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ABSTRACT
Objective To identify local meteorological drivers of
dengue fever in French Guiana, we applied an original
data mining method to the available epidemiological
and climatic data. Through this work, we also assessed
the contribution of the data mining method to the
understanding of factors associated with the
dissemination of infectious diseases and their
spatiotemporal spread.
Methods We applied contextual sequential pattern
extraction techniques to epidemiological and
meteorological data to identify the most significant
climatic factors for dengue fever, and we investigated
the relevance of the extracted patterns for the early
warning of dengue outbreaks in French Guiana.
Results The maximum temperature, minimum relative
humidity, global brilliance, and cumulative rainfall were
identified as determinants of dengue outbreaks, and the
precise intervals of their values and variations were
quantified according to the epidemiologic context.
The strongest significant correlations were observed
between dengue incidence and meteorological drivers
after a 4–6-week lag.
Discussion We demonstrated the use of contextual
sequential patterns to better understand the
determinants of the spatiotemporal spread of dengue
fever in French Guiana. Future work should integrate
additional variables and explore the notion of
neighborhood for extracting sequential patterns.
Conclusions Dengue fever remains a major public
health issue in French Guiana. The development of new
methods to identify such specific characteristics becomes
crucial in order to better understand and control
spatiotemporal transmission.

INTRODUCTION
Dengue virus, which is most commonly acquired
through the bite of an Aedes aegypti mosquito, is the
most important arthropod-borne viral disease affect-
ing humans.1 The increasing number of cases is
associated with the expanding geographic range and
the increasing intensity of transmission in affected
areas.2 3 Recent estimates indicate 390 million infec-
tions per year worldwide, of which 96 million
dengue infections per year are manifested.4 This
virus has four serotypes—DENV-1, DENV-2,
DENV-3, and DENV-4—although the existence of a
fifth serotype has been discussed.5 The clinical
forms of each serotype include asymptomatic infec-
tion, influenza-like illness, and severe forms— for
example, fatal dengue hemorrhagic fever (DHF),
dengue shock syndrome, encephalitis, and hepatitis.
Even though several dengue vaccines are being
developed,6 no vaccine or curative treatment is

currently available. Prevention strategies are limited
to vector control, and treatment strategies are
limited to supportive care to avoid shock
syndrome.7

In Latin American and Caribbean countries, the
reintroduction and dissemination of A aegypti were
observed in the 1970s after a reduction in vector
control interventions that had been initiated in the
1960s. Since then, regular outbreaks have occurred
on a 3–5-year cycle, and there has been an increase
in severe forms of dengue, particularly DHF.8 In
French Guiana, France’s overseas territory in South
America with 230 000 inhabitants, the epidemi-
ology of dengue evolved from an endemo-epidemic
to a hyper-endemic state.9 Five major epidemics
linked to the circulation of one or two predomin-
ant serotypes have occurred over the last 10 years.
These outbreaks usually last for 6–12 months and
may affect nearly 10% of the population.
With the increasing frequency of epidemics and

the resulting health, social, and economic impacts of
dengue,10 the surveillance, control, and prevention
of dengue have become social, political, and public
health challenges that require specific preparedness
activities.11 One key element of an effective pre-
paredness plan is the capacity to understand and
predict the occurrence of dengue epidemics.
Epidemic dynamics are driven by complex inter-

actions between intrinsic factors associated with
human host demographics, vectors, and viruses,
which drive multiannual dynamics, as well as
extrinsic drivers, such as climate patterns, that
potentially drive annual seasonality.
Previous investigators have created descriptive and

predictive dengue models using various input vari-
ables,12–14 including climate data,15 16 vector
characteristics,17 18 circulating viral serotypes, the
immune status of the host population,15 or demo-
graphic data.19 20 Even if the different studies in
various affected areas do not always yield the same
results, climatic variability is postulated to be one of
the most important determinants of dengue epi-
demics; therefore, many studies have highlighted the
influence of meteorological conditions on dengue
incidence.21 The increase in temperature has been
associated with dengue in Thailand,22 Indonesia,23 24

Singapore,25 Mexico,26 Puerto Rico,27 New
Caledonia,28 Guadeloupe,29 and Sri Lanka.30 An
increase in humidity and high mosquito density
increased the transmission rate of dengue fever in
southern Taiwan.31 The abundance of predominant
vectors is partly regulated by rainfall, which provides
breeding sites and simulates egg hatching.32–36

However, dengue patterns are dependent on the
study area and are often characterized by non-linear
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dynamics, multi-annual oscillation, and irregular fluctuations in
incidence; these factors complicate the understanding, detec-
tion, and prediction of both temporal and spatial transmission.

Data mining (ie, discovering useful, valid, unexpected, and
understandable knowledge using databases) has been recognized
as a promising new area for database research.37 This area can
be defined as efficiently discovering interesting information in
large databases using statistical methods, database management
techniques, and artificial intelligence.

Among the different data mining techniques, sequential
pattern extraction38 has received increased attention in recent
years and has a wide range of applications in various areas,
including finance, marketing, insurance, medical research, and
sensor data. Traditional sequential pattern mining aims to
extract sets of items that are commonly associated over time.
However, this approach has rarely been applied to assess the
spatiotemporal factors associated with infectious disease
transmission.20

The development of infectious disease surveillance in French
Guiana in combination with technological advances in informa-
tion systems offers new possibilities for applying data mining
methods in future analyses.

We concentrated our efforts on applying sequential pattern
mining to an epidemiological and meteorological dataset to
identify potential drivers of dengue fever outbreaks. We used
contextual sequential patterns, which extend the concept of
traditional sequential patterns and were recently introduced by
Rabatel et al39 to identify relationships. By considering the fact
that a pattern is associated with one specific epidemiological or
spatial context, the experts can then adapt their strategy
depending on specific situations.

In this paper, we focus on the descriptive component, using
different ‘epidemiological contexts’ to consider the impact of
the interrelationships between dengue fever and climatic factors
on specific epidemiologic figures. Our contribution is described
in terms of methodology, epidemiological findings, and surveil-
lance implications.

MATERIAL AND METHODS
Settings
French Guiana is located in South America between the Tropic
of Cancer and the equator (4°00 north latitude and 53°00 west
longitude); it is found between Brazil and Surinam. Its climate is
typically tropical: hot and humid, with little variation in sea-
sonal temperatures, heavy rainfall in the wet season from
January to June, and low rainfall in the dry season from July to
December. The relative humidity is high and varies between
80% and 90% according to the season. Primary health
delivery differs according to location: in the coastal area,
primary healthcare is delivered by 85 general practitioners
(GPs), whereas further inland, care is provided by 17 public
healthcare centers.40

Epidemiological dataset
Epidemiologic data on dengue fever were obtained for the
period from 2006 to 2011 from the multi-source surveillance
system of the Regional Epidemiology Unit of the Institut
de Veille Sanitaire (InVS).40

Weekly numbers of biologically confirmed cases (BCCs),
stratified according to the municipality of residence, were
obtained from the laboratory surveillance system. This surveil-
lance system, which collects individual information (including
the patient’s sex and age, area of residence, date of onset, date
of blood sample, and results) from the seven laboratories

located in the coastal area, was authorized by the French Data
Protection Agency (CNIL, N°1213498). In accordance with the
CNIL, all of the data used in this study were aggregated so that
they could not be associated with any specific individual.

The following criteria were used to define BCCs: virus isola-
tion, viral RNA detection by reverse transcription-PCR
(RT-PCR), detection of secreted NS1 protein, or a serological
test based on an immunoglobulin M (IgM)-capture ELISA
(MAC-ELISA).41 The dengue serotype data were identified for
some of the BCCs (approximately 30% of the cases) by the
National Reference Center (NRC) based at the Institut Pasteur
in French Guiana (IPG).

Clinical case (CC) surveillance was set up from a sentinel
network composed of 30 voluntary GPs located in the munici-
palities of the coastal area (representing approximately 35%
of the GPs’ total activity) and health centers located inland.40

A CC was defined as a fever (≥38°C) with no evidence of other
etiology and associated with one or more non-specific symp-
toms, including headache, myalgia, arthralgia, and/or retro-
orbital aches. The weekly number of CCs from 2006 to 2011
was included in the dataset.

For an outbreak in a given territory, we calculated the cumula-
tive number of incident BCCs of dengue (BCCi) and the clinical
dengue incidence (CCi) per week per 1000 residents. In the
calculations, we assumed that the population of a territory was
constant throughout a given year.

Weekly variation rates were calculated from the average of the
four previous weeks for biological cases and CCs; 10th and
20th percentiles were used to classify the number of cases and
the rates in 5 or 10 groups of similar size.

Meteorological dataset
Climatic records were obtained from Meteo France. Daily
climate data, including cumulative rainfall (RR in mm),
minimum and maximum temperatures (TN and TX in °C),
sunstroke averages (INST in hours), wind strength at 10 meters
(FXI in km/h), minimum and maximum relative humidity
(UN and UX in %), and global brilliance (GLOT in KWh/m2/
day), were collected from six meteorological stations
(Cayenne, Kourou, Maripasoula, Matoury, Saint-Laurent, and
Saint-Georges). From these daily data, weekly means were calcu-
lated throughout the study period. There were no missing
values during this time period.

Weekly variation rates were calculated from the average of the
four previous weeks for all of the meteorological indicators;
10th and 20th percentiles were used to classify the indicators
and the rates in 5 or 10 groups of similar size.

Statistical analysis
The bivariate analyses were conducted using Stata V.12.42 The
relationships between the epidemiological and meteorological
data from 2006 to 2011 were studied at the national level of
French Guiana and at different time scales using a Spearman
rank correlation method. A p value <0.05 indicated statistical
significance. On a weekly level, time-lagged correlation analyses
(with a lag of 1–12 weeks) were performed on the time series of
the weekly means of the meteorological variables and dengue
incidence rates. Epidemic and non-epidemic years were com-
pared to identify suitable meteorological patterns for dengue
epidemics.

Contextual sequential pattern mining
The methodology involved three steps:
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▸ Step 1: The spatiotemporal resolution and the epidemio-
logical contexts were defined.

▸ Step 2: The sequence preprocessing module transformed the
raw data into sequences of events.

▸ Step 3: The sequential patterns extraction module extracted
frequent sequences of events for each context.
For the analyses performed after step 1, all the variables

needed to fit the same spatiotemporal scale. A weekly temporal
scale was used because weekly dengue surveillance data were
available. The spatial distribution was based on homogeneous
territories in terms of geographic distance and the movements
of the population. Territories that consisted of several neighbor-
ing municipalities (figure 1) were established in collaboration
with a local expert committee composed of epidemiologists,
biologists, clinicians, entomologists, and specialists involved in
the control and prevention of vector-borne diseases.40

Five distinct epidemiological stages were defined by the
expert committee40:
▸ Stage 1: Sporadic transmission.
▸ Stage 2: Presence of dengue fever clusters in some areas.
▸ Stage 3: Pre-alert epidemic (when alert thresholds for CCs

and BCCs are exceeded in the two following weeks).
▸ Stage 4: Confirmation of the epidemic (when thresholds are

exceeded in the 2 weeks following the pre-alert epidemic).
▸ Stage 5: End of the epidemic.

For the subsequent analyses, five epidemiological phases were
defined according to the different stages:
▸ Pre-epidemic (4 weeks preceding stage 3).
▸ Beginning of the epidemic (the first 4 weeks of stage 3).

▸ Ascending phase (from the 5th week following stage 3 to
4 weeks preceding the epidemic peak).

▸ Epidemic peak (from 3 weeks before to 3 weeks after the
peak).

Descending phase (the end of the epidemic).
For each territory, the raw data included weekly epidemio-

logical and meteorological data (table 1). For each week, the
number of CCs and BCCs were known as well as the positivity
rates of the blood samples, the values of local meteorological
indicators, and the variation in the epidemiological and
meteorological indicators. We defined contextual dimensions
using either the epidemic or non-epidemic periods. We used
3-month periods (ie, quarter years) for the non-epidemic
periods, and we used the epidemiological phases for the
epidemic periods. We defined ‘epidemic’ or ‘non-epidemic’
weeks as general contexts, and the ‘pre-epidemic’ or ‘1st quarter
of the year’ periods were denoted as minimal contexts in align-
ment with the hierarchies depicted in figure 2.

Each weekly value associated with a territory was called an
item (eg, a maximum temperature variation of <−3% meant
that the temperature decreased more than 3% compared to the
previous 4 weeks). An itemset it1= (i1…in) is a non-ordered set
of items (eg, events that occurred during the same week).
For example, a maximum temperature of 32.0–33.1°C, a
maximum temperature variation of <−3%, and a cumulative
rainfall of 85–158 mm is an itemset that indicates that for the
designated week, the maximum temperature was between 32°C
and 33.1°C, the maximum temperature decreased more than
3%, and the rainfall was between 85 and 158 mm.

Figure 1 Spatial distribution of geographic territories for the dengue fever analysis, French Guiana, 2006–2011.
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The second step consisted of transforming the raw data into
sequences of events. The aim of this step was to build sequences
by ordering the itemsets according to the week of their appear-
ance during the periods of interest for the epidemiology of
dengue.

The sequence St1=‘(maximum temperature variation (<
−3%), rainfall variation (>157%)) (number of clinical dengue
cases variation >33%)’ means that in territory T1, an increase
in dengue cases >33% was preceded by maximum temperature
decreases greater than 3% and associated with an increase in
rainfall >157%. In step 2, we generated a sequence of events
for territory 1 (see table 2).

We introduced constraints in this step to focus on more spe-
cific patterns that matched the specified domain constraints
defined by the epidemiological and meteorological experts.

A constraint is a list of regular expressions, exp, separated by
time intervalsj. An example of a constraint is (exp1)[time1]
(exp2)[time2]:::[timek-1](expk), with k as the length of the con-
straint. For example, let Pc be a constraint and a time unit corre-
sponding to a week, where Pc=(UN) [1–3](CC). In other
words, we extract all frequent patterns with a length of 2 (ie,
the number of itemsets) where the characteristic humidity (UN)
in the first itemset lasts for an interval of 1–3 weeks as well as

the number of CC. Table 2 provides some valid patterns accord-
ing to this constraint.

The objective of step 3 was to build sequential patterns.
Support for a pattern was obtained from the data sequences
defined in step 1. For example (see table 2), the pattern P ‘(e2
e5)(e1)(e4)’ was included in two data sequences for zone T1.
Thus, support(P)=2/4.

To obtain the most frequent patterns, we used the PrefixSpan
algorithm,43 which extracts all the frequent sequential patterns
according to the constraints defined. We only select patterns of
size 1–3 with temporal intervals of 1–2 weeks between two
itemsets. We also focus on patterns with at least one item
related to the number of dengue cases in the given time interval.
Support was calculated for all the minimal contexts of all the
frequent patterns extracted. We considered that a pattern must
have a support greater than 0.5 to be considered as a frequent
pattern in a given minimal context.

The difference between the support of the pattern obtained
in a context and the second highest support obtained in other
contexts was calculated to provide a ‘c-specificity’ score to quan-
tify the extent to which the pattern was specific to that
context.39 The sequential pattern extraction algorithms were
applied using Weka Data Mining software.44

Table 1 Example of raw data, dengue fever, French Guiana, 2006–2011

Territory Week General context Minimal context BCC variation (%) TX (°C) TX. variation (%) RR (mm)

T1 W2009/i−4 Non-epidemic 2nd quarter (−17; 0) (32.0–33.1) (−2; 0) (85–158)
W2009/i−3 Non-epidemic 2nd quarter (−17; 0) (30.3–31.2) <−3 (32–85)
– – – – – – –

W2009/i−1 Non-epidemic Pre-epidemic (33; 80) (30.3–31.2) (−2; 0) (158–327)
W2009/i Epidemic Beginning >80 <30.3 (−2; −10) (158–327)
W2009/i + 1 Epidemic Epidemic >80 (30.3–31.2) (−2; 0) (85–158)
– – Beginning – – – –

W2009/i + 4 Epidemic Epidemic (0; 33) (31.2–32.0) (0; 2) (32–85)
–

Epidemic peak
T2 W2010/i−4 Non-epidemic 2nd quarter (−17; 0) >33.1 (−2; 0) (32–85)

W2010/i−3 Non-epidemic 2nd quarter (−17; 0) (30.3–31.2) <−3 (32–85)
– – – – – – –

W2010/i−1 Non-epidemic Pre-epidemic (33; 80) (31.2–32.0) (−2; −10) (158–327)
W2010/i Epidemic Beginning >80 <30.3 (−2; −10 (85–158)
W2010/i + 1 Epidemic Epidemic (33; 80) (30.3–31.2) (−2; 0) (85–158)
– – Begin epidemic – – – –

W2010/i + 4 Epidemic – (−17; 0) (30.3–31.2) (0; 2) <32
Descending phase

BCC, biologically confirmed case; RR, cumulative rainfall; TX, maximum temperature.

Figure 2 Hierarchies of the epidemic
and non-epidemic periods of dengue
fever, French Guiana, 2006–2011.
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RESULTS
Overall dengue incidence
From the beginning of 2006 to April 2011, 39 587 CCs and
11 133 BCCs were recorded in French Guiana. The national
activity levels were strongly influenced by outbreak periods
(figure 3). As shown in figure 3, three major outbreaks occurred
during the study period. The average duration of these epi-
demics varied from 38 to 41 weeks.

Bivariate statistical analysis
During the study period, we found statistically significant posi-
tive correlations between dengue incidence and meteorological
variables during the epidemic years for each family of variables
(table 3, figure 4). The maximum correlation rates were
obtained after a 4–6-week lag during the epidemic years.

Contextual sequential patterns extraction
The extracted sequential patterns showed temporal associations
between local weather conditions, the evolution of dengue inci-
dence, and time periods in the various territories of French
Guiana.

Regardless of their position in the extracted sequential pat-
terns, the meteorological variables were considered to have a
relevant association; for example, an item included in an
extracted pattern was considered to be associated with an epi-
demiological context whether it was in the 1st, 2nd, or 3rd
itemset.

Outside epidemic periods, the 1st quarter of each year was
characterized by minimum relative humidity greater than the
median class (63–68%) (table 4). Low levels of incidence were
frequently observed during this quarter, which was also marked
by an increase in the number of clinical and BCCs without a
high c-specificity score considering the evolution of the number
of cases during outbreaks. This period was also marked by an
increase in rainfall that was frequently associated with the

appearance of the 1st isolated clusters. The different epidemics
in the study period all began during the 1st quarter of their
respective years.

The 2nd and 3rd quarters were frequently associated with an
increase in maximum temperatures, a decrease in the minimum
relative humidity, and low levels of dengue incidence. The 4th
quarter was marked by high maximum temperatures and low
levels of rainfall. All of these results were compatible with the
occurrence of the dry season. No specific evolution of dengue
incidence was observed during this period.

Considering the fact that epidemic-period contexts were
defined according to the epidemiological phases, items related
to dengue incidence were frequently found in the epidemio-
logical patterns (table 5). Nevertheless, our findings related to
these items were compatible with the epidemiological phases
defined by the local vector-borne disease expert committee.

The pre-epidemic periods were associated with a decrease in
the maximum temperature (2–10% from the mean of the previ-
ous 4 weeks), a decrease in global brilliance (11–50%), and an
increase in the minimum relative humidity (2–10%).

The beginning of an outbreak was frequently associated with
a 4-week lag during which there was a strong increase in the
minimum relative humidity (>40%), a decrease in the
maximum temperature (−2 to 10%) (after a peak observed 1 or
2 months before the start of the epidemic), high levels of cumu-
lative rainfall (158 –327 mm), and a very slight increase in the
maximum relative humidity. Similar to the pre-epidemic phase,
a decrease in global brilliance was associated with the beginnings
of the epidemics.

Importantly, epidemiological items included in the sequential
patterns of the first two epidemic-period contexts suggested a
premature evolution of the BCCs compared to the increase in
CCs before the ascending phase of the epidemic. Dengue
incidence-related items were frequently found in the sequential
patterns extracted from the epidemic period contexts.

Except for the increase in global brilliance (between 62% and
67%) at the pre-epidemic peak, the evolution of specific
weather conditions was not included in the sequential patterns
that were associated with the phases surrounding the epidemic
peak, where a predominance of the cumulative incidence
occurred.

DISCUSSION
Sequential pattern mining is an important method that has been
widely used by the data mining community in many different
types of applications. In this paper, we have presented the crit-
ical steps of a data-mining project which will allow better under-
standing and prediction of temporal dynamics of dengue fever

Table 2 Sequence of events for territory 1 for dengue fever,
French Guiana, 2006–2011

Territory Context Associated event sequences

T1 Inter-epidemic (e2 e3 e5)(e1)(e4)
Inter-epidemic (e5)(e2)(e4)
Pre-epidemic (e2 e5)(e1 e2)(e3 e4)
Epidemic (e3 e5)(e3)(e4)

Bold values are those selected in the extracted pattern cited in the example on the
previous page.

Figure 3 Weekly number of biologically confirmed and clinical cases of dengue fever and outbreak periods, French Guiana, January 2006–April
2011.

e236 Flamand C, et al. J Am Med Inform Assoc 2014;21:e232–e240. doi:10.1136/amiajnl-2013-002348

Research and applications



in French Guiana. In particular, we applied an algorithm for
contextual sequential pattern extraction to identify the most
important climatic factors related to dengue fever in French
Guiana.

Our results suggest that the local climate has major effects on
the occurrence of dengue epidemics in French Guiana and well
known climatic factors were found as determinants in outbreak
occurrence.

The correlation rates obtained from the clinical dengue inci-
dence rates were compatible with the rates obtained from bio-
logically confirmed dengue cases. The maximum correlation
rates were obtained after a 4–6-week lag during the epidemic
years. These findings are compatible with mosquito biology and
the viral transmission cycle.

Maximum temperature, minimum relative humidity, global
brilliance, and cumulative rainfall were identified as determi-
nants of dengue epidemics, and the intervals of their values
were quantified. For instance, the level of cumulative
rainfall was frequently associated with the beginning of out-
breaks (RR 158–327 mm), suggesting that dengue epidemics are
associated with a rainfall level that was relatively high but not
too extreme (which would destroy breeding sites via a ‘washing
effect’).

The approach we developed helped us to explore the dataset
by bringing various descriptive and analytical results together.
The contextual analysis allowed us to make comparisons
between temporal or spatial subgroups by identifying the most
discriminating categories and anticipating possible classifications
or typologies for situations. Compared with traditional models,
such an approach is particularly useful for two main reasons: it
can provide relevant insights that account for various temporal
intervals and spatial units, and it is quite appropriate for com-
paring situations that can constrain analysts to multiply stratified
analyses with traditional methods. The situations observed in
French Guiana were particularly heterogeneous in space (ie, a
small amount of the population lives in the Amazonian land
area where the presence of vectors is low, and the urban coastal

area is home to 90% of the population) and time (ie, different
seasons); thus, they were well suited to contextual approaches.

Another advantage is that the approach allows the simultan-
eous analysis of associations between many outcomes and
various explanatory variables. For instance, we studied the asso-
ciations between meteorological variables and CCs and BCCs
while also exploring reactivity and the evolution of one indica-
tor versus the others.

However, our study has several limitations. First, well-known
factors that were not included in our dataset may have contribu-
ted to the epidemic dynamics in the different territories. We did
not include any direct measurements of vector behavior as input
variables; for example, mosquito prevalence, vector behavior,
the presence of potential or confirmed breeding sites, or the
prevalence of the dengue virus in the vector. Although this
information is particularly important for estimating the trans-
mission risk of vector-borne diseases, it requires intensive finan-
cial, laboratory, and technical resources that are usually not
available in routine practice in the territory and for long time
periods.

Other factors that can play a key role in transmission, such as
environmental characteristics, social and demographic indica-
tors, or the immune status of host populations, could not be
explored in our study because the data were unavailable or not
available in a temporal and spatial format. In the absence of
seroprevalence data, future studies need to consider the popula-
tion age distribution and human movement patterns to approxi-
mate the role of the immune status of the population. An older
and thus more immune population reduces the probability of a
vector feeding on a susceptible or infectious person, both of
which drive transmission.

Second, the defined contexts were based on temporal periods
and did not allow for the identification of possible spatial differ-
ences between the climatic drivers of dengue in the various
territories.

Future work should integrate additional variables and create
new contexts. Remote sensing data are currently being collected

Table 3 Correlations between meteorological variables and dengue incidence

Non-epidemic years Epidemic years

Lag2wk Lag3wk Lag2wk Lag3wk Lag4wk Lag6wk Lag8wk

RR 0.06 0.01 0.485*** 0.498*** 0.509*** 0.498*** 0.375***
−0.214* 0.275* 0.456*** 0.465*** 0.486*** 0.474*** 0.384***

TN 0.105 0.171 0.501*** 0.515*** 0.516*** 0.483*** 0.436***
−0.041 0.04 0.521*** 0.522*** 0.528*** 0.487*** 0.428***

TX −0.206* −0.18* −0.678*** −0.702*** −0.716*** −0.646*** −0.502***
0.144 0.191* −0.693*** −0.703*** −0.721*** −0.670*** −0.549

INST −0.167 −0.098 −0.591*** −0.632*** −0.649*** −0.634*** −0.538***
0.152 0.221* −0.573*** −0.598*** −0.620*** −0.607*** −0.538***

FXI 0.284** 0.204* 0.338*** 0.378*** 0.405*** 0.435*** 0.431***
0.025 0.009 0.397*** 0.411*** 0.441*** 0.481*** 0.475***

UN 0.191* 0.114 0.563*** 0.584*** 0.611*** 0.568* 0.454***
−0.200* −0.262* 0.519*** 0.535** 0.556*** 0.514*** 0.405***

UX −0.252** −0.218* −0.269** −0.268** −0.260** −0.234** −0.192*
−0.197* −0.226** −0.496*** −0.490*** −0.479*** −0.482 −0.457***

GLOT −0.230*** −0.166** −0.527*** −0.580*** −0.622*** −0.626*** −0.562***
0.067 0.186* −0.502*** −0.540*** −0.582*** −0.600*** −0.543***

Spearman’s rank correlation test (r, significance score of p value).
The first row represents correlation between the meteorological variable and clinical cases (CC) incidence. The second row represents correlation with biologically confirmed cases (BCC)
incidence.
Significance score: *p<10−2, **p<10−3, ***p<10−4.
FXI, wind strength; GLOT, global brilliance; INST, sunstroke average; Lag2wk, lag 2 weeks; RR, cumulative rainfall; TN/TX, minimum and maximum temperature; UN/UX, minimum and
maximum relative humidity.
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and may provide very useful information about environmental
factors, such as types of habitats and types of areas (city centers,
spontaneous settlements, road borders, collective buildings,
individual houses with gardens, etc). Future studies should also
include geographic areas as contexts to estimate the existing dif-
ferences between the various regions of French Guiana. The
results will help to target the territories in which the predictive
models could be implemented to anticipate the risk of transmis-
sion of dengue fever. Creating hierarchies between the various
contexts will enable researchers to estimate the contributions of
the spatial or temporal units and consequently differentiate the
most relevant contexts for developing predictive models.
Among other possible future developments, we plan to take into
account the notion of neighborhood in the extraction of the
sequential patterns. A new method recently described by
Alatavista et al45 highlighted an extension of sequential patterns,
called new spatio-sequential patterns, for analyzing the

evolution of areas considering their neighboring environment.
Furthermore, the extraction could be used with the aim of
determining the geographic clustering in French Guiana to iden-
tify the relevant spatial units for characterizing, monitoring, and
predicting the local transmission of dengue. Accurate prediction
of dengue outbreaks may lead to useful public health interven-
tions. The final aim of our research project will be the develop-
ment of predictive tools that allow for spatial identification of
specific high risk areas whilst taking into account the temporal
dynamics of dengue transmission.

CONCLUSION
Dengue remains a major public health issue in French
Guiana. Our findings highlight the utility of the data mining
approach to analyze disease surveillance data on a temporal
and a spatial scale in relation to climatic, social, and environ-
mental variables. Despite the heightened awareness among

Figure 4 Weekly incidence of dengue fever (biologically confirmed cases, BCC) in French Guiana from April 2006 to April 2011 compared to crude
meteorological variables for the same period: (A) cumulative rainfall; (B) minimum temperature; (C) maximum temperature; (D) sunstroke average;
(E) wind strength; (F) minimum relative humidity; (G) maximum relative humidity; (H) global brilliance.
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health authorities of the importance of dengue prevention
and vector control, various challenges still exist to better
understand and accurately predict dengue epidemics. Better
understanding of dengue epidemics is necessary for public

health interventions to mitigate the effect of these outbreaks,
particularly in areas where resources are limited and where
the medical infrastructure may become overwhelmed by sig-
nificant epidemics.

Table 4 Non-epidemic contextual sequential patterns

Minimal context Non-epidemic associated sequential patterns Support C-specificity

1st quarter (non-epidemic period) (UN (63–68%)) (RR (85–158 mm)) 0.72 0.22
(UN (63–68%)) (TX<30°C) 0.67 0.57
(UN (63–68%)) (UN>68%) 0.64 0.17
(UN (63–68%)) (Var_CC>33%) 0.64 0.14
(UN (63–68%)) (RR (158–327 mm)) 0.57 0.09
(UN (63–68%)) (Var_BCC>33%) 0.64 0.07

2nd quarter (non-epidemic period) (Var_TX>2%) (UN>68%) 0.59 0.19
(Var_TX>2%; Var_UN>7%) 0.74 0.19
(Var_TX>2%; BCC (0;2)) 0.74 0.09
(TX (30.3–31.2°C)) 0.89 0.08
(Var_TX>2%) (TN (23.2–23.8°C)) 0.63 0.08
(Var_TX>2%) (Var_FXI<7%) 0.63 0.08

3rd quarter (non-epidemic period) (Var_TX>2%) (RR<32 mm) 0.87 0.42
(FXI<8.7 km/h) 0.65 0.14
(Var_TX (0.7%; 1.9%)) 0.94 0.13
(Var_UN<−6%) 0.97 0.12
(CC=0) 0.87 0.11
(TN (22.4–22.8°C)) 0.74 0.11

4th quarter (non-epidemic period) (TX>33.1°C)) (Var_TX (−2–0%)) 0.85 0.59
(TX>33.1°C)) (TX (32.0–33.1°C)) 0.76 0.56
(TX>33.1°C)) (Var_UN>7%) 0.82 0.53
(TX>33.1°C)) (Var_BCC (−17–0%)) 0.79 0.27
(TX>33.1°C)) 0.94 0.16
(TX>33.1°C) RR<32 mm) 0.82 0.11

BCC, biologically confirmed case; CC, clinical case; RR, cumulative rainfall; TN/TX, minimum and maximum temperature; UN/UX, minimum and maximum relative humidity.

Table 5 Epidemic contextual sequential patterns

Minimal context Epidemic associated sequential patterns Support C-specificity

Pre-epidemic (4-week period) (Var_TX°(−2% to −10%), CCi<1‰, BCCi<0.3‰) (CCi<1‰, BCCi<0.3‰) 0.57 0.57
(Var_UN (2–7%), CCi<1‰, BCCi<0,3‰) 0.67 0.52
(CCi<1‰, BCCi<0.3‰, Var_GLOT (−11% to −50%)) (CCi<1‰, BCCi<0.3‰) 0.57 0.57
(Var_TX°(−2% to −10%), CCi<1‰, BCCi<0.3‰) 0.62 0.48
(CCi<1‰, BCCi<0.3‰) (Var_BCC>40%, CCi<1‰, BCCi<0.3‰) 0.57 0.48
(Var_UX (0.1–0.4%) CCi<1‰, BCCi<0.3‰)) 0.57 0.43
(Var_UN>7%, CCi<1‰, CCi<1‰) 0.57 0.38
(Var_BCC>40%, CCi<1‰, BCCi<0.3‰) (CCi<1‰, BCCi<0.3‰) 0.57 0.38

Beginning of epidemic (4-week period) (Var_BCC>40%) (BCCi (0.3–1.9‰)) 0.76 0.56
(BCCi (0.3–1.9‰)) (BCCi (0.3–1.9‰)) 0.86 0.51
(BCCi (0.3–1.9‰)) (Var_UX (0.1%; 0.4%))> 0.71 0.46
(Var_BCC>40%) (RR (158–327 mm)) 0.67 0.18
(Var_BCC>40%) (Var_CC (0–33%) 0.81 0.16
(Var_BCC>40%) (Var_UN (7–40%)) 0.67 0.09
(Var_BCC>40%) (UN (62–67%)) 0.57 0.05
(Var_GLOT>12%) 0.62 0.02
(Var_BCC>40%) (Var_UX (0.1–0.4%)) 0.62 0.01
(UX<96%) 0.57 0.01

Epidemic peak (7-week period) (BCC>8) (TX (30.3°; 31.2°), BCC>8) 0.6 0.25
(BCCi (1.8‰; 4.3‰)) (BCCi (1.8‰; 4.3‰)) 0.6 0.17
(UN (62–67%)) (BCC>8) 0.65 0.10
(Var_BCC (1–40%)) 0.8 0.04
(Var_GLOT>(3–12%))) 0.65 0.04

Descendant phase (Var_BCC<−33%) (Var_UN (2–7%)) 0.85 0.30
(Var_BCC<−33%) (Var_TX (0%)) 0.85 0.30
(Var_BCC<−33%) (Var_BCC<−33%) 0.90 0.23
(Var_CC (−4–0%)) 0.70 0.21
(Var_BCC<−33%) (Var_TX>2%)> 0.85 0.20

BCC, biologically confirmed case; CC, clinical case; GLOT, global brilliance; RR, cumulative rainfall; TX, maximum temperature; UN/UX, minimum and maximum relative humidity.
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