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Parasitic worms (helminths) frequently have complex life cycles in which they

are transmitted trophically between two or more successive hosts. Sexual

reproduction often takes place in high trophic-level (TL) vertebrates, where

parasites can grow to large sizes with high fecundity. Direct infection of

high TL hosts, while advantageous, may be unachievable for parasites con-

strained to transmit trophically, because helminth propagules are unlikely

to be ingested by large predators. Lack of niche overlap between propagule

and definitive host (the trophic transmission vacuum) may explain the

origin and/or maintenance of intermediate hosts, which overcome this trans-

mission barrier. We show that nematodes infecting high TL definitive hosts

tend to have more successive hosts in their life cycles. This relationship was

modest, though, driven mainly by the minimum TL of hosts, suggesting

that the shortest trophic chains leading to a host define the boundaries of

the transmission vacuum. We also show that alternative modes of trans-

mission, like host penetration, allow nematodes to reach high TLs without

intermediate hosts. We suggest that widespread omnivory as well as parasite

adaptations to increase transmission probably reduce, but do not eliminate,

the barriers to the transmission of helminths through the food web.
1. Introduction
Helminths include members of very different and only distantly related meta-

zoans that are united by their parasitic mode of life and the complexity of

their life cycles. Complex life cycles (i.e. cycles with successive transmission

through a number of hosts) are common in nematodes and the rule in cestodes,

trematodes and acanthocephalans [1–4]. Transmission between hosts is fre-

quently trophic; one host is eaten by the next host. The transmission of

parasites through the food web can be quite tortuous, e.g. the nematode Anisakis
simplex can infect from three to five hosts before reproducing [5]. The requirement

for several hosts is puzzling at first glance, because the probability of completing

the life cycle presumably decreases as it gets longer [6]. Moreover, parasites with

direct, one-host cycles do not have to deal with multiple host physiologies and

immune systems. While such ‘costs of complex cycles’ need not always apply

[7], they beg the question as to whether there are also well-defined benefits

associated with trophic transmission and longer life cycles.

Helminths frequently reproduce in high trophic-level (TL) vertebrates [1]

that tend to be large and long-lived [8–10]. Given the higher energy intake

and longevity of such hosts, helminths likely achieve high growth rates in

them with relatively low mortality rates, conditions favouring the evolution

of larger reproductive sizes and fecundities [11]. Of course, some factors may

complicate these expectations, e.g. high TL vertebrates may have a more soph-

isticated and effective immune response. Nonetheless, parasites usually

undergo extensive growth in their definitive hosts [12,13], particularly when

hosts are large [14–17]. Direct infection of large vertebrates, though seemingly
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advantageous, may be difficult for helminths that are trans-

mitted trophically, simply because their propagules

are small and unlikely to fall in the normal size spectrum

of a large predator’s diet [18]. We refer to this problem

as the trophic transmission vacuum; because propagules

are trophically unavailable to a definitive host, they have

very low, perhaps negligible, transmission probability

across non-adjacent TLs by trophic ingestion. The incorpor-

ation of intermediate hosts into the life cycle may be a way

to escape the trophic vacuum and achieve transmission to

larger, more favourable hosts for reproduction, higher up

the food chain [19–22].

However, for parasites constrained to transmit trophi-

cally, the extent to which a trophic transmission vacuum

exists between free-living propagules and high TL definitive

hosts is unclear. Some predators (e.g. lions) consume almost

exclusively from the TL immediately below them (grazing

ungulates), which clearly imposes a constraint on parasites

infecting via an oral route. With a ‘perfect’ trophic vacuum

between TLs, to attain residency and reproduce in a top pred-

ator (say at TL 4) would require a helminth to exploit

intermediate hosts in each TL (2 and 3) below that predator.

But many animals consume food from several TLs [23],

e.g. bears consume anything from vegetation to other (often

large) vertebrates. Taken to the extreme, if species consumed

freely from all lower TLs (i.e. widespread omnivory), there

would be no trophic vacuum. Definitive hosts at high TLs

could readily be infected by even small parasite propagules,

so intermediate hosts would be unnecessary and probably

even costly, assuming that generalism, the ability to infect

multiple host species, carries a cost. In such circumstances,

we might expect the evolution of direct (one-host) cycles,

with definitive hosts at high TLs as the sole hosts. Regard-

less of the levels of omnivory in food webs, parasites

have adaptations to increase the probability of seemingly

unlikely trophic transmission events. The manipulation of

host behaviour to increase predation susceptibility is one

well-documented example [24] and egg structures that

increase the chances of accidental consumption is another [25].

The trophic vacuum may be critical in the evolutionary

origin and maintenance of complex life cycles in trophically

transmitted helminths [26]. There are two ways in which a

life cycle can be extended by adding an extra host: (i) in

downward incorporation, a new intermediate host is added

below the definitive host and (ii) in upward incorporation,

a predator of the original host becomes the new definitive

host, and the original host becomes an intermediate host

(e.g. [19,26,27]). For downward incorporation, a trophic

vacuum that arises below the definitive host (for evolution-

ary or ecological reasons) can favour the incorporation and

subsequent maintenance of an intermediate host [26]. By

contrast, upward incorporation does not require a trophic

vacuum; there is no trophic vacuum between the original

host and its predator one TL above. However, since there

are likely to be costs associated with having multiple hosts,

for both upward and downward incorporation, we envisage

that the trophic vacuum may be an important selective force

(along with phylogenetic constraints, e.g. [28]) maintaining

intermediate hosts in complex cycles [26].

Ultimately, a well-defined trophic transmission vacuum is

expected to occur when predation across non-adjacent TLs

has low probability. We investigated how strongly the

number of successive hosts in a trophically transmitted
parasite’s life cycle correlates with the TL of the definitive

host, as this may indicate the extent to which food webs

create a trophic vacuum. On the one hand, trophically trans-

mitted parasites with complex life cycles rely on a series of

consumption events in which successive hosts are usually

eaten by larger hosts [9,18,29,30], so a positive correlation is

expected. However, omnivory is widespread [23], so there

is no a priori reason why high TL hosts should house only hel-

minths with complex life cycles; without a trophic vacuum,

direct trophic transmission to top predators is possible.

A perfect trophic vacuum (i.e. parasites must go through

each TL leading to the definitive host) should result in an

exact correspondence between life cycle length (LCL) and

the TL of the definitive host (regression slope 1). A perfect

lack of any barrier should result in no correlation (regression

slope 0). We use nematode parasites of vertebrates, because,

relative to other helminth groups, nematodes vary consider-

ably in life cycle complexity [1]. Nematodes commonly

infect one, two or three hosts, and less often more, before

completing the life cycle. Our analysis suggests that the

trophic vacuum may be weaker than expected. Some nema-

todes transmit by means other than trophic ingestion; for

example, many penetrate their hosts directly and could thus

avoid any trophic vacuum. While our study relates primarily

to parasites constrained to transmit by ingestion, we also

explore whether two alternative nematode transmission strat-

egies (penetration and vector transmission) allow parasites to

reach high TL definitive hosts with fewer hosts in the life

cycle, compared with trophic transmission.
2. Material and methods
(a) Data collection
We collected data on LCL and definitive host TL for parasitic

nematodes. Anderson [31] summarized the life cycles of nema-

todes infecting vertebrates, and this was our primary source for

data on LCL. We also added information for several species

whose life cycles have been more recently elucidated [32–37].

A number of species in the dataset have flexible life cycles in

that some hosts are used only facultatively. For example, the

nematode Camallanus cotti normally has a two-host life cycle in

which it infects copepods as first host and fish as second host.

However, it can also infect fish directly, so the copepod first

host is actually facultative [38]. To accommodate such cases

(16.3% of the 392 trophically transmitted species in the dataset),

we ran all analyses twice, once with facultative species assumed

to have the longest possible life cycle and once assuming the

shortest life cycle (in the case of C. cotti, two hosts or one host).

Throughout, when we refer to long or short LCL, we are refer-

ring to the number of hosts in a parasite life cycle, not the time

required to complete the cycle.

Species-level estimates of TL are usually made from food

webs or quantitative diet studies, which are limited in their taxo-

nomic scope. Precise TL information is not available on a broad

phylogenetic scale, an exception being FishBase, which provides

estimates of weighted mean TL for fishes [39]. Thus, for some

nematode species in the dataset we had specific estimates of

the TL of the definitive hosts, but for many species we did not.

To fill these gaps in the data, we defined discrete TLs as follows.

We assumed basal producer taxa (e.g. plants, phytoplankton and

detritus) to have TL ¼ 1. Higher levels were: TL ¼ 2 herbivores

(primary consumers), TL ¼ 3 primary carnivores eating herbi-

vores (secondary consumers), TL ¼ 4 carnivores eating other

carnivores (tertiary consumers) and TL ¼ 5, apex predators.
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Figure 1. Complex life cycle parasites cannot sequentially infect more hosts than the maximum trophic chain length leading to their definitive host. Given that
animal-infecting nematodes begin their life cycle in a host at a TL � 2, this constrains the ‘samplable’ phenotype space to LCL � max TL 2 1, as shown in (a). As
a consequence, a positive correlation between LCL and max TL is expected, even when species are randomly distributed within this space. (b) Min TL, by contrast,
need not covary with LCL, because even hosts with a high min TL could acquire trophically transmitted parasites through accidental ingestion. (c) The observable
combinations of nematode LCL, min TL and max TL in three dimensions. A structured permutation (see text) tested whether observed associations between LCL and
TL departed from random expectations. (Online version in colour.)
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Although Williams & Martinez [40] were able to assign 54% of

212 species in four food webs unambiguously to a discrete TL,

Thompson et al. [23] found omnivory to be widespread above

the herbivore TL. Given the prevalence of omnivory, we esti-

mated a discrete max and min TL for a parasite’s definitive

host. For the host’s max TL, we added one to the TL of its highest

TL food item. Similarly, for min TL, we added one to the TL of its

lowest TL food item. In both estimates, the dietary food item TL

was scored conservatively. Strict herbivores thus had a min TL of

2 and maximum of 3 to reflect the fact that they accidentally

ingest other primary consumers (e.g. an herbivorous insect

eaten by a grazing mammal).

After estimating min and max TL, we estimated an average

TL for each species on the basis of information about host diet.

For instance, herbivores acquire nearly all their energy from pri-

mary producers and only a fraction by accidentally eating

primary consumers, so their average TL estimate was 2. Diet

information for mammals was taken from Jones et al. [41], and

for fishes mean TL estimates were taken from FishBase [39].

For other taxa, diet information was taken from a wide range

of sources and where no additional information was available

the average of min and max TL was taken as the best estimate

of average TL. Although some TL estimates are more precise

than others, this does not seem to introduce bias. Preliminary

analyses that used only weighted TL estimates (mostly from

FishBase) or only ‘rougher’ estimates based on discrete TLs

returned very similar results. Many nematodes can infect several

species as definitive hosts, so we averaged the different host TL

estimates to give a single value for each nematode species. The

different definitive hosts used by a given nematode species

tend to have similar trophic ecologies. In summary, our dataset

consisted of two measures for LCL (long and short) and three

for definitive host TL (minimum, maximum and average).
(b) Establishing a phylogeny for analyses
Given their shared history, LCLs and host TLs for different species

are not necessarily independent in the statistical sense, so a phylo-

geny must be incorporated into the comparative analysis [42,43].

No available phylogenies encompass all of the nematodes with

deduced life cycles. Thus, we took the phylogeny from van

Megen et al. [44] as a backbone tree, with branch lengths, and

we added species to it based on available phylogenetic and taxo-

nomic hypotheses (see the electronic supplementary material).

The internal node for species or clades added to the tree was arbi-

trarily placed at the halfway point on the branch leading to their

sister taxa, and the internal branches of clades added to the tree

were assumed to have equal lengths. Polytomies were used in
the case of uncertainty and the tree was scaled to be ultrametric

for use in statistical analyses.

(c) Association between definitive host trophic level and
life cycle length in trophically transmitted
nematodes

We defined max TL as the longest expected trophic chain leading

to a given definitive host. Max TL therefore sets an upper bound-

ary for the number of hosts and trophic transmission events in a

life cycle (figure 1a). In our dataset, this constraint is LCL �max

TL 2 1, because trophically transmitted, animal–parasitic nema-

todes begin their life cycle by infecting an animal consumer (at

least TL 2), not primary producers like plants. For example, a

parasite that infects a definitive host with a max TL of 3 can

have a maximum LCL of 2, i.e. a primary consumer as first

host (TL ¼ 2) and a secondary consumer as definitive host

(TL ¼ 3). On the other hand, the min TL of a host does not, by

definition, impose a constraint on LCL (figure 1b). Even hosts

with a high min TL could be infected directly, assuming parasite

propagules can be accidentally ingested.

We performed multiple regression analysis with min and

max TL as independent variables and LCL as a dependent varia-

ble. However, LCL and max TL are expected to be positively

correlated, even if the data are randomly distributed in the ‘sampl-

able’ phenotype space (i.e. long life cycles can only be observed

when max TL is large; figure 1). The normal null hypothesis

that regression parameters equal zero is thus unsuitable. We per-

formed permutations to establish the null parameter distributions,

but the permutations cannot be completely random given the

constraints in the data. For instance, a high LCL randomly

paired with a low max TL is implausible, as this falls outside

the observable phenotype space. We structured the permutation

procedure. Parasites with long life cycles are the most restricted

in the TL values their definitive hosts can have, so we started by

assigning random, but constraint-satisfying TL values to parasites

with long cycles. For instance, a parasite with four hosts in its life

cycle can only plausibly include a definitive host with a max TL of

5 or more (figure 1). All data points where max TL equals 5 or

more were isolated and then randomly paired with species that

have LCL ¼ 4. The remaining, unassigned TL values were then

used in the next case, LCL ¼ 3. Here, max TL must equal 4 or 5,

so all data points fitting this criterion, excluding those already

assigned for LCL ¼ 4, were isolated and randomly paired with

species that have LCL ¼ 3. This was continued until all TL

values had been randomly assigned.

This structured permutation randomly combines observed

LCL and TL values within the confines of the ‘samplable’



Table 1. Results of phylogenetic regressions with LCL as a dependent variable and min and max TL of the definitive host as independent variables. (We
assessed LCL twice, once assuming nematodes with flexible life cycles have the longest possible cycle and once assuming they have the shortest possible cycle.
A positive slope for max TL was expected by chance (figure 1a), so the null distributions were established by a structured permutation procedure, in which the
LCL values were randomly paired with constraint-satisfying TL values. p-Values in bold were considered significant.)

dependent variable regression parameter expected (range in which 95% of permutations fall) observed p-value

short LCL intercept 1.425 (1.238 – 1.610) 1.053 0.001

min TL 0.008 (20.078 to 0.088) 0.190 0.001

max TL 0.059 (0.003 – 0.109) 0.058 0.987

long LCL intercept 0.895 (0.691 – 1.085) 0.476 0.001

min TL 0.017 (20.102 to 0.132) 0.227 0.001

max TL 0.235 (0.168 – 0.302) 0.232 0.931
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phenotype space (figure 1), and it has several advantages. First,

the mean and variance of all variables (LCL, min TL and max

TL) are unchanged. Second, min and max TL are correlated, and

because these variables are permutated and assigned simul-

taneously, the procedure does not break this correlation. Third,

the phylogenetic structure in LCL is maintained as only TL is per-

mutated. The structured permutation was repeated 999 times, and

each time a phylogenetic regression [45] was conducted with the

permuted dataset to establish the null distribution for the

regression parameters. Phylogenetic signal in the residual error

term (Pagel’s l) was estimated simultaneously with the regression

parameters [43] using the ape R package [46]. Pagel’s l ranges

from 0 (no phylogenetic signal) to 1 (strong phylogenetic

signal). The structured permutation was conducted with both

LCL measures (long and short) as a dependent variable.

We also performed a phylogenetic regression simply using

average host TL as an independent variable. Here, we tested

the normal null hypothesis (regression parameters ¼ 0), because

the average TL does not necessarily constrain LCL, i.e. even a

host with a low (or high) average TL can still have long (or

short) trophic chains leading to it.
(d) Comparison with alternative transmission strategies
Besides trophic transmission, two other transmission strategies

are widespread in nematodes infecting vertebrates: penetration

and vector transmission [31]. Penetrators have a one-host life

cycle in which they penetrate through the skin of their host and

then migrate to another site for reproduction. Vector-transmitted

species have two-host life cycles; they are transmitted to a ver-

tebrate definitive host via the bite of a blood-feeding vector.

Parasites with these transmission strategies are not constrained

by the food web, so it is interesting to ask whether, compared to

trophic transmission, either of these alternative strategies allows

parasites to reach high TL definitive hosts with fewer hosts in

the life cycle.

To compare transmission strategies, we fitted two alternative

phylogenetic models based on the Ornstein–Uhlenbeck process.

This process involves random fluctuations around an optimal

phenotype and is taken to represent stabilizing selection

[47,48]. In the first model, we only estimated a single optimum

for definitive host TL, irrespective of transmission strategy. In

the second model, we estimated separate optima for host TL

for five different transmission strategies: (i) trophically trans-

mitted with one host (n ¼ 93), (ii) trophically transmitted with

two hosts (n ¼ 228), (iii) trophically transmitted with three or

more hosts (n ¼ 71), (iv) penetration (n ¼ 30) and (v) vector

transmission (n ¼ 115). Trophically transmitted worms were

classified into these groups using their longest possible LCL.

Similar results were obtained when using the short version of
LCL, so for simplicity only results using long LCL for classifi-

cation are presented. Models were fitted with the OUCH R

package, and they were compared with likelihood ratio tests [48].

All statistical analyses were conducted in R 2.15.1 (R Devel-

opment Core Team, Vienna, Austria).
3. Results
(a) Definitive host trophic level and life cycle length in

trophically transmitted nematodes
LCL is constrained to be less than the max TL (figure 1), and

the permutation procedure accounting for this indicated that

LCL increased with max TL, but not more than expected by

chance. However, LCL increased significantly with min TL

(table 1 and figure 2). Nematodes with long life cycles usually

reproduce in definitive hosts with significantly higher

average TLs (short measure of LCL ¼ 0.17 � TL þ 1.20,

Pagel’s l ¼ 0.96, p-value for slope , 0.0001; long measure

of LCL ¼ 0.35 � TL þ 0.82, Pagel’s l ¼ 0.94, p-value for

slope , 0.0001) (figure 3), though note that these slopes are

weak compared with the ‘perfect’ slope of 1.0.

(b) Alternative transmission strategies and host trophic
level

Definitive host TLs differ among nematode transmission strat-

egies (single optimum model versus separate optima model,

likelihood ratio tests: max TL, x2
4 ¼ 53:86, p , 0.0001; min TL,

x2
4 ¼ 67:31, p , 0.0001). To compare the strategies, confidence

intervals (CIs) around the mean for each transmission strategy

were estimated by bootstrapping the model [48] and are plotted

in figure 4. Compared with trophically transmitted worms with

one host, penetrating worms have definitive hosts with signifi-

cantly higher TLs (i.e. means fall outside the CIs). Vectored

worms, on the other hand, have definitive host TLs that are com-

parable to (for max TL) or slightly lower (for min TL) than

trophically transmitted worms with two hosts.
4. Discussion
High TL predators tend to be large and long-lived [9], so they

are assumed to be excellent hosts for parasites, offering high

growth and low mortality prospects [19]. However, parasites

in high TL hosts may be unable to produce propagules that
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are trophically available to those hosts, i.e. the propagules fall

into a transmission vacuum. There has been little attempt to

empirically demonstrate or quantify such transmission barriers.

Here, we show for the first time that nematodes reproducing in

high TL hosts tend to have more successive hosts in their life

cycles. This suggests that either infecting top predators favours

the incorporation of intermediate hosts into the life cycle (down-

ward incorporation, sensu [19]) or that adding top predators to a

cycle requires retaining hosts at lower TLs (upward incorpor-

ation, sensu [19]). While the results are consistent with a

trophic vacuum, from our analysis we cannot determine

which mechanism (upward or downward incorporation) has

been more important in producing this pattern.

If parasite transmission were constrained by a perfect

trophic vacuum, we would predict that herbivores (TL ¼ 2)

are infected directly (LCL¼ 1) and with each step up the

food web, LCL increases by one. The observed relationship

between LCL and average host TL was higher and shallower

than this prediction (figure 3). This implies that nematodes

reproducing in low TL hosts had surprisingly long life cycles,

e.g. the phylogenetic regression predicted worms infecting her-

bivores (TL¼ 2) to have on average approximately 1.5 hosts in
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their life cycle. Metastrongylids illustrate this. These worms

typically use terrestrial molluscs as intermediate hosts, which

are then accidentally consumed by a grazing ungulate [31].

Here, the intermediate host does not transport parasites to a

higher TL, given that an herbivore is incidentally consuming

another herbivore. The intermediate host could serve other

functions, such as increasing the survival, longevity and/or

dispersal of infective stages [1,20,49]. These worms are trans-

mitted from a small to a large host, which highlights the fact

that TL and body size are imperfectly correlated [9]. As a con-

sequence, it may be possible for trophically transmitted

parasites to infect large, but low TL hosts and enjoy the pre-

sumably better conditions for growth and reproduction [19],

without necessarily having longer life cycles.

Although significantly positive, the slope of the LCL–TL

relationship was modest (0.35 for the long version of LCL,

95% CI: 0.27–0.44). Strong phylogenetic structuring often

reduces slope estimates in phylogenetic regressions [43], and

the high values of Pagel’s l (greater than or equal to 0.94) indi-

cate that related nematodes tend to have similar combinations

of LCL and TL. However, the non-phylogenetic least-squares

estimate of the slope was 0.56, suggesting that the shallow

slope (less than 1) is not entirely a by-product of phylogeny.

This is not consistent with a pervasive trophic vacuum, and

it suggests some parasites can move up the trophic web with-

out transmission through each link in the average trophic

chain leading to their definitive host. Ollulanus tricuspis is a

tangible example. This worm reproduces in felids, including

very large ones like lions and cougars, where it causes irregu-

lar vomiting that releases the larvae [50]. Transmission to other

cats occurs when they consume the vomit.

The notion of a trophic vacuum assumes that parasite pro-

pagules occupy a low TL and are primarily available to small,

low-level consumers. However, with larger eggs or larvae,

parasites could enter the trophic chain at higher levels, redu-

cing the number of steps needed to reach top predators. For

instance, in trematodes the host-seeking cercarial stage is

bigger in species that target vertebrates, as opposed to invert-

ebrates [51]. Parasites might also shorten the life cycle by

making low TL intermediate hosts more profitable prey for

high TL predators, e.g. by manipulating intermediate host be-

haviour [24]. Food web studies suggest that parasites can

strengthen existing trophic interactions [52] and forge new

links between host species (or at least uncover previously

undocumented interactions) [53–56]. Though parasite adap-

tations like propagule structure or host manipulation may

reduce the barriers to trophic transmission, they do not elimin-

ate them. Nematodes reproducing in exclusively carnivorous

hosts (high min TL) have on average more hosts in their

life cycles, suggesting that there are limits as to how much

parasites can facilitate unlikely trophic events [57].

The significant relationship between LCL and min TL also

suggests that the short trophic chains leading to a host define

the boundaries of the trophic transmission vacuum. Animals

frequently feed on multiple TLs [23,58], and this is particularly

true for large, high TL animals [59,60]. This gives trophically

transmitted parasites the opportunity to preferentially exploit

the short trophic chains leading to a host. Besides the obvious

benefit of shortening the life cycle, parasites may have higher

transmission rates along shorter chains, as energy flows are

thought to be greater along these chains [40,61]. This is likely

true even if energy flows to a predator are equal among

chains. For example, consider a predator that gets half its
energy from consuming herbivores (TL ¼ 2) and half from sec-

ondary consumers (TL ¼ 3), so that its TL is 3.5. Presuming the

herbivore is smaller than the consumer [9], the predator would

consume more low TL prey items than high TL items to meet

its energy demands. Thus, in this hypothetical case, a parasite

would have a higher transmission rate along the short chain,

because there are more consumption events, even though

energy flows are the same along the two chains. An additional

consideration is that shorter chains may be more dynamically

stable over time [62–64], and stability is a characteristic of

parasitized trophic links [65–67].

Not all nematodes take an oral route to their final hosts;

penetration and vector transmission are two alternative trans-

mission strategies. Penetrators have a direct, one-host life

cycle, and compared to trophically transmitted species with

one-host cycles, they infect higher TL definitive hosts. This

is perhaps expected since trophically transmitted nematodes

with one host are generally constrained to exploit low

TL hosts, even though allogrooming or omnivory by higher

predators may allow direct transmission. Penetration,

though, seems to allow parasites to reach high TL hosts with-

out multiple hosts. A caveat here is that our analysis focused

exclusively on vertebrate parasites, ignoring nematode

species that penetrate, kill and reproduce in invertebrates

[68,69]. Including these species would certainly reduce the

average TL for the penetration strategy.

By contrast, vector-transmitted nematodes have a two-host

life cycle, but on average they do not reproduce in higher TL

hosts than trophically transmitted species with two-host

cycles. In vector-borne nematodes, the parasite alternates

between the lower TL of its definitive host and the higher,

micro-predatory TL of its vector, which is the opposite of tro-

phically transmitted parasites that move up TLs to reach

the definitive host. It nevertheless satisfies the idea that a

smaller host (the vector) is necessary to access a large definitive

host, which is consistent with the basic premise of the trans-

mission vacuum. It must be kept in mind that nematode

transmission strategies differ in a number of respects (e.g.

vector-transmitted nematodes reproduce in the tissues and

not the gut, penetrators are basically terrestrial, etc.). Conse-

quently, the ultimate causes for the evolution of different

transmission strategies are likely multitude [70], with definitive

host TL and the associated obstacles with oral transmission

being just one presumably important aspect. Additional studies

contrasting these strategies would thus be worthwhile.

In conclusion, our results suggest that trophically trans-

mitted parasites are confronted with a transmission barrier

between non-adjacent TLs. To reach high TL hosts and

bridge this trophic vacuum, parasites typically use one or

more intermediate hosts and have longer life cycles. Other

transmission strategies, like penetration, are not subject to

this constraint. However, the trophic vacuum may be weaker

than often assumed, as it is determined chiefly by the shortest

trophic chains leading to a host (i.e. the min TL). Both ecologi-

cal factors (omnivory) and parasite adaptations (propagule

size/structure, host manipulation) probably play a role in

reducing, but not eliminating, trophic transmission barriers.
Data accessibility. Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.5bd66.
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