) computed with the method of Chen and Shao.15

Monte Carlo standard errors (SEs) (MCSEs) will be reported as
measures of simulation errors in posterior mean estimates.

Model diagnostics and predictive performance
The SEER data were divided randomly into a training set con-
taining two-thirds of the patients and a validation set containing
the other third. Variable selection, model parameter estimation,
and goodness-of-fit diagnostics were performed with the train-
ing set. The validation set was used to assess the predictive per-
formance of the model developed with the training set.
Different biologically relevant combinations of variables were
considered for inclusion in the model, with the final choice
being made so as to minimize the deviance information criterion
(DIC)16 and to assure adequate model fit. As global assessments
of fit, posterior predictive p values17 were computed for each of
the LNR and survival models using Pearson’s χ2-based
goodness-of-fit statistics of the form

XG
g¼1

(Og � Eg)2

Eg
;

where the summation is over patients partitioned into G groups
according to equally-sized quantiles of pi and hi, respectively.
The observed outcomes Og are group-specific numbers of posi-
tive lymph nodes

PN
i¼1 I{i[g}yi and deaths

PN
i¼1 I{i[g}di, and the

expected outcomes Ei are predicted numbers
PN

i¼1 I{i[g}nipi

and
PN

i¼1 I{i[g}hiL0(ti), respectively. Patients were partitioned
into G=100 groups for analysis of the large SEER dataset. A
posterior p value represents the probability that future data
from the model will have a test statistic value greater than that
of the observed data. Resulting values close to 0 or 1 are indica-
tive of a lack-of-fit; values equal to 0.5 provide no evidence of
lack-of-fit.

To evaluate prediction accuracy, we first simulated the predict-
ive LNR and survival distributions individually for each patient
in the validation set, using the posterior distribution of the
model parameters obtained from the training set. The c (con-
cordance) index, as described by Heagerty and Zheng18 and
supplied by the ‘Hmisc’ R package,19 was then calculated as a
measure of agreement between predicted and observed survival.
Since the index is a commonly reported measure of predictive
performance, we provide it for our model to facilitate compari-
sons with other published modeling efforts. It can be inter-
preted as the probability that, among a pair of randomly
selected patients, death occurs sooner for the one with smaller
predicted survival, and thus is similar to area under the receiver

operating characteristic curve.20 In general, a c index value of
0.5 indicates chance agreement between survival prediction and
observed death outcomes, and 1.0 indicates perfect agreement.

Interactive web application
A web application was developed with the ‘shiny’ R package21

to provide a point-and-click interface for inputting patient base-
line information and displaying resulting posterior predicted
survival and LNR from our model. The application is available
online at http://www.myweb.uiowa.edu/bjsmith/pancreas/. The
main components of the interface are shown in the figure 3
screenshot and described below.
A. Sidebar panel: interactive widgets for user inputting of infor-

mation on a new patient for which posterior survival and
LNR prediction is desired.

B. Plot output panel: plots of the posterior survival function
mean and prediction interval, posterior mean of the median
survival time, and a kernel-density smoothed estimate of the
posterior predictive distribution of LNR.

C. Text output panel: corresponding estimates of median,
6-month, and yearly survival; predicted LNR; and probabil-
ities of LNR >0.05, 0.10, 0.25, and 0.50.

Implementation of the web application was accomplished
entirely with R functions provided by the shiny package and
required no additional use of other programming languages,
such as java or HTML. Consequently, sidebar input can be
passed seamlessly to the R implementation of our model, and
posterior results passed back to the plot and text output panels.

RESULTS
SEER model development
Tables 1 and 2 list the biologically relevant SEER predictor vari-
ables that were considered for inclusion in the prognostic
model. Effects of numerical variables were modeled with
natural cubic splines, and categorical effects with indicator vari-
ables. An initial model was fit with all variables included in the
set of survival predictors and with grade, stage (T and M), and
tumor size in the LNR set. Tumor site was removed from the
survival set in a backward variable elimination step, since it did
not improve model fit, as measured by DIC. The resulting final
model included the predictors shown in figure 4. Through the
joint modeling of LNR and survival, three sources of data
inform on each of the components. Specifically, information on
LNR status comes from observed predictor variables, examined
nodes, and survival outcomes through the inclusion of LNR in
the survival model. Likewise, survival is modeled as a function
of observed predictors, predicted LNR, and survival outcomes.
Consequently, information in the data is more fully utilized in
our approach than in other methods that model LNR and sur-
vival separately.

Model fit was tested with the goodness-of-fit statistics
described previously. Posterior p values for the final model pro-
vided no significant evidence of lack-of-fit (LNR: p=0.3300;
survival: p=0.4847). The concordance index for the predictive
performance is 0.65 (95% CI 0.63 to 0.66). A few studies have
developed prognostic models for pancreatic patient cohorts
similar to ours. Among those, a model by Brennan et al22 pro-
duced a concordance index of 0.64 when trained and validated
with patients from their institution. Since their model contains
predictors not available in SEER, it cannot be validated with
our data. Katz et al23 present a prognostic model that yields a
concordance index of 0.62 (95% CI 0.58 to 0.65) when applied
to our validation data. Thus, the predictive performance of our
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model compares favorably to previous efforts. Additional model
calibration was performed to compare 1-, 3-, and 5-year pre-
dicted and observed survival in the validation set, using the
‘rms’ R package.24 Results are displayed in figure 5 and show
excellent agreement. Finally, a sensitivity analysis was performed
in which no practical differences in inference were observed

between our choice of priors and priors with variances
increased by a factor of 10.

Lymph node ratio
Histologic grade, T and M cancer stages, and tumor size were
found to be important predictors of lymph node status and thus
were included in the final LNR model. Our model, in turn, pro-
vides the predictive distribution for nodal status at given values
of the predictors. An example is provided in figure 3, where the
predictive distribution is shown in the upper right panel for a
patient with 0 PN out of 10 examined, grade II and T3/M0
stage cancer, and a tumor size of 32 mm. From the distribution,
probability statements can be made about the patient’s true
LNR status. For instance, the ‘Summary Statistics’ section of the
figure shows that the probabilities of having LNR greater than
0.05, 0.10, and 0.25 are 48%, 19%, and 1%, respectively. The
posterior mean estimate of 0.064 is also reported as a point esti-
mate, along with a prediction interval of (0.001, 0.173) that can
be interpreted as containing the true value with 95%
probability.

Our statistical model produces predictive distributions that
vary across patients. For the included variables, predicted odds

Figure 3 Interactive web application for posterior inference. (A) provides interactive widgets for the inputting of patient and disease characteristics,
(B) displays the predicted survival curve and distribution for true lymph node ratio (LNR) status, and (C) gives corresponding estimates for median
and time-specific survival, and for LNR and its probabilities of being >0.05, 0.10, 0.25, and 0.50.

Figure 4 Relationships between the final lymph node ratio and
survival models and the data that inform on them.
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of PN tend to increase with increasing grade, T and M stages,
and tumor size (table 3). Likewise, predicted LNR will be
increased when the observed proportion is higher. Furthermore,
increased numbers of nodes examined will decrease variability
in the distribution and increase precision in point estimates.
Consequently, another use of our model and web application is
to explore the total number of nodes that should be examined
to ensure a desired level of precision in inference about true
LNR. For example, an important clinical question to answer is
how many nodes should be examined to have a high degree of
confidence that there is no nodal involvement. For the patient
in figure 3 with 0 out of 10 PN, there is a 48% probability of
nodal involvement (LNR >0.05). By changing the patient
inputs in the web application (not shown), one can determine
that the probability decreases to 39/31% if the total nodes is
increased to 15/20 and the number positive is held at 0. In
general, predicted LNR status will vary with both the number of
nodes examined and disease characteristics, and our methods
provide the tools to account for both.

Survival
The variables found to be important predictors of survival and
included in the final model are listed in figure 4. HR estimates
and 95% prediction intervals are given in tables 1 and 2 for cat-
egorical variables and in figure 6 for numerical variables. True
LNR as modeled by the response probability in the logistic
model and included as a predictor in the survival model was
found to have a strong, non-linear effect on survival (figure 6,
left panel). Its estimated HR is notably increasing up to a value
of 3.2 (95% PI 2.2–4.3) at an LNR of 0.17 with attenuated
increases and greater uncertainty thereafter. The narrower pre-
diction intervals at lower values of LNR reflect the larger
numbers of patients at that end of the spectrum. Other notable
trends are the increased risk of death for ages at diagnosis occur-
ring primarily after 60 years, and decreased risk for those receiv-
ing radiation before (HR=0.68, 95% PI 0.52–0.85) or after
(HR=0.74, 95% PI 0.68–0.80) surgery.

DISCUSSION
Our new methods for the prediction of LNR and survival offer
several advancements over previous methods. First, the Bayesian
approach allows for incorporation of prior information about
predictor effects and population survival. The quest to under-
stand disease processes and outcomes is often an iterative
process of updating existing knowledge with new data, and the
Bayesian paradigm provides a formal way to combine the two.
Second, prediction is improved. Because there is a relationship
between LNR and survival, joint modeling of the two utilizes
more sources of information than the separate modeling
employed by others. Additionally, the resulting prediction inter-
vals are more realistic because they reflect the differences in
nodes examined and uncertainty in estimating all model para-
meters. Joint modeling can result in an overlap of predictors
between the two models, which is the case in our analysis where
grade, M stage, T stage, and tumor size are significant predictors
in the LNR model and significant predictors in the survival
model which adjusts for LNR. This implies that LNR is related
to the four predictors but does not fully account for their effect
on survival. Third, splines are used to model the functional
form of the LNR survival effect. This is in contrast to common
alternatives in which LNR is categorized, which results in loss
of information, or assumed to have a linear effect. Finally, an
easily accessible web interface is provided for prediction.

In this work, our methods are applied to the latest SEER data
to develop a new prognostic model for pancreatic cancer. Use of
SEER data has both advantages and disadvantages. Advantages
include the availability of large patient numbers, inclusion of
patients across the USA, standardized collection and formatting
of data, and public availability of data. Moreover, for the pur-
poses of illustrating our methods, SEER is a familiar data source
from which predictions can be generalized to a wide pancreatic
cancer patient population. Limited patient-specific information,
however, is a disadvantage of SEER. Genetic screening and
medical imaging are sources of potential predictors that would
be of interest in prognostic models but are not available cur-
rently from SEER. Some large-scale efforts are underway to
make such data available, including the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO),25 NCI Cancer Genome Atlas (TCGA),26 and NCI
Quantitative Imaging Network (QIN),27 although data from
these are often unlinked. Rich datasets can be found at single
institutions, but tend to be smaller and less generalizable.
Nevertheless, we are encouraged that the predictive

Table 3 Estimated ORs for the effects of predictors on positive
lymph node probability

Variable Levels OR* (95% PI)

Grade I 0.79 (0.65–0.94)
II 1.0
III 1.18 (1.05–1.31)
IV 1.42 (0.74–2.20)
Unknown 0.62 (0.48–0.77)

T stage T1 0.32 (0.24–0.41)
T2 0.52 (0.44–0.60)
T3 1.0
T4 0.79 (0.61–0.98)

M stage M0 1.0
M1 1.95 (1.55–2.36)
MX 1.20 (0.61–1.87)

Tumor size (mm) 0 1.0
50 1.69 (1.38–2.00)
100 2.46 (1.71–3.24)

*OR estimates of positive nodes from multivariable analysis (MCSE ≤0.001).
MCSE, Monte Carlo SE; PI, posterior density intervals.

Figure 5 Calibration of the hierarchical Bayesian lymph node ratio
and survival model comparing 1-, 3-, and 5-year predicted overall
survival to observed survival in the validation dataset.
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performance of our SEER-based model is on a par with those
developed with more patient-specific information, and are eager
to apply our methods to datasets with more individualized
predictors.

Finally, predictions from our model can be obtained with the
supplied web application. Through this interface, model results
are communicated intuitively to users without the need to
understand the computational and statistical complexities
involved. However, some direction on the usage of this prog-
nostic tool is in order. We envision the tool being used primarily
by clinical practitioners and patients in consultation with their
healthcare providers. Its survival and LNR predictions can be
viewed as information akin to that provided by a published
research study, albeit delivered in a more dynamic fashion. As
such, users should pay particular attention to resulting predic-
tion intervals and not focus solely on individual point estimates.
The extent to which the SEER data inform on the predictions is
reflected in the widths of the prediction intervals. More inform-
ative data produce narrower intervals. Thus, the widths should
be taken into account when weighing results from the prognos-
tic tool with clinical experience and other patient-specific infor-
mation. In general, little is known about the effect of tools like
this on clinical practice, and more research on this topic will be
needed as they become more widely used.

CONCLUSION
Prognostic models are important aids in the understanding and
treatment of disease. In this paper, we presented a new model-
ing framework for the prediction of LNR and survival in cancer
patients. The framework was applied to a large cohort of SEER
pancreatic cancer patients to produce a prognostic model and
interactive web interface. These prognostic tools provide insight
into patient-specific nodal status and survival. Furthermore, the
framework is general and can be applied to other cancer types
and datasets, with source code developed by and available from
the corresponding author on request.
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