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ABSTRACT
Objective Drug–drug interactions (DDIs) are an
important consideration in both drug development and
clinical application, especially for co-administered
medications. While it is necessary to identify all possible
DDIs during clinical trials, DDIs are frequently reported after
the drugs are approved for clinical use, and they are a
common cause of adverse drug reactions (ADR) and
increasing healthcare costs. Computational prediction may
assist in identifying potential DDIs during clinical trials.
Methods Here we propose a heterogeneous network-
assisted inference (HNAI) framework to assist with the
prediction of DDIs. First, we constructed a comprehensive
DDI network that contained 6946 unique DDI pairs
connecting 721 approved drugs based on DrugBank data.
Next, we calculated drug–drug pair similarities using four
features: phenotypic similarity based on a comprehensive
drug–ADR network, therapeutic similarity based on the
drug Anatomical Therapeutic Chemical classification
system, chemical structural similarity from SMILES data,
and genomic similarity based on a large drug–target
interaction network built using the DrugBank and
Therapeutic Target Database. Finally, we applied five
predictive models in the HNAI framework: naive Bayes,
decision tree, k-nearest neighbor, logistic regression, and
support vector machine, respectively.
Results The area under the receiver operating
characteristic curve of the HNAI models is 0.67 as
evaluated using fivefold cross-validation. Using
antipsychotic drugs as an example, several HNAI-predicted
DDIs that involve weight gain and cytochrome P450
inhibition were supported by literature resources.
Conclusions Through machine learning-based
integration of drug phenotypic, therapeutic, structural, and
genomic similarities, we demonstrated that HNAI is
promising for uncovering DDIs in drug development and
postmarketing surveillance.

INTRODUCTION
Drug–drug interactions (DDIs) occur during the
co-administration of medications. They are a
common cause of adverse drug reactions (ADRs)
and lead to increasing healthcare costs.1–3 Many
DDIs are not identified during the clinical trial
phase and are reported after the drugs are
approved for clinical use. Such DDIs often lead to
patient morbidity and mortality, accounting for 3–
5% of all inpatient medication errors.4 Clinical
DDIs can also cause serious social and economic
problems. Thus, there is an urgent need to detect
or determine DDIs before medications are
approved or administered.

Currently, DDI prediction focuses on testing meta-
bolic profiles, for instance for cytochrome P450
(CYP450)5–7 or transporter-associated8 pharmacoki-
netic interactions. However, the limited ability to
identify DDIs using experimental approaches is a
major obstacle during drug development.9 Due to the
lack of comprehensive experimental data, high study
cost, long experimental duration, and animal welfare
considerations, the use of computational prediction
and assessment of DDIs has been encouraged.10 11

During the past decade, several methods have been
designed and made available for the prediction of
potential DDIs.12–21 Duke et al12 combined a litera-
ture discovery approach with analyses of a large elec-
tronic medical record database to predict and
evaluate new DDIs. Their method enables the detec-
tion of clinically significant DDIs and also evaluates
the possible molecular mechanisms of the predicted
DDIs. Huang et al13 developed a metric S-score
method with 82% accuracy and a 62% recall rate to
predict pharmacodynamic DDIs. Tari et al14 pro-
posed a method that integrated text mining and auto-
mated reasoning to predict DDIs, and found that
81.3% (256/315) of the interactions were correctly
predicted. Gottlieb et al15 proposed the inferring
drug interactions (INDI) method, which infers both
pharmacokinetic and CYP450-associated DDIs as
well as pharmacodynamic DDIs. High specificity and
sensitivity levels were found in cross-validation when
INDI was used. Cami et al18 presented a predictive
pharmacointeraction networks (PPIN) method to
predict DDIs by utilizing the network topological
structure of all known DDIs as well as other intrinsic
and taxonomic properties of ADRs. A 48% sensitiv-
ity and 90% specificity were found with the PPIN
model. Recently, network pharmacology approaches,
such as a network-based drug development strategy,
have created a novel paradigm for drug discovery.16
22–25 Therefore, development of a machine learning-
based model using multi-dimensional drug properties
might be a promising strategy to predict unknown
DDIs.
In this study, we propose a heterogeneous

network-assisted inference (HNAI) framework
(figure 1) for large-scale prediction of ligand–
receptor DDIs that may occur at previously iden-
tified drug receptor sites. First, we constructed a
comprehensive DDI network which contained
6946 high-quality, unique DDI pairs connecting
721 approved drugs from the DrugBank database.
Next, we calculated four types of drug–drug simi-
larities as the features of each drug–drug pair.
Three of these types of drug similarities (pheno-
typic, therapeutic, and structural similarities) were
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calculated using a previous method.25 Additionally, we intro-
duced a new type, the drug’s genomic similarity, based on a
large drug–target interaction (DTI) network built from
DrugBank26 and the Therapeutic Target Database (TTD).27

Finally, we applied five machine learning algorithms to serve
as predictive models in the HNAI framework: naive Bayes
(NB), decision tree (DT), k-nearest neighbors (k-NN), logistic
regression (LR), and support vector machine (SVM). Using
fivefold cross-validation, we demonstrated that HNAI yielded
high performance. In our previous work,25 we have shown
the potential value of the integration of a drug’s phenotypic,
therapeutic, and structural similarities for DTI prediction.
Here, we extended this method to predict DDIs using
machine learning-based integration of drug phenotypic, thera-
peutic, structural, and genomic similarities. There are three
improvements in this study compared with the previous
work25: (i) we introduced an additional important drug simi-
larity type (genomic similarity) and built a predictive HNAI
framework by combining the drug genomic similarity and
three previously reported drug similarities25 for DDI predic-
tion; (ii) we systematically evaluated five machine learning
algorithms and built the predictive models in the HNAI
framework; and (iii) although we used the existing network
construction method25 to calculate drug phenotypic similarity,
the previous drug–ADR network was only built using data
from MetaADEDB.28 In this study, we built a more compre-
hensive drug–ADR network by integrating data from
MetaADEDB and the FDA Adverse Events Reporting System
(FAERS) created by the US Food and Drug Administration
(US FDA). Collectively, our work could provide an alternative
tool and may have the potential to improve ligand–receptor
DDI prediction in drug development and postmarketing
surveillance.

METHODS
Data collection
DDI network
We collected DDI data from the DrugBank database26 (V.3.0;
http://www.DrugBank.ca/). More than 16 453 DDI pairs exist
for approved and experimental drugs. These DDIs can be cate-
gorized into three types: pharmaceutical, pharmacokinetic, and
pharmacodynamic interactions. We excluded the following
drugs that cannot be used to calculate four types of similarities:
antibody drugs, inorganic salts, and drugs that do not have
Anatomical Therapeutic Chemical (ATC) classification system
codes or known target information or known ADR information.
Thus, we focused on predicting the pharmacokinetic and phar-
macodynamic interactions (ligand–receptor DDIs) that may
occur at previously identified ligand–receptor sites. In total,
6946 high-quality, unique ligand–receptor DDI pairs connecting
721 approved drugs are compiled for model construction and
validation. We retrieved SMILES data for drugs from the
DrugBank database, and then converted them into canonical
SMILES using Open Babel29 (V.2.3.1).

Drug–ADR associations and their network
We prepared two datasets. The first drug–ADR dataset was down-
loaded from a recently published database, MetaADEDB.28

MetaADEDB is a comprehensive database of ADRs that annotates
more than 520 000 drug–ADR associations covering 3059 unique
compounds (including 1330 drugs) and a total of 13 200 ADR
items. These annotations are based on data from the integration of
three resources: CTD,30 SIDER31 (V.2.0), and OFFSIDES.32 Here,
we only retrieved data with clinically reported evidence. The
second dataset was obtained from FAERS, which was created by
the US FDA. We retrieved data from the first quarter of 2009
through the fourth quarter of 2012 (zipped file names:

Figure 1 The heterogeneous
network-assisted inference (HNAI)
framework for predicting drug–drug
interactions (DDI). (A) Collection of a
comprehensive gold standard DDI
dataset from the DrugBank database
and construction of a DDI network. (B)
Calculation of four drug–drug pair
similarities. Phenotypic similarity is
based on a comprehensive drug–
adverse drug reaction network,
therapeutic similarity is based on the
drug Anatomical Therapeutic Chemical
(ATC) classification system, structural
similarity is derived from chemical
structural data, and genomic similarity
is based on a large drug–target
interaction network from DrugBank
and the Therapeutic Target Database.
The drug phenotypic, therapeutic, and
structural similarities were calculated
using a previously published method.25

(C) Construction and evaluation of
machine learning-based HNAI models.
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aers_ascii_20xxqx.zip, web site: http://www.fda.gov/Drugs/
GuidanceComplianceRegulatoryInformation/Surveillance/Adverse
DrugEffects/ucm083765.htm). In the zip files, each ADR report
was assigned an Individual Safety Report (ISR) ID. We retrieved
details of the reports from several separate files using each ISR
ID. In each file, the ADR suspect drugs are classified into the four
categories: primary suspect drug (PS), secondary suspect drug
(SS), concomitant (C), and interacting (I). Here, we only used
drugs labeled PS or SS to collect drug–ADR associations accord-
ing to the work by Takarabe et al.33 We annotated all ADR terms
and drugs using the Unified Medical Language System (UMLS)
and Medical Subject Headings (MeSH) vocabularies. Finally, we
obtained the unique drug-ADR associations by removing the
duplicated drug-ADR associations between FAERS and
MetaADEDB for drug phenotypic similarity calculation using a
previous method.25

DTIs and their network
We collected DTI data from two databases, DrugBank26 and
TTD.27 In total, we obtained 2912 DTI pairs connecting 674
unique target proteins and 721 approved drugs. We annotated
the detailed therapeutic information for all drugs based on their
ATC codes from the DrugBank database.

Measurement of four types of similarities
The phenotypic similarity SPðdi; djÞ, therapeutic similarity
STðdi; djÞ, and chemical structural similarity SSðdi; djÞ were cal-
culated according to the previous work.25 Additionally, we
introduced a genomic similarity SGðdi;djÞ to describe a drug–
drug pair in this study. For genomic similarity, each drug is
coded using target protein bit vectors (figure 1C). Each bit
represents one target protein. If a target protein is associated
with a drug in the DTI network, the corresponding bit will be
set to ‘1’, otherwise ‘0’. Then, the SGðdi; djÞ between drug di
and dj is calculated using the Tanimoto coefficient34 by inputting
the drug’s target protein bit vectors.

Development of predictive models using HNAI
Figure 1 illustrates the entire computational framework of
HNAI. We collected 6946 high-quality, unique drug–drug pairs
as the positive DDI set. Here, the positive DDI pairs are clinic-
ally reported DDIs. We then employed the same number (6946)
of non-DDI pairs that were randomly selected from the 721
approved drugs to serve as a negative DDI set based on previous
work15 (see online supplementary table S1). Each drug–drug
pair is represented by four different similarities: SPðdi;djÞ,
SSðdi;djÞ, SSðdi; djÞ, and SGðdi;djÞ. Finally, we implemented the
predictive models in HNAI using five machine learning algo-
rithms: NB, DT, k-NN, LR, and SVM, respectively. Four of
these algorithms (NB, DT, k-NN, and LR) are implemented in
Orange Canvas (V.2.0b; http://www.ailab.si/orange/). We built
the SVM model using the LIBSVM package (V.3.1).35 We briefly
describe these algorithms below.

Naive Bayes
Bayesian algorithms classify instances in a dataset using the equal and
independent contributions of their attributes.36 Thus, the NB classi-
fier estimates the posterior probability using the following equation:

PðCijXÞ ¼ pCi
pðXjCiÞP

jpCj
pðXjjÞ ð1Þ

C4.5 decision tree
C4.5 DT constructs a DT using the same steps as Iterative
Dichotomiser 3 (ID3) using a set of training data. The elements
of the tree generated by ID3 and C4.5 DT include leaf and deci-
sion nodes. The leaf denotes the class (eg, DDI and non-DDI)
and the decision node specifies the test to be implemented on
four drug–drug pair similarities; there is one branch and one
sub-tree for each possible result of the test.37

k-Nearest neighbors
The k-NN algorithm categorizes drug–drug pairs using the
closest training examples in the four drug–drug pair similarity
spaces. Here, we used a hamming distance matrix to measure a
nearness and implemented the standard protocol of 3-NN using
three steps: (i) to calculate the distances between an unknown
drug–drug pair and all drug–drug pairs in the training set; (ii) to
select three drug–drug pairs that are most similar to the drug–
drug pair y from the training set based on the calculated
hamming distances; and (iii) to categorize drug–drug pair y into
the group (eg, DDI or non-DDI) to which the majority of the
three drug–drug pairs belong.

Logistic regression
The LR algorithm is used to estimate empirical values of the
parameters in a qualitative response model using a logistic func-
tion.38 In a binary LR, the outcome is set as either ‘positive
(DDI)’ or ‘negative (non-DDI)’.

Support vector machine
Cortes and Vapnik39 developed the SVM algorithm for pattern
recognition in order to minimize the structural risk under the
frame of the Vapnik-Chervonenkis (VC) theory. In this study,
each drug–drug pair is represented by an Eigenvector t, which
has four components using the four similarities: SPðdi;djÞ,
SSðdi;djÞ, SSðdi;djÞ, and SGðdi; djÞ(figure 1C). The category label
y was added in SVM training. The ith molecule in the dataset is
defined as Mi=(ti, yi), where yi=1 for the ‘DDI’ category and
yi=−1 for the ‘non-DDI’ category. SVM builds a classifier
according to the following equation:

fðtÞ ¼ sgn
1
2

Xn

i¼1
aiKðti; tÞ þ b

� �
ð2Þ

In equation 2, αi is the coefficient to be trained for molecule i
and K is a kernel function. Parameter αi is trained by maximiz-
ing the Lagrangian expression, as below:

maximize
ai

Xn

i¼1
ai � 1

2

Xn

i¼1

Xn

j¼1
aiajyiyjKðti; tÞ

subject to :
X
yi¼1

yiai ¼ 0; 0 � ai � C; ð3Þ

Here, we used the Gaussian radial basis function. We trained the
different kernel parameter γ and penalty parameter C based on
the training set using a grid search strategy by fivefold cross-
validation to obtain an optimal SVM model. Additionally, we
used a Bayesian approach for the SVM model to generate a
probability estimation for each drug–drug pair class in a binary
classifier as described in a previous work.6

Evaluation of HNAI models
In this study, we used the fivefold cross-validation techniques to
evaluate the performance of all models. In a fivefold cross-
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validation, the entire dataset is divided equally into five cross-
validation splits. Within each cross-validation step, the model is
trained on a set of four cross-validation splits. The fifth sub-
sample set is then used as an internal validation set (test set). We
then used the receiver operating characteristic (ROC) curve40 to
evaluate the performance of each model.

Statistical analysis and network visualization
We calculated network topological parameters (eg, degree) and
built the network graph using Cytoscape (V.2.8).41 We per-
formed the statistical analysis (eg, Fisher’s exact test and
Wilcoxon’s test) using the R platform (V.3.01; http://www.
r-project.org/).

RESULTS
Construction of a network with known DDI
We compiled a large ligand–receptor DDI dataset from the
DrugBank database to serve as the gold standard for model
evaluation in the HNAI. This dataset included 6946 DDI pairs
connecting 721 US FDA-approved small molecular drugs (see
online supplementary table S1). In figure 2, drugs are grouped
by first-level ATC codes. We found that most DDIs occur in
more than one class of drugs based on first-level ATC codes. For
example, we found 487 drugs with degrees larger than 5 in the
DDI network. In total, 106 of the 487 drugs were grouped
within the cardiovascular system (green, p=2.8×10−5, Fisher’s
exact test). In addition, the average degree of 173 nervous
system drugs (purple) is 25.8, which is significantly higher than
the 17.2 found for 548 non-nervous system drugs
(p=3.3×10−4, Wilcoxon’s test). Collectively, cardiovascular
system and nervous system drugs have a high risk of DDIs.

The DDI network is represented graphically in figure 3 using
the grid layout from Cytoscape. It includes 6946 high-quality
DDI pairs connecting 721 approved drugs. In figure 3, a node
represents a drug and an edge denotes an association between
two drugs that have clinically reported or literature curated
DDIs. Each node is color-coded based on the first-level ATC
codes. The average drug degree in this network was 19.3, and
the degree distribution is a power-law distribution (y ¼ axb,
a=94.0, b=−0.19). The nine most connected drugs in the DDI

network were voriconazole (degree=203), triprolidine (164),
warfarin (137), treprostinil (126), acenocoumarol (116), trama-
dol (108), ritonavir (86), cimetidine (80), and ergonovine (30)
(figure 3). In order to interpret this network, we investigated
the distribution of four similarities in positive DDI pairs and
random DDI pairs (see online supplementary table S1). The
positive DDI pairs are clinically reported or literature curated
interactions. We found that the similarities of positive DDI pairs
are significantly higher than those of random DDI pairs (see
online supplementary figure S1). For structural similarity, DDI
pairs are more enriched with high structural similarity than
random DDI pairs (p=1.4×10−109, Fisher’s exact test; see
online supplementary figure S1A). Moreover, the average simi-
larities (phenotypic, therapeutic, and genomic) of positive DDI
pairs are significantly higher than those of random DDI pairs
(p<2.2×10−16, Wilcoxon’s test; see online supplementary
figure S1). Collectively, these investigations confirm the hypoth-
esis that drugs that are similar (ie, measured by phenotypic,
therapeutic, structural, and genomic features) to each other tend
to have a high risk of DDIs.

Performance of HNAI models
HNAI implements several predictive models. The HNAI model
hypothesis asserts that if two drugs have similar chemical struc-
tures, share a similar target protein and similar ADRs, and have
similar therapeutic purposes, they have a high probability of
DDIs (see online supplementary figure S1). We compiled 6946
high-quality clinically reported DDIs to serve as positive DDI
pairs. We then constructed the balanced non-DDI pairs (named
negative DDI pairs; see online supplementary table S1) to build
predictive machine learning models. The area under the ROC
curve (AUC) ranged from 0.565 to 0.666 using the five different
HNAI models and the fivefold cross-validation evaluation in
figure 4. Because the NB, SVM, and LR algorithms utilize the
prior of the positive and negative DDIs during model building,
the ratio of positive to negative classes might affect the perform-
ance of the model. In order to investigate the influence on per-
formance of the unbalanced positive and negative classes, we
rebuilt the models using two unbalanced datasets. As shown in
online supplementary figure S2, we found that the performance

Figure 2 The degree distribution of
drugs in the drug–drug interaction
(DDI) network categorized by the first
level of the drug Anatomical
Therapeutic Chemical (ATC)
classification system. Drugs are
grouped by their ATC classification
system. We investigated how specific
DDIs occur within ATC classes. We
found that most DDIs occurred in more
than one class of drugs based on
first-level ATC codes. 487 drugs with
degrees above 5 were found in the DDI
network. Among 487 drugs, 106 drugs
were grouped within the
cardiovascular system (green,
p=2.8×10−5, Fisher’s exact test). In
addition, the average degree of 173
nervous system drugs (purple) is 25.8,
which is significantly higher than the
17.2 found for 548 non-nervous
system drugs (p=3.3×10−4, Wilcoxon’s
test).
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of a balanced dataset is marginally higher than that of an unba-
lanced dataset. Of the five different machine learning algo-
rithms, SVM had the best performance (figure 4). This
evaluation indicated that SVM might be a good choice for DDI
prediction, which coincides with the previous work.6 39 42 The
SVM algorithm typically uses a portion of the training set as
support vectors to build the classification hyper-plane. If data
bias occurs within the non-support vectors, it will not affect the
performance of the SVM model. In contrast, k-NN uses the
entire training set for model building. Any error or data bias in
the training set will influence the model’s performance.
Although NB and DT had the worst performances, their advan-
tages include the low calculation cost and simplicity in their
practical applications.

Case study: discovery of potential DDIs for antipsychotic drugs
To predict novel potential DDIs, we employed a global training
set that included 6946 positive DDI pairs and an equally sized,

randomly generated set of negative DDI pairs that are not
known to interact (see online supplementary table S1). A global
HNAI model was built using the SVM algorithm to predict the
possible drug–drug pairs, including drugs without known DDIs.
We predicted 81 580 new possible DDIs connecting 729
approved drugs (see online supplementary table S2) using the
default probability score of 0.5 based on the previous work.6 7

Here, we used the higher probability score of 0.8 to define the
high-confidence predicted DDIs. Among 81 580 new predicted
DDIs, 559 predicted DDIs have a probability score of greater
than 0.8, suggesting that they are potential DDI candidates that
could be further validated using clinical data or electronic
health records (EHRs). Here, we explored some features of the
predicted DDIs using antipsychotic drugs as examples.

For antipsychotic drugs, we predicted 36 DDIs with probabil-
ity scores above 0.8 using the global SVM-based HNAI model
(see online supplementary table S3). In addition, we collected
798 clinically reported DDI pairs for 43 antipsychotic drugs

Figure 3 The drug–drug interaction (DDI) network. The network contains data collected from the DrugBank database, which included 6946 DDI
pairs connecting 721 approved drugs. Drug nodes are colored according to the first-level of their Anatomical Therapeutic Chemical classification. The
size of a drug node reflects the degree of the drug in the network. The distribution of four similarities in positive DDI pairs and random DDI pairs is
provided in online supplementary figure S1. We found that the similarities among positive DDI pairs were significantly stronger than those of
random DDI pairs.
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from DrugBank. To further explore the molecular mechanisms of
antipsychotic DDIs, we collected 332 experimentally validated
DTI pairs from DrugBank. Those DTI pairs connected 44 target
proteins and 43 antipsychotic drugs (see online supplementary
table S3). We constructed a DDI and DTI network for these 43
antipsychotic drugs as shown in figure 5. We then examined the
possible molecular mechanisms of antipsychotic DDIs using this
network. In DrugBank and TTD, the average number of target
proteins for 721 approved drugs was 4.0 (2912/721). The
average number of target proteins for 43 antipsychotic drugs was
7.7 (332/43), which is significantly higher than the average
number of 3.8 for non-antipsychotic drugs in DrugBank and
TTD (p=3.1×10−6, Wilcoxon’s test). Thus, antipsychotic drugs
bind with multiple proteins, for example, polypharmacology.
The effects of antipsychotic drugs are characterized by their
antagonistic profiles and high affinity for dopamine receptors,
serotonin, histamine receptor H1, muscarinic receptors, and
adrenergic receptors.43 44 The polypharmacology of anti-
psychotic agents may help explain the occurrence of particular
DDIs or ADRs. High binding affinity at muscarinic receptors is
linked to several ADRs, including dry mouth, constipation, and
blurred vision, whereas high binding affinity at the histamine H1

receptor is linked to weight gain.43 44

In this work, clozapine (DrugBank ID DB00363) was predicted
to interact with olanzapine (see online supplementary table S3).
Clozapine and olanzapine are often co-prescribed during clinical
treatment for clozapine-resistant schizophrenia.45 46 To validate
the possible DDIs between clozapine and olanzapine, we systemat-
ically examined their DTI profiles. The binding affinities of cloza-
pine and olanzapine to the histamine H1 receptor ranged from 1
to 10 nmol.43 Thus, the co-administration of clozapine and olan-
zapine increases the synergistic effects of the histamine H1 recep-
tor that is linked to weight gain. Previous studies found that
patients whose treatments included co-administered clozapine and
olanzapine had the greatest weight gain.43 47

Ziprasidone (DrugBank ID DB00246) was the fifth atypical
antipsychotic drug approved by the US FDA in 2001.
Ziprasidone has a modest effect on the electrical activity of the
heart, which results in an increased risk of arrhythmias due to
additive QTc-prolonging effects.26 Thus, a drug that affects the

QT interval could further increase the QTc-prolonging effects
of ziprasidone. Chintalgattu et al48 found that a multi-target
receptor tyrosine kinase inhibitor, sunitinib, has a high risk of
causing cardiac dysfunction. Furthermore, the co-administration
of sunitinib and ziprasidone will increase the risk of cardiotoxi-
city. Herein, ziprasidone was predicted to have a DDI with cita-
lopram (DrugBank ID DB00215) according to the global SVM
model in HNAI. To validate possible drug interactions between
ziprasidone and citalopram, we surveyed CYP450-related meta-
bolic profiles. Ziprasidone was reported to be an inhibitor of
CYP2D6, 2C19, 2C9, and 3A4. Citalopram was reported as a
substrate of CYP2C19, 2D6, and 3A4.49 Therefore, ziprasidone
and citalopram have a high risk of causing CYP450-associated
DDIs when they are co-administered. In addition, we examined
predicted DDIs among drugs from different families. As shown
in online supplementary table S3, ziprasidone was predicted to
have a DDI with aspirin. The previous study revealed that
co-administration of ziprasidone and aspirin causes a risk of
severe cardiotoxicity in elderly patients.50 Collectively, our
HNAI framework might predict possible DDIs among drugs
from different families.

DISCUSSION
Understanding DDIs is an essential step in drug development and
drug co-administration. Currently, the US FDA and pharmaceutical
companies are interested in the development and application of
computational prediction and assessment of DDIs.11 In this work,
we developed a HNAI framework and employed five predictive
machine learning models for DDI prediction (figure 1). During the
past decade, several computational methods have been reported for
computational DDI prediction.12–21 Compared to previous
methods, one advantage of our HNAI is that its models are built
only by utilizing four similarities as features of each drug–drug
pair. Although several reported models have higher performance
than our method, those models are constructed using
high-dimensional features, thereby increasing the complexity and
‘black-box’ of their models. The method in Vilar et al20 was based
on molecular structural similarity information derived from
fingerprint-based modeling. Using the data from the earlier version
of the DrugBank database for evaluation, they reported an overall
sensitivity of 0.68, specificity of 0.96, and precision of 0.26.
Tatonetti et al19 built eight LR models to predict DDIs involved in
eight types of ADRs: high cholesterol, renal impairment, diabetes,
liver dysfunction, hepatotoxicity, depression, and suicide. The AUC
value ranged from 0.51 to 0.71 for eight models as evaluated using
one validation set from the Veterans Affairs Hospital in Arizona. In
this work, we built the HNAI framework with a satisfactory per-
formance for DDI prediction through machine learning-based inte-
gration of four types of drug similarity properties. In a previous
work,25 we reported the potential value of the integration of drug
phenotypic, therapeutic, and structural similarities for DTI predic-
tion. Building on DTI prediction, in this work we expanded the
approach (ie, machine learning-based integration of four types of
drug similarity properties: phenotypic, therapeutic, structural, and
genomic similarities) for DDI prediction. The HNAI hypothesis
asserts that if two drugs have high drug phenotypic, therapeutic,
structural, or genomic similarity, they have a high probability of
DDIs. We found that the structural similarity of positive DDI pairs
is significantly higher than that of random DDI pairs (see online
supplementary figure S1A). This observation is in agreement with
Vilar’s work20 showing that drug structural similarity information
can be used for DDI prediction. Furthermore, we found that the
systematic machine learning-based integration of various data
sources, including drug ADRs, drug ATC codes, drug chemical

Figure 4 The receiver operating characteristic (ROC) curves of fivefold
cross-validation using five models in heterogeneous network-assisted
inference. The models were built using naive Bayes (NB, red curve),
decision tree (DT, cyan curve), k-nearest neighbors (k-NN, blue curve),
logistic regression (LR, green curve), and support vector machine (SVM,
black curve) algorithms. The AUC is the area under the ROC curve.
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structure, and drug genomic information, can improve the per-
formance of DDI prediction compared to using only individual
data sources (see online supplementary figure S3). Collectively, this
study presents a simple and promising strategy to predict unknown
DDIs using network pharmacology data and machine learning
approaches.

Limitations and future work
There are several limitations in the HNAI framework. First, it
lacks a ‘gold standard’ non-DDI dataset to serve as negative DDIs
for model building. We cannot definitively confirm that two drugs
in a non-DDI dataset do not interact, so the collection and report-
ing of non-DDIs in open source databases, EHRs, and other clin-
ical documents should be encouraged. Second, there is a limitation
to the accuracy of the four drug similarities. In order to evaluate
the relative importance of each similarity in the overall HNAI pre-
dictive model, we rebuilt the machine learning models by using
the combinations of the three different similarities. As shown in

online supplementary figure S3, we found that the models had
poor performance when structural or phenotypic features were
removed. Thus, structural and phenotypic features are important
for model performance compared to the other two features.
Third, data incompleteness is a limitation. Although we used two
large networks, a drug–ADR association network and a DTI, to
measure drug phenotypic and genomic similarities, both networks
are incomplete. However, the availability of drug information has
increased with the reporting of DTIs and ADRs from hospitals
and pharmaceutical companies, and the availability of dozens of
databases covering drug mechanisms.11 GlaxoSmithKline recently
announced its intention to release patient-level raw data from clin-
ical trials of approved and failed investigational compounds.51

These efforts will provide new resources to predict DDIs or ADRs
in drug development and clinical applications. Finally, there may
be several additional limitations associated with each similarity.
Although chemical two-dimensional (2D) structural similarities
calculated using MACCS keys have been successfully used for DDI

Figure 5 Drug–drug and drug–target interaction network for antipsychotic drugs. This network has: (i) 332 drug–target interaction pairs (gold
edges) connecting 43 antipsychotic drugs (pink circles) and 44 target proteins (gold squares); (ii) 798 clinically reported drug–drug interactions
(DDIs; gray edges) connecting 238 drugs; and (iii) 36 predicted DDIs (magenta edges) with probability scores of greater than 0.8 that connect 28
drugs (see details in online supplementary table S3). Drug nodes are colored according to the first level of their Anatomical Therapeutic Chemical
classification in figure 3. The size of a node reflects the degree of the drug or target protein in the network.
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or ADR assessment,6 20 2D structurally similar molecules can have
very different shapes in 3D structure. Furthermore, 2D structurally
dissimilar compounds may have very similar shapes in 3D that
might play a crucial role in ligand–receptor binding.52 Here,
genomic similarity was calculated using the broad DTI data from
the DrugBank and TTD. However, detailed drug target informa-
tion was lost in the current HNAI framework due to lack of access
to data on mode-of-actions (eg, competitive reversible binding,
non-competitive irreversible binding), biochemical effects
(agonist-activator, partial agonist, antagonist effects), and binding
location (active site, and allosteric sites).

However, we predicted thousands of possible DDIs using the
HNAI framework. In the future, we plan to validate more
predicted DDIs using Vanderbilt’s EHRs from the Synthetic
Derivative (SD) database (https://starbrite.vanderbilt.edu/biovu/
sddata.html). We also intend to: (i) improve the HNAI framework
through global integration of more useful features from drug 3D
shape similarity, comprehensive DTI networks (eg, ChEMBL53),
and EHRs from Vanderbilt’s SD database; and (ii) address the
molecular mechanisms and genetic profiles of DDIs by integrating
drug response data and genome-wide genotyping data from
Vanderbilt’s DNA bank (https://starbrite.vanderbilt.edu/biovu/).

CONCLUSION
We have presented a HNAI framework to predict DDIs by utiliz-
ing the drug phenotypic, therapeutic, structural, and genomic
similarities. We applied five machine learning-based predictive
models on a large DDI dataset from the DrugBank database. The
SVM model had an AUC value of 0.67 based on fivefold cross-
validation. In our exploration of several novel predicted DDIs
involving antipsychotic drugs, we demonstrated the potential
utility of the HNAI framework for the identification of anti-
psychotic DDIs. In summary, we showed that a machine learning-
based integration of drug phenotypic, therapeutic, structural, and
genomic similarities using a systems pharmacology approach is a
simple yet efficient strategy to predict unknown DDIs.

Correction notice This article has been corrected since it was published Online
First. Equation 3 has been corrected.
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