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Regulation of rhythm genesis by volume-
limited, astroglia-like signals in neural
networks

Leonid P. Savtchenko and Dmitri A. Rusakov

UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK

Rhythmic activity of the brain often depends on synchronized spiking of inter-

neuronal networks interacting with principal neurons. The quest for

physiological mechanisms regulating network synchronization has therefore

been firmly focused on synaptic circuits. However, it has recently emerged

that synaptic efficacy could be influenced by astrocytes that release signalling

molecules into their macroscopic vicinity. To understand how this volume-

limited synaptic regulation can affect oscillations in neural populations, here

we explore an established artificial neural network mimicking hippocampal

basket cells receiving inputs from pyramidal cells. We find that network oscil-

lation frequencies and average cell firing rates are resilient to changes in

excitatory input even when such changes occur in a significant proportion

of participating interneurons, be they randomly distributed or clustered in

space. The astroglia-like, volume-limited regulation of excitatory synaptic

input appears to better preserve network synchronization (compared with a

similar action evenly spread across the network) while leading to a structural

segmentation of the network into cell subgroups with distinct firing patterns.

These observations provide us with some previously unknown insights into

the basic principles of neural network control by astroglia.
1. Introduction
Synchronized oscillations in neural circuits could provide, at least theoretically,

a universal device for pattern recognition and information handling in

the brain [1,2]. Such periodic activities are in many cases driven by self-

sustained rhythms generated by interconnected populations of inhibitory

gamma-aminobutyric acid (GABA)ergic interneurons, which receive multiple

excitatory inputs from principal cells [3–5]. In the hippocampus, rhythm

generation in interneuronal networks is thought to depend on the combined

action of incoming excitatory synaptic currents and of the slower changes in

the concentration of extracellular (ambient) GABA [4,6,7]. The astroglia-

controlled GABA uptake and recycling machinery [8] thus provides one

plausible mechanism to control oscillatory activities in local neural populations.

It has also emerged that astrocytes can respond to physiological stimuli by

releasing a variety of signalling molecules that target local synaptic receptors

(reviewed in [9–12]). Among such molecules feature ATP (which, once released

into in the extracellular space, is degraded to adenosine) [13,14] and an

N-methyl-D-aspartate (NMDA) receptor co-agonist D-serine [15,16]. Adenosine

release from astroglia has been associated with activation of presynaptic puri-

nergic A1 receptors [17,18] (however [19]), the action which in most cases

lowers (in some cases by more than 50%) release probability at excitatory con-

nections, thus moderating signal transfer through local synaptic networks

[20,21]. At the same time, Ca2þ waves in astrocytes have also been associated

with increased release probability at nearby synapses [22], which could involve

a presynaptic action of astroglia-released glutamate [23] and manifest itself as a

transiently elevated (sometimes by several-fold) frequency of spontaneous
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Figure 1. Simulated network of basket cells – pyramidal cells. (a) A diagram illustrating characteristic morphology of a reconstructed basket cell (BC, modified from
[37]), the extent of its dendritic and axonal trees in hippocampal area CA1, and relative arrangements of pyramidal cell bodies and astrocytes (showing several
examples only), as indicated. SO, SP, SR: strata oriens, pyramidale, radiatum, respectively. (b) A schematic illustrating the architecture of the simulated BC network
(not to scale), with each BC (blue) receiving excitatory synaptic input from a pyramidal cell subnetwork (red); blue shadow (connections) qualitatively depicts the
Gaussian distribution of cell – cell connection weights centred at a given BC. (c) A simulation snapshot of membrane voltage for the 200-cell BC network (as depicted
in b); scale bar, voltages in pseudo-colours. Grey shadow illustrates the spread of a volume-limited (astroglia-like) effect on synaptic transmission mimicking the local
action of astrocytes. See §2 Material and methods and figures for further detail.
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synaptic discharges [23,24]. Furthermore, astroglial release

of D-serine can boost the availability of high-affinity, pre-

dominantly postsynaptic NMDA receptors, thus enabling

potentiation of excitatory transmission [25–27].

Astroglia therefore should be capable, at least in certain

conditions, of triggering substantial variations in the release

probability at local synaptic connections. In turn, changes in

the intensity (amplitude or frequency) of the excitatory

drive have long been known to play an important regulatory

role in neural network oscillations [5,28–31]. While synaptic

connections to or from individual neurons can spread over

hundreds of micrometres, mixing in space with similar con-

nections to or from thousands of other neurons, individual

astrocytes occupy separate, non-overlapping tissue domains

[32]. Thus, they might, in principle, exert a regulatory

action within a volume-limited population of excitatory,

and perhaps inhibitory, synapses [26,33] in the local neuronal

network. Whether such volume-limited synaptic regulation

produces network effects that differ qualitatively from the

effects of a spatially homogeneous synaptic efficacy change

is not known. To address this question, and thus to under-

stand the potential adaptive role of astrocyte-like network

regulation, here we explored a well-tested theoretical network

of hippocampal interneurons (basket cells) which displays

physiologically plausible oscillatory behaviours [7,34–36].
2. Material and methods
(a) Basket cell network with a spatial neighbourhood

factor
The neural network design was generally based on the well-tested

hippocampal basket cell (BC) network incorporating excitatory

inputs from principal neurons (pyramidal cells; figure 1a depicts

the characteristic BC arrangement in hippocampal area CA1)

[34]. This cell population has classically been associated with

experimentally documented high-frequency oscillations of local

field potential (and the corresponding synchronizations of cell

spiking) that appear to be related causally to certain behaviour

traits or memory-forming tasks [31,38–40]. The network model
was built using the NEURON computational environment [41]

and included 200 fast-spiking interneurons (BCs) interconnected

via typical inhibitory synapses (GABA potential ¼ 265 mV). The

waveforms of GABAergic synaptic currents were modelled using

the dual-exponential formalism incorporated in the Exp2Syn func-

tion of the NEURON simulator: synaptic conductance followed

the time course Gm( exp (� t=t1)� exp (� t=t2)), where Gm is

the maximal conductance and t1 ¼ 2.5 ms and t2 ¼ 10 ms are the

rise and the decay time constants, respectively.

For computational design purposes, connections among BCs

were represented by a virtual ring: this common configuration

allows an exhaustive representation of cell–cell links while avoiding

issues pertinent to boundary conditions [7,34–36]. Note that the ring

represents the matrix of cell–cell connections rather than the actual

three-dimensional geometry of the BC network. However, cell pos-

itions in the ring do reflect their neighbourhood relationships: for

example, adjacent neighbours in the ring generally correspond to

spatial neighbours in the real network. To reflect non-instantaneous

signal propagation between adjacent cells, an approximately 50 mm

virtual spacing was introduced computationally between nearest

neighbours, as detailed earlier [42]. To account further for some pre-

viously established parameters of the BC network organization, the

network incorporated an additional neighbourhood factor: each cell

was randomly connected to a subpopulation of its 100 nearest neigh-

bours by inhibitory synapses with a connection probability of 0.57,

reflecting anatomical analyses of functional links among parvalbu-

min-positive interneurons in area CA1 [43] (example in figure 1a).

The signal effective propagation radius for the entire network was

approximately 2 mm, which was comparable to the characteristic

dimensions (hence spike-release latencies) of the hippocampal CA3

or CA1 network in the murine.
(b) Synaptic input from pyramidal cells
The classical BC network models use steady-state depolarization as

the form of excitatory input from principal cells to individual inter-

neurons [31,34]. To improve physiological compatibility of the

model, the present simulated network has incorporated realistic bar-

rages of excitatory postsynaptic currents (EPSCs; NEURON

Exp2Syn function: t1 ¼ 0.5 ms rise time and t2 ¼ 5 ms decay time,

respectively) generated in individual BCs by synaptic inputs

from simulated networks of pyramidal cells (figure 1b), as descri-

bed recently [36]. When required, this arrangement also allows
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tonic (quasi-steady-state) excitation using evenly distributed low-

frequency synaptic input. The synaptic input parameters were

adjusted as follows. Because BCs normally host approximately

2000 synaptic inputs from pyramidal neurons and because pyrami-

dal neurons fire at an average frequency of 1–2 Hz [34,35,37,40], the

combined occurrence of incoming spikes should be in the range 2–

4 kHz. Given the release probability of 0.2–0.3, this corresponds to

an expected barrage of EPSCs at a frequency of 400–1000 Hz assum-

ing 100% active connections. Indeed, in our simulations, we have

found that EPSCs generated at individual interneurons at, on aver-

age, approximately 300 Hz lead to the network oscillation and

synchronization behaviours that were fully compatible with those

under ‘baseline’ tonic current conditions used in the classical BC

network models [31,34].

(c) Computational elements
The network was simulated using the NEURON computational

environment, as described in detail previously [36,44,45] (the gen-

eric model can be downloaded at https://senselab.med.yale.edu;

ModelDB accession number 138421), based on a well-established

generic network design [34,46]. In brief, the model interneuron

had a cylindrical shape (length 62 mm; diameter 62 mm; axial

resistance 100 ohm cm21; Cm 1 mF cm22; resting membrane poten-

tial 265 mV). Cell membrane properties were described using

Hodgkin–Huxley formalism (action potential threshold approx.

258 mV, determined from the voltage response to a ramp of excit-

atory current of 1 pA ms21). The kinetics of the channels were

typical of CA3 hippocampal fast-spiking basket cells [34]; the cell

model was obtained from ModelDB (https://senselab.med.yale.

edu; accession number 21329). Excitatory synaptic inputs to individ-

ual BCs were supplied by a network of 2000 interconnected

pyramidal cells generating Poisson’s series of spikes, with the aver-

age release probability ranging from 0.0 to 0.45 (figure 1b), which

was enabled by the NetStim routines of NEURON. Thus, the

output of pyramidal cell activity was represented bya stochastic glu-

tamatergic synaptic currents (Vrest ¼ 0 mV, see §2b for the kinetics)

generated at individual BCs with an adjustable frequency f and post-

synaptic conductance amplitude g. In baseline conditions, the

stochastic excitatory synaptic input to individual interneurons was

set at the average synaptic discharge frequency of f0 ¼ 300 Hz, in

line with earlier estimates, giving a sustained network oscillation

frequency of 18–22 Hz (close to the gamma-frequency range for

CA1 or CA3 interneuronal networks). Computations were car-

ried using an in-house 64-node PC cluster optimized for parallel

computing [47] (algorithms provided by Sitrus LLC, Boston).

(d) Network monitoring parameters
The average network oscillation frequency V was determined as

the greatest spectrum harmonic in the time series represented

by the probability density (frequency histogram) of all spikes

occurring in the network over time. Mean cell firing frequency

w was computed as the average number of all BC discharges

over a given time period. Thus, when increases in the number

if non-firing (silent) BCs in the network occur without changes

in V the value of w increases accordingly, and vice versa.

Network synchronization was evaluated as the mean coeffi-

cient of synchronization k(t) representing an average value

among coefficients kij(t) calculated for each (i,j) neuronal pair in

the network over a 1000 ms interval, as follows (also see [36,45]).

First, the 1000 ms interval was divided into N equal bins, each last-

ing t ¼ 0.1/V. For every selected pair of neurons X and Y, the spike

occurrence within each mth binned time interval was represented

by binary functions X(m) and Y(m) taking a value of zero or unity

depending on whether the corresponding neuron generated one or

no spikes, respectively (the occurrence of more than one spike

within the binned time interval representing 1/10 of the average

spiking period was negligibly small). Next, for each (i,j) pair of
neurons, kij(t) was calculated using the formula

kij(t) ¼
XN

m¼1

X(m)Y(m) �
XN

m¼1

X(m) �
XN

m¼1

Y(m)

 !�1=2

,

which gives a weighted measure of temporal spike coincidence for

neuronal pairs over the sampled interval of 1000 ms. Finally,

the mean coefficient of synchronization k(t) was calculated as the

global average of kij(t) for all neuronal pairs.
3. Results
(a) Exploring space-constrained, astroglia-like influence

in a neural network
Characteristic dimensions of hippocampal BCs and local astro-

glia (figure 1a) suggest that the release of signalling molecules

(gliotransmitters) from an individual astrocyte might affect

5–10% synapses on each local BC. In addition, in contrast to

pyramidal cells and many other neuronal types, BCs are dis-

tributed in the hippocampus without any significant overlap

between their dendritic trees (figure 1a) [31,38–40]. Therefore,

it appears plausible that astroglial influence could, at least in

some conditions, affect only one or a small proportion of BCs

in their entire network.

As discussed in §1, astroglial release of glutamate could

reportedly lead to a substantial (up to several-fold) increase

in release probability at nearby synapses [22–24], whereas

release of adenosine from astrocytes could have a diametrically

opposite effect [20,21]. To mimic such physiological actions in

the modelled network, we explored variable changes in the dis-

charge frequency f of excitatory synaptic inputs to one or more

networked BCs. In the present context, our principal aim was

to understand the implications of the fact that individual astro-

glia occupy non-overlapping, volume-limited tissue domains

[32]. We therefore applied the synapse-modifying action to

variable-size clusters of neighbouring BCs and compared the

outcome with that under a quantitatively identical action dis-

tributed among randomly selected BCs. The comparison

between these two scenarios was thus used to ask whether

astroglia-like, volume-limited influences differ qualitatively

from similar influences distributed evenly randomly, or as a

‘tonic’ effect, within the BC network. For the sake of clarity,

and because the BC network configuration and its basic behav-

iours have been tested and validated in numerous previous

studies against experimental recordings [7,34–36], we explored

only three adjustable parameters of the regulatory action: the

size of the affected BC cluster, the direction and the magnitude

of the synaptic change.

(b) Distributed versus volume-limited depression of
excitatory input

First, we simulated partial inhibition of excitatory inputs to BCs

by reducing the average basal frequency f0 of the corres-

ponding synaptic discharges (by 50%, 75% and by silencing

altogether) over 1000 ms in a variable proportion (5–50%) of

randomly selected networked BCs. (In this study, we did not

consider a theoretically plausible feedback effect associating

neuronal firing frequency with astroglial actions [48].)

Second, to mimic the action of volume-limited astroglia, we

constrained the above inhibitory action to the clusters of neigh-

bouring BCs which contained the same numbers of individual

https://senselab.med.yale.edu
https://senselab.med.yale.edu
https://senselab.med.yale.edu
https://senselab.med.yale.edu
https://senselab.med.yale.edu
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Figure 2. Depression of excitatory input in a proportion of basket cells reduces network synchronization and cell firing rates also depending on the spatial clustering
of affected cells. (a) An example raster plot of cell firing (200 BCs) including the period of an inhibitory action. Numbers on the right (control, 10, 25, 50, 100)
indicate the number of randomly selected BCs affected by the inhibitory action on their excitatory inputs. Shaded area labelled with 0.5f0 depicts halving of the
baseline frequency f0 ¼ 300 Hz (thus giving excitatory input at 150 Hz) over the designated 1000 ms period, as indicated. (b) A similar experimental design as in
(a), but with the affected BCs grouped in spatial clusters of neighbours, as indicated by horizontal grey-shaded segments. Other notations as in (a). (c) The network
synchronization parameter (§2d) measured throughout tests with a variable change in the excitatory input (0.5f0, 0.25f0 and 0 indicating silenced input) and variable
numbers of affected BCs, as indicated. Data points show mean+ s.d. (n ¼ 5 model runs throughout). (d ) Results of an experiment similar to that shown in (c),
but with the affected BCs grouped in spatial clusters of neighbours, as depicted in (b); other notations as in (c). (e) The mean cell firing rate (§2d) measured
throughout tests with a variable change in the excitatory input (0.5f0, 0.25f0 and 0 indicating silenced input) and variable numbers of affected BCs, as indicated.
Data points show mean+ s.d. ( f ) Results of an experiment similar to that shown in (e), but with the affected BCs grouped in spatial clusters of neighbours, as
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cells, for comparison. Simulations showed that in both cases

the inhibitory action had no appreciable effect on the oscillation

frequency V (ranging from 18.1+1.0 to 18.6+0.5 Hz across

the test runs compared with 18.0+0.0 Hz in baseline con-

ditions; mean+ s.d.; examples in figure 2a,b). At the same

time, network synchronization was clearly reduced, with the

greater effect seen in the case of randomly selected synapses
(figure 2c,d). In contrast, the effect of inhibition on mean cell

firing frequency w was more pronounced in the case of the clus-

tered (astroglia-like) inhibitory action (figure 2e,f). The raster

plots of cell spiking indicated that space clustering of the

effect also tended to produce highly uneven changes in cell

firing patterns, with some cells becoming almost silent and

others firing at a higher rate (figure 2a,b).
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(c) Distributed versus volume-limited facilitation of
excitatory input

In line with the above approach (§3b), here we simulated facili-

tation of excitatory inputs to BCs by increasing the average

basal frequency f0 of the corresponding synaptic discharges

(by setting it at 150%, 200% or 300% of the baseline frequency

f0 ¼ 300 Hz), over 1000 ms in a variable proportion (5–50%)

of randomly selected networked BCs. Again, to mimic the
action of astroglia, we constrained the facilitatory action on

the clusters of neighbouring BCs. Unlike the case of inhibition,

these simulations revealed a small yet significant effect of

synaptic facilitation on the network oscillation frequency V

(ranging from 21.2+2.4 to 21.2+1.1 Hz across the runs com-

pared with 18.0+0.0 Hz in baseline conditions; mean+ s.d.;

p , 0.009 at least across samples; examples in figure 3a,b). At

the same time, network synchronization was prominently

reduced in the case of randomly selected synapses, but not
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when using volume-limited cell clusters (figure 3c,d). Synaptic

facilitation generally increased mean cell firing frequency w,
without much difference between the cases of distributed and

clustered cells (figure 3e,f). However, the raster plots of cell

spiking again indicated that volume-clustering, which is akin

to astroglial effects, can produce highly uneven changes in

cell firing patterns, with the range of firing frequencies evi-

dently expanding (figure 3a,b). This is accompanied by what

appears to be the development of a regular, or periodic, struc-

ture among subpopulations of firing cells, so that cell groups

quasi-periodically occurring in space have similarly altered

rates of firing (see lighter and darker areas raster plot areas

during the facilitatory action in figure 3a,b).
 rans.R.Soc.B
369:20130614
4. Discussion
In this study, we focused on mechanisms that control oscil-

lations in classical networks of interneurons and principal

cells and thus play an important role in regulating rhythmic

activities of the brain. The pattern of synaptic weights and

their use-dependent changes is thought to underlie not only

the oscillatory properties of neural networks, but also the fun-

damental principles of information transfer and memory

formation in brain circuits. Recently, a growing body of experi-

mental evidence has emerged pointing to a potentially

important part played by astroglia in regulating the efficacy of

local synapses. Because individual astrocytes occupy relatively

restricted spatial domains in the synaptic neurophil, our aim

here was to understand whether and how such volume-limited

regulation of synaptic efficacy (which mimics astroglial actions)

has a specific effect on network oscillations. To address this, we

introduced space-constrained regulatory effects on synaptic

inputs in a classical neural network model involving hippocam-

pal interneurons (BCs) and principal neurons (pyramidal cells).

Equipped with this approach, we compared the consequences

of synaptic regulation, with or without its spatial clustering,

while maintaining all other network parameters unchanged.

Our simulations have revealed several intriguing phenom-

ena. First, we found it somewhat surprising that network
oscillations appear to be quite resilient, especially in terms of

the overall cell firing rate, to changes in the efficacy of excitatory

drive (even synapse silencing) enacted in a significant proportion

(up to 25%) of participating interneurons, be they clustered or

selected randomly. In other words, the network seems to success-

fully redistribute the ‘firing load’ between cells that have been

affected and unaffected by synaptic inhibition/facilitation, so

that the overall numbers of generated spikes remain relatively

unchanged. It would seem important to ascertain whether

this phenomenon has any specific implications for preserving

information coding in such networks.

Second, simulations have unveiled that when a large pro-

portion of BCs (around 50%) are affected by a synaptic input

change, space clustering of the regulatory influence (i.e. astro-

glia-like mode of action) has a substantially smaller impact on

network synchronization compared with the evenly distribu-

ted action, be it inhibitory or facilitatory. Again, it would

seem important to understand whether this suggests that

the volume-limited effect of astroglia is ‘designed’ to preserve

network oscillation properties while ensuring robust efficacy

changes in local synaptic circuits. Finally, raster plots of cell

firing throughout the tests suggest that during the regulatory

action in the ‘astroglia mode’ there is some evident restruc-

turing of interneuron population firing, both inside and

beyond the affected cell cluster. Intriguingly, cell groups

spaced at relatively regular intervals either increase or decrease

their firing rates in a coherent fashion. This phenomenon

suggests that volume-limited (astroglia-like) action could, at

least in theory, prompt spatial segmentation of oscillating

neural networks in terms of their firing behaviours. To under-

stand an adaptive role of such phenomena in the information

handling by neural circuits will require experimental tech-

niques that would associate patterns of multiple cell firing

with an established paradigm of memory trace formation in

the network.
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