
Usher syndrome (USH) is a genetically and clinically 
heterogeneous autosomal recessive disorder that associates 
sensorineural hearing loss, retinitis pigmentosa (RP), and in 
some cases vestibular dysfunction. It accounts for over 50% 
of cases of hereditary forms combining deafness and blind-
ness and has an estimated prevalence of 3 to 6.2 per 100,000 
[1].

USH is divided into three clinical subtypes: Usher type 
1(USH1), type 2 (USH2), and type 3 (USH3) [2]. USH1 
displays severe–profound congenital deafness, absent vestib-
ular function, and prepubertal onset of RP; in USH2 hearing 
loss is congenital, moderate to severe, with normal vestibular 
function, and pre- or postpubertal onset of RP; and in USH3, 
hearing loss may be pre- or postlingual but is progressive 
in course, with normal or abnormal vestibular function and 
often postpubertal onset of RP. Although this classification is 

generally deemed adequate, atypical clinical types have also 
been described [3].

To date, ten genes have been associated with this disease. 
For USH1, six genes have been identified: MYO7A (USH1B), 
USH1C (USH1C), CDH23 (USH1D), PCDH15 (USH1F), 
USH1G (USH1G) [4], and CIB2 (USH1J) [5]. Three genes 
have been found to cause USH2: USH2A (USH2A), GPR98 
(USH2C), and DFNB31 (USH2D). Only the CLRN1 gene 
has been described for USH3. Most of these genes are also 
responsible for nonsyndromic hearing loss or isolated RP [4]. 
In addition to these ten genes, three other genes have been 
associated with USH. PDZD7 was proposed to contribute to 
digenic inheritance with GPR98 and also to have a role as a 
retinal disease modifier in USH2A patients [6]. Recently, a 
novel missense variant in HARS was identified in homozy-
gosis in two patients with a phenotype compatible with USH3 
[7]. Thus, this gene was proposed to be a novel gene causative 
for USH3 [4]. More recently, the CEP250 gene has been asso-
ciated with atypical Usher syndrome [8]. Usher syndrome is 
included in a group of hereditary pathologies associated with 
defects in ciliary function known as ciliopathies [9] most 
USH1 and USH2 proteins are integrated in a protein network 
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known as the “Usher-interactome” [10]. The central core of 
the interactome is formed by PDZD7, harmonin (USH1C), 
and whirlin (DFNB31), and the microtubule-associated 
protein SANS (USH1G). The remaining USH proteins are 
attached to this core [11]. This interacting network is mainly 
localized at the stereocilia or hair bundle of the inner ear hair 
cells and at the periciliary areas of the photoreceptors [12,13]. 
In the inner ear, Usher proteins play an essential role for 
correct development and cohesion of the hair bundle of hair 
cells in the cochlea and vestibular organ [14-18]. In the retina, 
the Usher protein network provides mechanical support to 
the membrane junction between the inner segment and the 
connecting cilium, participating in the control of vesicle 
docking and cargo handover in the periciliary ridge [19,20].

USH2 accounts for well over one-half of all Usher cases. 
Mutations in the USH2A gene are responsible for the majority 
of USH2 cases and are also responsible for atypical Usher 
syndrome [21,22] and recessive nonsyndromic RP [23,24]. 
Two main isoforms of the USH2A gene, the short isoform_a 
and the long isoform_b, have been described. The short 
isoform_a, which is reported to be 5 kb (exons 2–21; 1,547 
amino acids [aa]), encodes a protein of 170 kDa [25,26]; 
the long isoform_b, which expands the whole length of the 
coding sequence to 15 kb (exons 2–72; 5,202 aa), encodes 
a large protein of 600 kDa [27]. The mutational spectrum 
of USH2A is extensive. Over 350 different point mutations, 
including nonsense, frameshift, missense, and splicing muta-
tions (USH2A), have been identified by numerous mutation 
screenings.

Conventional USH2A mutation screenings have been 
performed by PCR amplification of coding exons followed 
by Sanger sequencing [28-30]. However, large duplica-
tions and large heterozygous deletions are not detectable 
if the breakpoints are located outside the amplified region. 
Recently, the multiplex ligation-dependent probe amplifica-
tion (MLPA) and oligonucleotide array-based comparative 
genomic hybridization (aCGH) techniques have facilitated 
the detection of total and partial gene deletions and dupli-
cations that may escape conventional PCR-based screening 
methods [31,32]. Using these technologies, Steele-Stallard et 
al. [33] characterized five deletions and one duplication in 
heterozygosis in the USH2A gene in patients who had missing 
mutations (mono-allelic USH2A) or no mutations following 
Sanger sequencing.

Missing mutations can also lie in the promoter or deep 
intronic zones, which are usually not analyzed in conven-
tional mutation screenings. In this regard, Vaché et al. [34] 
identified a deep intronic mutation (c.7595–2144A>G) after 
sequencing mRNA transcripts obtained from nasal epithelial 

cells of USH2 patients. Taking this into account, we screened 
our USH2 cohort of patients with unidentified mutations for 
c.7595–2144A>G and found it in five heterozygote and one 
homozygote cases.

In the present study, we used the MLPA technique to 
screen our cohort of USH2 patients for large deletions and 
duplications affecting the USH2A gene. Subsequently, we 
applied a customized oligonucleotide aCGH assay to confirm 
the presence of rearrangements and accurately determine the 
location of their breakpoints.

METHODS

Patients: Thirteen nonsyndromic recessive RP patients [35] 
and 88 USH cases [30,34] were previously screened for point 
mutations in USH2A by Sanger sequencing [17,21,22]. In 
42 of the patients (31 USH and 11 RP), point mutations in 
both USH2A alleles were identified. In a later study, seven 
USH patients were found to carry mutations in DFNB31 [36]. 
After these studies, only 39 out of the remaining 52 samples 
were useful for MLPA analysis to search for large deletions/
duplications in the USH2A gene. A DNA sample of one USH 
patient carrying a homozygous USH2A deletion of exons 
9–14 inferred from consistent PCR nonamplification [37] was 
included as a positive control (Figure 1).

Thus, 40 unrelated patients (38 USH and two RP) were 
included in this study. Twelve of them (ten USH and two 
RP) carried one heterozygous USH2A point mutation, and 
one USH patient carried a suspected homozygous USH2A 
deletion.

Of the USH patients, 24 were classified as USH2 on the 
basis of ophthalmic studies that included visual acuity, visual 
field, fundus ophthalmoscopy, electroretinography, pure-tone 
and speech audiometry, and vestibular evaluation. Seven 
patients were classified as atypical USH, and detailed clinical 
data could not be obtained for another seven patients. For 
each patient, samples from parents as well as from siblings 
were obtained, when possible.

This research adhered to the tenets of the Declaration 
of Helsinki. The study was approved by the Hospital La 
Fe Ethics Committee, and consent for genetic testing was 
obtained from adult probands or the parents of the minors.

MLPA analysis: MLPA was used to determine the copy 
number of all USH2A exons (72) in two single multiplex 
PCR-based reactions. P361 and P362 SALSA MLPA kits 
(probemixes) were used (MRC Holland, Amsterdam, the 
Netherlands). P361 probemix contained 36 adjacent paired 
probes for odd exons, and P362 probemix contained another 
36 paired probes for even exons. The MLPA analysis used 
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50 ng of DNA, diluted in 5 μl of Tris/EDTA buffer. During 
PCR, adjacent MLPA probes correctly ligated after hybrid-
ization to the sample DNA were amplified, and each MLPA 
reaction resulted in a set of PCR amplicons. One microliter 
of each reaction product was separated on POP-7 polymer 
by capillary electrophoresis with a DNA analyzer (model 
3500XL; Applied Biosystems, Inc. [ABI], Foster City, CA). 
Freely available software provided by MRC Holland was 
used to analyze the MLPA data (Coffalyser; MRC Holland). 
Using this program, data generated was first normalized 
intra-sample by dividing the peak area of each probe’s 
amplification product by the total area. Second, inter-sample 
normalization was achieved by dividing the intra-normalized 
probe ratio in a sample by the average intra-normalized probe 
ratio of the reference sample. A probe dosage quotient value 
of 1±0.3 was considered normal; less than 0.7 was considered 
a deletion and greater than 1.3 a duplication.

Oligonucleotide aCGH: A custom aCGH chip (12×135 k) 
was used to compare control DNA (or reference sample) to 
DNA from the patient (test sample) that was labeled with 
two different dyes. Both DNAs were co-hybridized onto the 
chip containing 77,366 immobilized probes covering the 
genes MYO7A, CDH23, PCDH15, USH1C, USH1G, USH2A, 
GPR98, DFNB31, PDZD7, and USH3A and 10,000 nucleotides 
of 5′ and 3′ untranslated regions (UTRs) [32]. The average 
probe length was 60 bases, and the spacing between starts 
of probes covering exons and introns was 35 bp. Hybridiza-
tion was performed in a high-resolution microarray platform 
(Roche NimbleGen, Inc., Basel, Switzerland). The slides were 
scanned using InnoScan900A (Inopsys, Toulouse, France) 
and analyzed using Deva1.2.1 software (Roche NimbleGen, 
Inc.). The signal intensity ratio between a test sample and a 
reference sample was normalized and converted to a log2 
ratio to identify copy number changes, which were indi-
cated by a deviation from the normal log2 ratio of zero. The 

Figure 1. Diagram explaining the selection of patients for this study. Initially, 101 non-related patients, 13 diagnosed with retinitis pigmentosa 
(RP) and 88 diagnosed with Usher syndrome (USH) were screened for point mutations in USH2A by Sanger sequencing. Point mutations 
in both USH2A alleles were identified in 42 of them. Later one, seven USH patients were found to carry mutations in DFNB31. After all 
these previous studies, 13 USH DNA samples were degraded and only 39 samples were useful to perform the MLPA analysis to search for 
large deletions/duplications in the USH2A gene. Finally, an additional DNA sample from a patient carrying a homozygous USH2A deletion 
involving exons 9-14 was included in the study as a positive control for the MLPA analysis.
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predicted breakpoint location was defined by the positions 
of the last and first probes with the normal unaveraged value 
of the log2 ratio upstream and downstream from the corre-
sponding aberration.

Identification of breakpoints: Specific primer pairs were 
designed to amplify patients’ genomic DNA regions where 
deletion breakpoints were indicated by the aCGH analysis 
(see Table 1). The primers were located 400–1,000 nt 
upstream and downstream of the last deleted probe in each 
deletion end. The PCR products were directly sequenced. The 
genomic USH2A reference sequence for deletions nomencla-
ture using Mutalyzer 2.0. beta-29 program was NG_009497.1.

RESULTS

The present study led to the detection of six different partial 
USH2A gene deletions in six out of the 40 unrelated cases 
studied. Three of these deletions were homozygotes, and 
the remaining three were compound heterozygotes, having 
a previously USH2A point mutation identified. In five cases 
patients displayed Usher syndrome, and the remaining patient 
presented with nonsyndromic RP (summarized results in 
Table 2).

MLPA and segregation analysis:

Homozygous cases—In patients RP-1696 and RP-1697, 
which belong to the same family (FRP-429), a homozygous 
deletion involving exons 9–14 had already been inferred from 
consistent PCR nonamplification (family Ush-148 in [37]). 
Thus, these patients were used as positive controls.

Patient RP-1622 showed no point mutations after USH2A 
screening by direct sequencing. All polymorphisms detected 
were in homozygosis, and exon 14 was impossible to amplify, 
strongly suggesting the existence of one deletion in this 
region.

In patient RP-838, amplification of exons 5–13 failed, 
suggesting the existence of a rearrangement within this area. 
MLPA analysis detected homozygous deletions in three cases: 
a deletion of exons 9–14 in patients RP-1696 and RP-1697 
(FRP-429); a deletion of exon 14 in patient RP-1622 (FRP-
404), and a deletion involving exons 5–13 in patient RP-838 
(FRP-298). Three deletions co-segregated with the disease 
in three families. All three referred consanguinity (Figure 
2A-C).

In patients RP-1696 and RP-1697 (homozygous for exons 
9–14 deletion), RP started when the patients were around 
30-years old. At the age of 50, electroretinogram (ERG) 
responses ceased in both patients, who presented typical 
RP eye-fundus examination results. Vestibular function 
was normal in both cases. Hearing loss was prelingual and 
severe. In patient RP-1696, the loss of hearing was progres-
sive, whereas in patient RP-1697, it was nonprogressive [37].

Patient RP-1622 (homozygous for exon 14 deletion) 
displayed typical USH2 clinical manifestations: RP started 
when the patient was around 23-years old; hearing loss was 
congenital, stable, and moderate to severe. Vestibular func-
tion in this patient was normal.

Patient RP-808 (homozygous for exons 5–13 deletion) 
was referred first with RP symptoms at the age of 12 but 
was diagnosed with USH2 at the age of 14. At that time, he 
presented hearing loss, ERG responses ceased, visual acuity 
was 0.08, and visual field showed a concentric reduction, 
preserving only 5 central degrees.

Heterozygous cases: A heterozygous deletion affecting 
exons 1–4 was detected in patient RP-1397. This patient was 
already found to carry the mutation c.8167C>T/p.Arg2723* 
(unpublished results). Segregation analysis showed that the 
deletion was inherited from the healthy mother (Figure 2D). 
Sensorineural hearing loss was first suspected in this patient 
at the age of 7. Results from audiograms performed when 

Table 1. Primers used to amplify and sequence breakpoint junc-
tions of deletions characterized in the present study.

Patient Primer Sequence 5′-3′
RP-1622 IVS13-F TACCAGAGACTATGTTGGTG

IVS14-R GCTTCTCAGGGATAGGAGC
RP-838 IVS4-F1 CGAAACTGTCAATAATTCTGG

IVS13–2R GAGCTAATATTGGCTGACAG
RP-1638 IVS4-F GTATCAGGATGATGCTGGCC

IVS9-R GCATATTTACGGGCATGGTAG
RP-1678 IVS21–1D TAACCACAATCCACTAGCTTG

IVS29–3R AATCATCTGGAGATGTGTTCAG

http://www.molvis.org/molvis/v20/1398
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Figure 2. Family pedigrees showing segregation analysis of USH2A deletions identified in this study. A: Segregation analysis of the USH2A 
deletion involving exons 9-14 (del ex 9-14) performed in available DNA samples from family FRP-429. B: Segregation analysis of exon 14 
USH2A deletion (del ex 14) performed in available DNA samples from family FRP-404. C: Segregation analysis of deletion involving exons 
5-13 (del ex 5-13) of USH2A in family FRP-298. D: Segregation analysis of the USH2A mutations p.R2723X and deletion of exons 1-4 (del 
ex 1-4), performed in available samples from family FRP-323. E: Segregation analysis of the USH2A mutations p.5540dupA and deletion of 
exons 5-9 (del ex 5-9), performed in both affected patients from family FRP-413. F: Segregation analysis of the USH2A mutations p.C759F 
and deletion of exons 22-29 (del ex 22-29), performed in available DNA samples from family FRP-423.

http://www.molvis.org/molvis/v20/1398
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the patient was 19, 24, 30, and 35 years showed a stable 
moderate–severe hearing loss, which was accentuated at 
higher frequencies. RP started when the patient was around 
30-years old. Ophthalmologic evaluations at the age of 39 
showed abolished ERG responses, visual acuity was 0.6, and 
visual field was tubular with islets. An eye fundus exami-
nation (Figure 3) showed bone spicule deposits, attenuation 
of vessels, and a waxy pallor of the optic nerve head. The 
macula of this patient was normal.

In patient RP-1638, MLPA analysis indicated the pres-
ence of a deletion involving exons 5–9. This patient was 

previously found to carry the c.5540dupA mutation [30]. 
His affected brother (RP-1637) also carried both mutations 
(Figure 2E). These patients were referred to our laboratory as 
USH2. Unfortunately, it has not been possible to obtain more 
detailed clinical data.

Finally, a heterozygous deletion of exons 22–29 was 
detected in a patient (RP-1678) who carried the c.2276G>T/p.
Cys759Phe mutation [35]. Segregation analysis in this family 
showed that the affected brother (RP-1679) carried both muta-
tions, whereas the healthy brother only carried the partial 
USH2A deletion (Figure 2F). Detailed clinical data could not 

Figure 3. Eye fundus images obtained after examination of patient RP-1397 show bone spicule deposits, attenuation of vessels and waxy 
pallor of the optic nerve head in both eyes.

http://www.molvis.org/molvis/v20/1398
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be obtained for RP-1678. In his affected brother, RP-1679, RP 
was diagnosed when he was 35-years old. At the age of 38, 
ERG responses were abolished, visual acuity was good (1), 
but visual field was concentrically reduced to only 10 central 
degrees. Eye fundus examination of this patient revealed 
bone spicule deposits in the peripheral retina, attenuation of 
vessels, and a waxy pallor of the optic nerve head. Currently 
(48-years old), this patient has noted a slight degree of hearing 
loss. Unfortunately, it has not been possible to confirm this 
by audiological evaluation.

Oligonucleotide aCGH analysis and identification of break-
point positions: An aCGH analysis was performed to confirm 
the deletions detected by MLPA and to precisely define the 
breakpoint positions. Unfortunately, the amount and quality 
of the DNA from patients RP-1696/RP-1697 DNA was not 
sufficient to perform the aCGH analysis.

RP-1622: The results from aCGH analysis indicated that 
the deletion expanded from approximately chromosome 
1 positions 216,404,500 to 216,409,000. A specific primer 
pair (Table 1) was designed to amplify and sequence this 
region. Sequencing of the PCR product obtained using these 
primers identified the exact breakpoints from nucleotides 
g.192,143 (intron 13) to g.197,160 (intron 14); (Figure 4A), 
confirming the presence of a deletion of over 5 kb (c.2810–
4121_2993+718del). The deletion of exon 14 is expected to 
generate a premature stop codon, translated into a truncated 
protein: p.Gly937Aspfs*13.

RP-838: aCGH analysis showed the presence of a deletion 
expanding around chromosome 1 positions 216,420,000 to 
216,520,000. After PCR amplification and sequencing using 
a specific primer pair (Table 1), exact breakpoint positions 
were identified, showing a deletion expanding from g.82,673 
(intron 4) to g.182,184 (intron 13); (Figure 4B). This dele-
tion (c.785–18070_2809+372del) is expected to be in-frame, 
resulting in a protein lacking 675 aa (p.Leu263_Gly937del).

RP-1397: Results of aCGH analysis from this patient indi-
cated the existence of a deletion expanding from approxi-
mately chromosome 1 positions 216,511,000 to 216,606,000. 
Three different pairs of primers were designed to amplify the 
breakpoint deletions in this patient. Unfortunately, no PCR 
products were obtained using RP-1397 and RP-1395 DNAs.

RP-1638: In this case, a deletion was found around chromo-
some 1 positions 259,216,460,000 to 216,510,000. Specific 
PCR amplification and sequencing showed that the deletion 
affected nucleotides g.79,628 (intron 4) to g.135,435 (intron 
9) spanning 55.8 kb (c.784+16184_1645–592del; Figure 4C). 
The loss of exons 5 to 9 is expected to generate a truncated 
protein p.(Gly262Valfs*2).

RP-1678: aCGH results indicated a deletion spanning chro-
mosome 1 positions 216,246,000 to 216,309,000. Sequencing 
after PCR amplification showed a deletion of 62.7 kb from 
g.292,921 (intron 21) to g.355,667 (intron 29), (Figure 4D). 
This deletion (c.4628–38263_5857+159del) would produce the 
loss of the in-frame exons 22–29; generating a protein lacking 
amino acids 1,543–1,952 (p.Gly1543_Ala1952del).

DISCUSSION

In this study we detected six large deletions in six unrelated 
patients affecting the USH2A gene (five of them not previ-
ously described), using the MLPA technique. In three cases, 
the deletions were detected to be in a homozygous state. In 
the remaining three probands, deletions were found to be in 
trans with a USH2A point mutation previously identified.

From an initial cohort of 101 patients, a USH2A mutation 
screening by Sanger sequencing allowed the identification of 
mutations in both USH2A alleles responsible for the disease 
in 42 cases [30,34,35]. The present study, searching for large 
rearrangements, allowed the identification of both USH2A 
mutated alleles in six additional cases (three heterozygous 
and three homozygous). It is difficult to estimate the contri-
bution of large deletions to the total mutational spectrum of 
USH2A based on our studies since our data are biased (see 
Figure 1). However, if we used these data (all patients with 
both USH2A mutated alleles detected: 48 patients, 96 alleles) 
as an approximation of the real population, we might predict 
that large deletions would represent 9.4% (nine out of 96) of 
all USH2A mutations.

Interestingly, one of the cases with a novel USH2A dele-
tion identified in this study was a nonsyndromic RP patient. 
RP-1678 was found to carry a heterozygous in-frame deletion 
of exons 22–29 in trans with the c.2276G>T/p.Cys759Phe 
point mutation. As expected, the affected brother (RP-1679) 
also carried both mutations. Both patients were initially 
diagnosed with nonsyndromic RP, but RP-1679 (now 48-years 
old) presents with a slight degree of hearing loss. Heteroge-
neous phenotypes have been correlated with the p.Cys759Phe 
mutation in this and other previous studies (USH2A). Thus, 
whereas those patients who are compound heterozygous for 
p.Cys759Phe and another USH2A mutation can display RP 
[23,24,35,38,39], atypical USH [21,22], or USH2 [25-30], 
patients homozygous for the p.Cys759Phe mutation are corre-
lated with nonsyndromic RP [22,23,35,38-40].

MLPA is the most rapid and cost-efficient method to 
search for large deletions/duplications involving the USH2A 
gene. It allows determination of the copy number of all 
USH2A coding exons (72) in only two multiplex PCR-based 
reactions. Nevertheless, it is recommended that the presence 
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Figure 4. Breakpoint junctions of USH2A deletions characterized by PCR amplification and sequencing. A: Exact breakpoints of deletion 
involving exon 14 of USH2A in patient RP-1622. B: Exact breakpoints of deletion involving exons 5-13 of USH2A in patient RP-838. C: 
Exact breakpoints of deletion involving exons 5-9 of USH2A in patient RP-1638. D: Exact breakpoints of deletion involving exons 22-29 of 
USH2A in patient RP-1678. IVS: Intervening sequence.
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of rearrangements detected by MLPA be confirmed by other 
techniques, like aCGH analysis, real-time quantitative PCR, 
or reverse-transcription (RT)–PCR, on RNA obtained from 
nasal epithelial cells [34], fibroblasts [33], or hair roots [41]. 
In the present work, a customized aCGH, including intron 
USH2A gene sequences, was applied to confirm the presence 
of deletions detected by MLPA and to accurately determine 
their breakpoint positions. Unfortunately, breakpoints could 
not be successfully determined in two cases. In family 
FRP-429, the amount and quality of the DNA samples were 
not sufficient to perform the aCGH analysis.

In family FRP-323, aCGH was successfully performed, 
pointing out the location of breakpoints around chromosone 
1 positions: 216,511,000 (5′ UTR region) and 216,606,000 
(intron 4). This result was in agreement with MLPA analysis 
that showed a deletion involving exons 1–4. However, the 
breakpoints in that DNA region could not be amplified 
by PCR, suggesting that the rearrangement may be more 
complex than suspected. In this regard it is worth noting 
that Le Guédard et al. [42] also failed to determine the exact 
breakpoint junctions for two large deletions affecting the 
PCDH15 gene. These results together with ours point to the 
existence of large complex rearrangements involving USH 
genes and highlight the difficulty in characterizing them.

To date, only 12 different large deletions within the 
USH2A gene have been reported (USH2A). None of these 
coincide with the five novel deletions detected in our patients 
except the deletion involving exon 14. Recently, Glöckle et al. 
[40] identified a deletion also involving this exon; but exact 
breakpoints have not been described. Consequently, we are 
unable to compare, and therefore know, if this deletion is the 
same as that found in our patient RP-1622.

It has been proven by this work and several other studies 
that an exhaustive molecular screening of USH genes must 
include approaches (such as MLPA or aCGH analysis) other 
than sequencing. These screenings based upon conventional 
techniques are time intensive and expensive and therefore 
are thought to be replaced by next-generation sequencing 
(NGS) approaches. Whole exome capture and targeted USH 
exome sequencing have specifically been applied for Usher 
syndrome [43-45]. These studies confirm the urgency to 
improve base calling and alignment software to accurately 
identify point mutations and specific bioinformatics’ tools to 
detect copy number variations (CNVs) using NGS method-
ologies. The detection of CNVs (large deletions and duplica-
tions) in concert with other variants in a single experiment 
will help to reduce total cost, time, and complexity and will 
allow researchers to gain a broader insight into disease from 
a limited amount of DNA sample. Deep intronic mutations 

(such as c.7595–2144A>G) recently identified in USH2A by 
mRNA studies [34] may be involved in some cases. Future 
approaches of targeted re-sequencing of USH genes, including 
sequences from noncoding regions (UTRs and introns), are 
needed to further identify this kind of mutation.

The development of efficient and cost-effective strate-
gies to identify disease-causing mutations is mandatory. 
Determination of the underlying genetic defect in a patient 
is a prerequisite for gene or mutation-specific therapy. In this 
sense, preliminary results in gene therapeutic approaches for 
Usher syndrome [46-48] are promising.
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