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ABSTRACT
Objective Evidence indicates that users incur
significant physical and cognitive costs in the use of
order sets, a core feature of computerized provider order
entry systems. This paper develops data-driven
approaches for automating the construction of order sets
that match closely with user preferences and workflow
while minimizing physical and cognitive workload.
Materials and methods We developed and tested
optimization-based models embedded with clustering
techniques using physical and cognitive click cost
criteria. By judiciously learning from users’ actual
actions, our methods identify items for constituting order
sets that are relevant according to historical ordering
data and grouped on the basis of order similarity and
ordering time. We evaluated performance of the
methods using 47 099 orders from the year 2011 for
asthma, appendectomy and pneumonia management in
a pediatric inpatient setting.
Results In comparison with existing order sets, those
developed using the new approach significantly reduce
the physical and cognitive workload associated with
usage by 14–52%. This approach is also capable of
accommodating variations in clinical conditions that
affect order set usage and development.
Discussion There is a critical need to investigate the
cognitive complexity imposed on users by complex
clinical information systems, and to design their features
according to ‘human factors’ best practices. Optimizing
order set generation using cognitive cost criteria
introduces a new approach that can potentially improve
ordering efficiency, reduce unintended variations in order
placement, and enhance patient safety.
Conclusions We demonstrate that data-driven
methods offer a promising approach for designing order
sets that are generalizable, data-driven, condition-based,
and up to date with current best practices.

BACKGROUND AND SIGNIFICANCE
As technology assumes an increasingly critical role
in healthcare delivery, recent literature indicates
that the interaction of technology and humans in
healthcare settings warrants a thorough investiga-
tion.1 Poor usability of health information technol-
ogy (IT) causes new types of medical errors that are
unique to the technology era, particularly through
insufficient customization of the systems to work-
flow in the care delivery setting, end user informa-
tion overload, and lack of adequate knowledge
about user behaviors.1–4 In this paper, we examine
an unintended, adverse consequence of implement-
ing computerized physician order entry (CPOE)
systems—the excessive physical and cognitive work-
load imposed on users.5 This is a significant con-
tributor to poor judgment, inaccuracies, and

erroneous actions that may lead to adverse out-
comes in the clinical care setting.6 Poor usability
stems from the lack of coordination between tech-
nology and human practices.6–9 Previous research
indicates that knowledge of user behaviors can have
a profound impact on achieving health IT use, and
incorporating this knowledge into the design of
health IT systems is vital for enhancing their
usability.1

To address this challenge, we introduce a ‘paving
the COWpath’ approach into the design of
health IT system components,10 11 where
‘COWpath’ indicates the ordering ‘paths’ taken by
busy providers, typically using a ‘computer on
wheels’.12 This approach is a design rationale where
the system components function by learning from
and embracing the best practices performed repeat-
edly by users, such that they are able to discover
users’ ‘desire paths’ and facilitate actual workflow
without requiring excessive human intervention.13

We suggest this as a mechanism to combine explicit
knowledge14—available from evidence-based guide-
lines—with the tacit, non-codified knowledge
embedded in the user experiences of domain
experts resulting from the interactions between pro-
cesses, culture, and routines.15–17 As medication
ordering and management is a critical patient-safety-
sensitive electronic health record function,1 we
focus on the development of ‘order sets’, a CPOE
component that has the potential to make order
entry faster, easier, and safer.6

Order sets have the potential to increase the effi-
ciency of order entry.6 There are two ways users can
place orders via CPOE. One is a la carte order place-
ment, where users search for an order using a
keyword and place a single order found from the
search results. When multiple orders are needed,
users repeat this process as many times as the number
of orders needed. However, by using order sets, users
can enter multiple system-suggested orders with as
few as one mouse click. Instead of searching by order
name, users can search for an order set by disease
condition, and be presented with a set of expert-
suggested/evidence-based orders, all related to the
condition of interest. Hence, order sets also serve as
a decision support tool to simplify complex order
placement and reduce prescribing variation and
errors.18 Traditionally developed by experts in each
clinical area, order sets include multiple orders
related by clinical purposes that less-experienced/
time-constrained users may refer to. Since a majority
of potential adverse drug events are the result of
errors during prescribing,19 well-designed order sets
can increase compliance on order placement based
on best practices and improve patient safety by lower-
ing the chances of prescribing variations and errors.
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Today, the creation of order sets has been widely accepted as a
core prerequisite for successful CPOE implementation.6 20–23

Despite these benefits, historical data indicate a low rate of
usage of order sets, primarily due to lack of order set content to
accommodate diverse patient conditions, physicians’ personal
preferences and unfamiliarity with order sets, and, most import-
antly, inconsistency of order set content with current best prac-
tices.24–27 Instead, we observe heavy use of a la carte orders to
compensate for the limitations of order sets, generating a
COWpath that provides evidence of evolving care delivery
needs and adapted to users’ workflows, but may be highly ineffi-
cient. Indeed, owing to the time-, manual labor-, and
knowledge-intensive order set development process, the growth,
modification, and maintenance of order sets are often not kept
up to date with changing provider skills and interests, quality
and clinical resource management initiatives, new types of ser-
vices, regulatory requirements, and an evolving standard of
care.24–27 Consequently, there may be a significant mismatch
between CPOE component capability and provider needs that
harms treatment quality and exposes patients to potential
medical errors.

Order set usage has been examined in a number of previous
studies to identify usability issues,28–31 and ambulatory and
laboratory corollary order sets have been created using data-
mining techniques.30 32 For example, Hulse et al33 created an
automated, knowledge-based order set feedback system that ana-
lyzes order set usage relative to the original template and sug-
gests modifications based on actual usage. In a study by
Avansino and Leu,34 systematically designed order sets were
shown to provide a reduction in cognitive workload, but there
was no improvement in terms of mouse clicks or time spent on
order sets. In this paper, we demonstrate that potential reduc-
tions in both physical and cognitive workload are possible
through order set optimization. We summarize our research to
automate the entire order set design process using machine
learning and optimization techniques while incorporating phys-
ical and cognitive workload as major development criteria.24–27

The machine learning methods enable us to learn the tacit
knowledge embedded in the COWpath and combine them with
the evidence built into the current order sets, while the opti-
mization criteria allow us to accommodate human factors in the
design process. We further evaluate our methods using CPOE
data for inpatient asthma (a chronic medical condition), append-
ectomy (an acute surgical condition), and pneumonia (an acute
medical condition). This approach has the potential to be more
broadly generalizable to other conditions and care delivery
settings.

OBJECTIVE
We describe the complexity of order set usage, analyze its effect
on users and patient safety, and develop order sets that reduce
physical and cognitive workload imposed on users. Specifically,
we propose an order set development method by leveraging his-
torical ordering data from the inpatient setting. As shown in
figure 1, at an abstract level, using only a la carte orders at one
extreme or a single, comprehensive order set that includes all
possible orders at the other extreme will both incur very high
physical and cognitive workload. Between these two, we
hypothesize that there must be a ‘satisficing’ number of order
sets, each containing an ‘acceptable’ number of order items,
such that users can place orders safely with much lower physical
and cognitive workload.35 Therefore, our methods model the
order set development problem as an optimization process

embedded with machine learning techniques to identify orders
that are clinically and temporally relevant.

Physical and cognitive workloads are measured in terms of
mouse clicks. We define mouse click cost (MCC) as the number
of mouse clicks users apply to complete ordering tasks, and cog-
nitive click cost (CCC) as MCC multiplied by weights indicating
the complexity of specific ordering tasks.24 27 Using historical
order data for inpatient management of asthma, appendectomy,
and pneumonia, we demonstrate the method’s performance on
different clinical conditions that may affect the automated order
set development process differentially. Rather than merely
extracting popularly used orders to develop order sets, we take
into consideration each condition’s characteristics, as well as
usability issues, to create order sets that are data-driven,
condition-based, and up to date with the current best practices.

MATERIALS AND METHODS
Data
Data for this study were obtained from the Children’s Hospital
of Pittsburgh (CHP) of the University of Pittsburgh Medical
Center (UPMC). As the first pediatric hospital in the USA to
reach Healthcare Information and Management Systems Society
(HIMSS) Analytics Stage 7 electronic medical record implemen-
tation status, CHP has been all-digital with a single integrated
eRecord (Cerner Millenium) since 2009. With over 13 000
inpatient visits in 2011, a patient at CHP was hospitalized, on
average, for 5.5 days, during which time 36 unique individuals
entered 846 order actions. Over 10 million order actions are
stored in the clinical data warehouse, which is an exact copy of
the production eRecord.25 There are 1559 departmental order
sets in the eRecord system covering 17 978 orders, designed in
2002 by CHP clinicians, mainly for medical admission and
surgery. The order set template has not been updated since its
creation in 2002, and all analyses performed for the study were
based on the same template. All patient-identifiable health infor-
mation was removed to create a deidentified dataset for this
study. This study was designated as exempt by the University of
Pittsburgh Institutional Review Board.

Important variables extracted from the data warehouse
include the order, order action time, care set flag, deidentified
patient ID, diagnosis, severity, age at admission, gender, and
length of stay in hours. For this study, order action time includes
time from 20 h before admission to 24 h after admission, as

Figure 1 Order sets versus usage cost.
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most order set usage is concentrated on the first day of admis-
sion. Data from 20 h before admission often come from
patients’ emergency department visits immediately before they
are admitted to the inpatient setting. Orders are from the same
encounter as the admission, but the data do not exclude orders
that are placed for other conditions when the patient has other
comorbidities. Diagnosis and severity are captured by drug
description and severity of illness using all patient refined
diagnosis-related groups (APR-DRGs).36

For this study, we extracted the top 26 APR-DRGs, including
4331 cases that required a total of 490 049 orders that were
placed in calendar year 2011. From this set, 292 asthma cases
with 20 076 orders and 40 order sets, 105 appendectomy cases
with 13 280 orders and 51 order sets, and 179 pneumonia
cases with 13 743 orders and 69 order sets were selected for
evaluating the methods developed in this study. Patient age is
categorized into age groups following American Academy of
Pediatrics (AAP) age groups: 1=neonate (<30 days); 2=infancy
(≥30 days and <1 year); 3=early childhood (≥1 and <5 years);
4=late childhood (≥5 and <13 years); 5=adolescence (≥13 and
≤18 years); 6=adult (≥18 years). A care set flag identifies order
set items against a la carte items. A care set flag of 0 refers to an
a la carte item, 1 an order set parent, 2 an order set, and 3 an
order set nested in another order set. In this study, we include
only orders that have a care set flag of 0, 2 and 3.

The size of order sets ranges from two to more than 50
unique items. Each item in order sets can be defaulted ‘ON’ or
‘OFF’ according to clinical relevance and frequency of use. An
order item can be included in multiple order sets when neces-
sary. Items with a checked checkbox are default ON items, and
those with blank checkboxes are default OFF items. Figure 2 is
a screen shot that shows part of the ‘Admission Orders
Pneumonia’ order set. Unlike a la carte order placement, where
users need to apply a mouse click every time to select an indi-
vidual order, default ON items are automatically selected when
an order set is chosen. With additional clicks, users can add
default OFF items to the selection or deselect default ON items
from the order placement. Ordering through order sets is not
mandatory, with a few exceptions.

Method
Click costs
As shown in figure 2, MCC counts the exact number of mouse
clicks that users have to apply for each order entry. One unit of
MCC is incurred when a user places an a la carte order, selects
an order set, deselects a defaulted ON order set item, or selects
a defaulted OFF order set item. Furthermore, given that these
tasks require different levels of cognitive workload, we multiply
MCC by a different cognitive cost coefficient for each task to
calculate CCC. Assuming that these coefficients are independent
of the patient, order set, time interval, and physician (this
assumption can be easily relaxed in the models but incur signifi-
cant information gathering overhead), we applied two
approaches to derive the coefficients for CCC to represent the
cognitive workload that accompanies each mouse click in order
placement. One was provided by a clinical and medical inform-
atics expert, and the other was estimated from a survey of 15
users including physicians and nurses.27 Cognitive-click-cost-
expert-estimate (CCCE) coefficients are made assuming that
users typically trust the order set contents. Hence CCCE attri-
butes high cost coefficients to actions that disagree with the
default setting, such as deselecting ON items or selecting OFF
items. Conversely, cognitive-click-cost-survey-estimate (CCCS)
coefficients reveal that, while deselecting ON items and

selecting OFF items requires high costs, almost the same
amount of cognitive workload is required of users to ensure that
default settings are suitable for patients, leading to small differ-
ences in the four coefficients. In this study, MCC and CCC
focus on clicks that are related to ordering only and do not
include other activities while ordering such as up or down
clicks, and do not account for incomplete orders and rework.
Table 1 summarizes the cost coefficients derived for MCC and
CCC.

Coverage rate
We introduce a term called coverage rate to measure the good-
ness of order sets. Coverage rate of an order set c used by p=1,
…, N patients is defined as

1
N

XN
p¼1

ip;c
ic

where ip;c is the number of unique items given to patient p from
order set c, and ic is the total number of unique items originally
in order set c. Generally, orders from multiple order sets are
given to a single patient during one order entry e. Given S
order sets and N patients, the average coverage rate (ACR)
during one order entry is

1
S

XS
c¼1

1
N

XN
p¼1

ip;c
ic

 !

Then, the average overall coverage rate across S order sets, M
order entries, and N patients is

1
S

XS
c¼1

1
M

XM
e¼1

1
N

XN
p¼1

ip;e;c
ic

 ! !

where ip;e;c is the number of unique items given to patient p
from order set c during order entry e. High coverage rate for an
order set suggests that users can use the order set with few
further modifications on average.

Relative risk
We attempt to place order items that tend to be ordered
together for a single patient during an order entry session into
one order set. In order to find clinically relevant order items,
we apply a similarity measure called relative risk (RR), com-
monly used in biomedical informatics to look for similarity
between diseases.37 Given a pair of orders x and y, let Uxy be
the number of unique patients who had both orders, Vx be the
number of times order x was placed for patients, Vy be
the number of times order y was placed for patients, and N be
the total number of patients. Relative risk, RRxy, for this order
pair is defined as ðUxyN=Vx VyÞ. Given i number of orders,
each order has i−1 number of RR measures when paired with
each of the rest of the orders. Bisecting K-means clustering is
applied to the i by i matrix of RR to identify similar orders that
should belong to the same order sets. Bisecting K-means cluster-
ing is known to perform clustering faster than K-means
clustering.38

Iterative algorithm
Since order placement is driven by patients’ conditions, we
develop order sets by extracting order items most suitable for
constituting order sets according to different time intervals.
This is modeled as a two-stage optimization problem with MCC
and CCC as the objective function, respectively, while satisfying
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constraints on time and order set content. Before the optimiza-
tion process, default settings for orders are updated such that an
item is defaulted ON if more than 80% of the study patients
have used it at least once, and OFF if otherwise, thus judiciously
learning from the COWpath. For each clinical condition, the
algorithm iteratively extracts orders present in the data in
increasing time intervals, starting with a 2 h interval. In each
iteration, the bisecting K-means algorithm clusters items that
often co-occur in patients’ order lists into the same order sets.
Combinations of order sets with the lowest MCC or CCC are
kept as the best solutions. Finally, the iteration ends when MCC
and CCC are compared across time intervals of different lengths
to select the optimal time interval. The end point of the previ-
ous time interval becomes the starting point for the next time
interval (figure 3). Each item is part of no more than one order
set within one time interval. However, an item can be included
in multiple order sets across different time intervals. This
process is repeated from 20 h before admission until 24 h after
admission.

To computationally evaluate the methods and illustrate the
optimization results, the data are divided into training and test
sets. While training sets include patients who had only the par-
ticular APR_DRG diagnosis as their final diagnosis upon dis-
charge, test sets evaluate the performance of the
machine-derived order sets using data on patients who exhibited
comorbidities so that the robustness of the order sets can be

determined in a realistic manner. For example, the asthma train-
ing set includes patients who had a diagnosis of ‘asthma,
unspecified’, while its testing set includes patients who had
comorbidities such as ‘contact dermatitis and other eczema,
unspecified cause’ at some point during their hospital stay.
Similarly, the appendectomy training set includes a sample of
patients with ‘acute appendicitis’ and ‘appendicitis, unqualified’,
and the pneumonia training set includes patients with ‘pneumo-
nia, organism unspecified.’ In addition, the severity of the con-
dition was controlled to reduce the noise in the optimization
process. We use the severity group with the largest sample size
in each condition for reporting the computational results. Based
on the assignment rule discussed above, we have 84 asthma
patients for training and 208 for testing, 93 appendectomy
patients for training and 57 for testing, and 96 pneumonia
patients for training and 83 for testing.

Clustering and optimization were performed using an inte-
grated computational platform that we developed (figure 4).
Users can select clinical conditions and severity level and opti-
mize order sets based on MCC, CCCE, and CCCS criteria, and
time intervals of interest. Currently available clinical conditions
are asthma, appendectomy, and pneumonia, although new con-
ditions can be readily added. Resulting orders and their respect-
ive order set assignments, MCC and CCC values, and
parameters used for each optimization session on the platform
are stored in a secure MySQL database.

RESULTS
Descriptive statistics
Table 2 shows order set usage associated with asthma, append-
ectomy, and pneumonia management. ‘Number of unique order
sets used’ is the total number of unique order sets used across
all the patients with each condition. On the other hand,
‘Number of times order set opened’ is the total number of times
users chose order sets to place orders. ‘Number of order set
orders’ is the number of orders placed from order sets, as
opposed to a la carte. ‘Number of clicks to use order set’ is the
number of mouse clicks that users applied to place order set
orders. ‘Clicks saved by order sets’ is the difference between the

Figure 2 A Children’s Hospital of
Pittsburgh order set for pneumonia.

Table 1 MCC and CCC coefficients

MCC CCCE CCCS

Select Deselect Select Deselect Select Deselect

Order set/a la
carte

1 – 1.2 – 1.1 –

Default ON 0 1 0.2 1.5 1 1.3
Default OFF 1 0 0.5 0.1 1.4 1.1

CCCE, cognitive-click-cost-expert-estimate; CCCS, cognitive-click-cost-survey-estimate;
MCC, mouse click cost.
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number of order set orders and the number of clicks to place
order set orders. For example, the actual number of order set
orders needed for pneumonia patients was 8935, but users had
to make 9827 mouse clicks to complete order placement from
2662 order sets, adding 10% higher physical workload com-
pared with a la carte order placement, where users simply
needed to make 8935 mouse clicks. Yet, had the 2662 order
sets been a perfect fit for patients, users would have completed
the order placement process with just 2662 clicks, saving 70%
of the physical workload. While it is highly unlikely that order
sets will match every patient’s requirements perfectly, and hence
will always require some sort of modification, this extreme

example demonstrates the potentially significant impact that
improved usability of order sets may have on treatment
efficiency.

Optimization results
Table 3 shows a summary of optimization results under three
objective functions: MCC, CCCE, and CCCS. Reduction in
clicks per patient is the difference in the total number of clicks
users have to apply when using current and machine-derived
order sets per patient. The new approach potentially reduced
both the physical and cognitive workload of order placement by
14–52% in the study sample. For example, pneumonia patients
in the training set needed 73 orders on average, which can be
placed with 67 clicks on average if machine-derived order sets
were used, instead of 79 clicks on average if current order sets
were used. The number of new time intervals is the number of
optimal time intervals identified by the algorithm, so that the
order set content reflects the clinical needs during the particular
time interval. There is no time interval for the current order
sets. In the redesigned solution, the number of optimal time
intervals ranges from 15 to 20, most of which are 2 h intervals.
This suggests that ordering patterns tend to change every 2 h.

To make the comparison of the number of order sets and
their size easier, figure 5 shows the number of distinct order sets
and the total number of items covered by these order
sets by time interval, under current and MCC models using
appendectomy patients. As the plot shows, the number of
machine-derived order sets tends to be smaller, but the number
of distinct order sets in each time interval does not differ signifi-
cantly. The mean percentage increase in ACR across time inter-
vals is shown in the ‘% increase’ column for training and test
sets in table 3. The statistical significance of the percentage
increase was calculated using the Mann–Whitney test in R
Statistical Package V.2.15.1.39 A significant increase in ACR, sur-
passing 100% in training sets, was recorded for asthma and
appendectomy data. The percentage increase for pneumonia
was not as high, presumably because of diversity in the patient
population, which potentially introduced noise in the optimiza-
tion process. The average number of comorbidities exhibited

Figure 3 Iterative process for order
set timing and content. CCC, cognitive
click cost; MCC, mouse click cost.

Figure 4 Order set content computational platform. (A) step 1;
(B) step 2; (C) step 3.
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during the inpatient stay supports this explanation: 4.7 for
patients with pneumonia compared with 2.4 for asthma and 2.1
for appendectomy. Clinical input combined with optimization
may help achieve greater improvement, especially for complex
conditions such as pneumonia.

Sample case
A sample case demonstrates the changes made to order sets
based on the three objective function criteria. Orders adminis-
tered for a patient during one ordering action is shown in table
4 with the current and new order set assignment and default
settings. Twelve items ordered for this patient currently come
from four order sets (C1–C4). After optimization, these 12
items were reassigned to different order sets (M1–M4, E1–E6,
S1–S4), or designated as a la carte items (A) based on MCC,
CCCE, and CCCS, respectively. The status quo MCC is 15,
CCCE is 20.3, and CCCS is 76. After optimization, MCC is 13
(15.4% lower), CCCE is 12.9 (36.4% lower), and CCCS is 23.1
(69.6% lower). Our algorithm also shortened the length of
order sets and turned on OFF items that are often used, and
vice versa. For example, we found that more than 80% of the
study patients had used ‘initial pulse oximetry continuous’—an
OFF item currently—at least once. Hence, our algorithm
grouped ‘subsequent pulse oximetry continuous’ and ‘initial
pulse oximetry continuous’ into one order set, and defaulted
both items to be ON. Also, instead of having an order set such
as C1, which contains 63 items currently, our algorithm broke it
down into smaller order sets to ease the cognitive burden of
reviewing a long list of orders,8 many of which may not be
selected for most patients.

DISCUSSION
Other approaches to order set design
Order sets are intended to assist users in performing their order
placement tasks efficiently and effectively. Current approaches
rely on continuous and consistent manual updating to accommo-
date new knowledge, making it a challenge to adapt to changing
workflows and patient requirements. We believe a combination
of order set development and order set modification methods
can better address the evolving care-delivery needs of diverse
groups of patients in distinct care-delivery environments. In a
prior, preliminary study, we investigated five models of order set
usage: (1) status quo; (2) add a la carte orders to current order
sets; (3) change default setting of current order sets; (4) combin-
ation of (2) and (3); (5) add order sets created from a la carte
items using clustering to (4).24 Results indicated that model (5)
had the lowest MCC and CCC, suggesting that combining
experts’ consensus with evidence from data is a promising
method for increasing usability while maintaining clinical valid-
ity. This method preserves experts’ consensus by learning order-
ing patterns from current order sets while incorporating evidence
from actual workflows such that rarely used orders are deleted
and frequently used a la carte orders are added to order sets.
When scientific knowledge and practice-based evidence both
increase at a rapid pace, a complete redesign of the order sets
may be necessary at periodic intervals, which can utilize the
COWpath approaches developed in this paper.

Limitations
Order sets produced by machine-derived techniques suffer from
the disadvantage that they will not capture clinically meaningful

Table 2 Order set usage of the selected diagnosis groups in 2011

Diagnosis
group

Patients
(n)

Orders
(n)

Unique order sets
used (n)

Times order sets were
opened (n)

Order set orders (n (%
of total))

Clicks to use
order sets (n)

Clicks saved by order
sets (n (%))

Asthma 415 32 736 77 3895 11 794 (36) 12 254 460 (−4)
Appendectomy 353 37 557 69 1505 9900 (26) 6170 3730 (38)
Pneumonia 357 34 505 114 2662 8935 (26) 9827 892 (−10)

Table 3 Computational results for asthma, appendectomy, and pneumonia

Diagnosis
group

Reduction in clicks
per patient (n (%))

New time
intervals (n)

Order sets
per time
interval
(mean±SD)

Order set
items per time
interval
(mean±SD)

Training set ACR† (mean±SD) Test set ACR‡ (mean±SD)

Current New % increase Current New % increase

Asthma
MCC 9 (14) 15 5±1.21 13±3.44 0.27±0.04 0.67±0.08 196* 0.27±0.03 0.54±0.08 108*
CCCE 14 (18) 15 5±1.41 12±3.61 0.26±0.04 0.63±0.08 156* 0.27±0.03 0.49±0.08 90*
CCCS 72 (52) 16 4±1.29 12±3.35 0.26±0.04 0.59±0.10 141* 0.27±0.03 0.47±0.08 84*

Appendectomy

MCC 19 (19%) 18 5±1.36 27±5.61 0.32±0.07 0.57±0.12 130* 0.32±0.10 0.35±0.10 23
CCCE 26 (21%) 18 6±1.85 32±7.47 0.32±0.07 0.54±0.11 123* 0.32±0.10 0.34±0.09 34
CCCS 36 (20%) 18 5±1.41 25±5.67 0.32±0.07 0.53±0.11 133* 0.32±0.10 0.32±0.09 20

Pneumonia
MCC 12 (15%) 20 6±2.19 20±5.32 0.30±0.07 0.40±0.04 37* 0.30±0.05 0.35±0.04 30
CCCE 18 (19%) 20 7±2.03 22±5.31 0.30±0.06 0.40±0.03 43* 0.30±0.05 0.38±0.04 32*
CCCS 30 (19%) 18 6±2.31 20±5.63 0.30±0.05 0.30±0.03 26* 0.30±0.04 0.36±0.05 23*

*p<0.05.
†84 patients for asthma; 93 patients for appendectomy; 96 patients for pneumonia.
‡208 patients for asthma; 57 patients for appendectomy; 83 patients for pneumonia.
ACR, average coverage rate; CCCE, cognitive-click-cost-expert-estimate; CCCS, cognitive-click-cost-survey-estimate; MCC, mouse click cost.
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but rare events. Therefore, it is important to have experts evalu-
ate order sets and, if necessary, embed known scientific evidence
and guidelines into them. In addition, the detailed nature of
treatment options and possibility of many other complications
for each condition play an important role in the success of
order set development. Large variations in order placement pat-
terns associated with varied and multiple complications remains
the biggest challenge, as illustrated by pneumonia orders.
Changing certain parameters in the optimization method, apply-
ing different clustering methods according to condition type, or
heuristic approaches for convergence may lead to even better
results such as improved coverage rates. Moreover, the retro-
spective data used to build order sets in this paper are more or
less influenced by the current order sets, since users are initially
trained to place orders using the current order sets. Users may
have learned to avoid some flaws in the current system, and
incorporate workarounds that are not the best practices.

Provider variability is another factor that may affect the data.
It is not uncommon for orders to be placed by interns or resi-
dents who may be biased because of lack of knowledge or
experience, or both. Hence, the models and methods proposed
in this study are a first step towards automating the redesign of
order sets on a periodic basis. The results of our methods must
be reviewed for clinical appropriateness based on evidence or by
an institutional clinical effectiveness group. In addition, since
our study uses only 1 year’s worth of data, from 2011, during
which the order set template also remained unchanged, it is
likely that biases due to provider variability may have limited
impact in this study. A future study may explore variations in
usage of order sets across provider groups and across years to
classify changes as those based on evidence, poor design, or
bias.

Future steps
Testing the machine-derived order sets by actual users in realistic
settings is a vital next step, which can be conducted first as a
pilot study with interested users and in a simulated environ-
ment. Clinical review of the order sets by experts needs to be
conducted before actual clinical use of machine-derived order
sets. Also, since machine-derived order sets learn from actual
practices, regular content update and revision should be fol-
lowed to keep order sets up to date with changes in the work-
flow and maintain clinical validity. Updates of the order set
template can follow the cycle described in this paper, starting
with relearning of the workflow using the COWpath approach,
followed by expert evaluation.

CONCLUSION
This paper focuses on a critical, unintended consequence of IT
in healthcare delivery, the excessive physical and cognitive work-
load on end users due to poor usability in the context of using
order sets within CPOE. We propose a ‘paving the COWpath’
approach by modeling a two-stage optimization method embed-
ded with a machine learning technique to develop data-driven
order sets that used retrospective order data from the pediatric
inpatient setting. An evaluation of the new approach provides
evidence of a successful reduction in physical and cognitive
workloads as well as an increase in order set coverage for
diverse patient conditions. The results indicate that automated

Figure 5 Count of order sets and
items: current versus mouse click cost
model, appendectomy.

Table 4 Sample case

Current Machine-derived

Item
Order
set Default MCC CCCE CCCS Default

Admit to C1 ON M1 E1 S1 ON
Height C2 ON M2 E2 S2 OFF

Weight C1 ON M2 E2 S2 OFF
Notify MD for oxygen
saturations

C1 OFF A E3 S3 ON

Notify MD for TPR C1 OFF A E2 S2 OFF
Regular (≥4 years) diet C1 OFF A E3 S3 OFF
Up Ad Lib C1 OFF A E4 S3 OFF
Vital signs C1 OFF M1 E1 S1 ON
Subsequent oxygen
therapy

C3 ON M3 E5 S1 OFF

Initial oxygen therapy C3 OFF M3 E5 S1 OFF
Subsequent pulse
oximetry continuous

C4 ON M4 E6 S4 ON

Initial pulse oximetry
continuous

C4 OFF M4 E6 S4 ON

A, a la carte; Ad Lib, without restraint or imposed limit; CCCE,
cognitive-click-cost-expert-estimate; CCCS, cognitive-click-cost-survey-estimate;
MCC, mouse click cost; MD, medical doctor; TPR, temperature pulse respiration.
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development is time efficient and able to identify commonly
co-placed orders that are also supported by evidence. In this
paper, the optimization focused only on reducing physical and
cognitive workload, but it is possible to add other developmen-
tal criteria as well. Also, while our methods were built on the
basis of CHP orders, the data-driven approach is generalizable
for different diagnosis groups and workflows, with minor modi-
fications. Hence, we believe that it can be a powerful method to
use as a starting point for informed order set review and
redesign and, in some instances, to replace the traditional
manual development. The easy implementation of our methods
can facilitate ongoing update of order set content by healthcare
organizations and allow treatment quality to stay up to date
with the evolving care delivery standards. We anticipate that
data-driven order set design will facilitate order sets to be devel-
oped on the basis of current best practices, potentially leading
to increased order set acceptance, ordering efficiency, and
improved patient safety.

Correction notice This article has been corrected since it was published
Online First.
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