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Sharks are one of the most threatened groups of marine animals worldwide,

mostly owing to overfishing and habitat degradation/loss. Although these

cartilaginous fish have evolved to fill many ecological niches across a

wide range of habitats, they have limited capability to rapidly adapt to

human-induced changes in their environments. Contrary to global warming,

ocean acidification was not considered as a direct climate-related threat to

sharks. Here we show, for the first time, that an early ontogenetic acclim-

ation process of a tropical shark (Chiloscyllium punctatum) to the projected

scenarios of ocean acidification (DpH ¼ 0.5) and warming (þ48C; 308C) for

2100 elicited significant impairments on juvenile shark condition and survi-

val. The mortality of shark embryos at the present-day thermal scenarios

was 0% both at normocapnic and hypercapnic conditions. Yet routine meta-

bolic rates (RMRs) were significantly affected by temperature, pH and

embryonic stage. Immediately after hatching, the Fulton condition of juven-

ile bamboo sharks was significantly different in individuals that experienced

future warming and hypercapnia; 30 days after hatching, survival rapidly

declined in individuals experiencing both ocean warming and acidification

(up to 44%). The RMR of juvenile sharks was also significantly affected by

temperature and pH. The impact of low pH on ventilation rates was significant

only under the higher thermal scenario. This study highlights the need of exper-

imental-based risk assessments of sharks to climate change. In other words, it is

critical to directly assess risk and vulnerability of sharks to ocean acidification

and warming, and such effort can ultimately help managers and policy-makers

to take proactive measures targeting most endangered species.
1. Introduction
Tropical sea surface temperatures have increased up to 0.5–0.68C since the

mid-nineteenth century owing to the weakening of tropical atmospheric circula-

tion [1,2]. Model projections also suggest that average surface air temperatures

will increase between 28C and 58C by 2100 owing to anthropogenic forcing [1].

This additional heat will be partially absorbed by the oceans, and future ocean

warming is expected to negatively impact the performance and survival of several

tropical organisms that already live close to their thermal tolerance limits [3].

Marine tropical biota will be more sensitive to future warming than the subtropi-

cal and temperate ones, as they evolved in a relatively stable thermal environment

[4,5]. Concomitantly, [CO2]atm has increased from 280 ppm (pre-industrial levels)

to values now exceeding 380 ppm [6], and is expected to rise to 730–1020 ppm by

the year 2100 [1]. Carbon dioxide reacts with seawater, resulting in a net increase

in the concentrations of Hþ (lowered pH), H2CO3 and HCO�3 , and a decrease in

CO2�
3 . This process, termed ocean acidification, is projected to decrease the pH

of surface waters between 0.14 and 0.5 units, depending on emission scenario,

by the end of the twenty-first century [1].
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While some species may demonstrate phenotypic plasticity

to these future environmental conditions, others are expected

to shift their distributions to areas favourable to maintaining

physiological optima [7]. Although acclimation (e.g. develop-

mental and transgenerational plasticity) will occur to allow

some species to adjust to future ocean conditions [8], standing

genetic variability is also an important factor [9]. Yet it is not

known whether evolution can occur rapidly enough in certain

marine species (e.g. with more complex life histories or long

generation times) [9].

Sharks occupy high trophic levels in marine habitats, and

play a key role in the structure, function and health of marine

ecosystems [10,11]. Most sharks are at a relatively high risk to

be negatively impacted by climate change owing to their slow

rates of evolution and low phenotypic plasticity. In other

words, their tendency towards late age at maturity (and

long lifespan) and low fecundity may impair a prompt adap-

tive response to rapidly changing environmental conditions,

especially in tropical regions [12,13]. Despite the ecological

relevance of sharks as apex predators, information on physio-

logical impacts of climate change on sharks is still scarce.

Although the metabolism of most sharks is known to be

determined by ambient temperatures [14], it is puzzling

that, to date, no experiments have been conducted to assess

the potential impact that ocean warming and acidification

may have on these cartilaginous fish. Nonetheless, it has

been argued through ‘ecological risk assessments’ for climate

change that ocean acidification will not directly affect sharks;

these studies hypothesize that sharks may only be indirectly

affected through changes in their habitat, marine community

structure or prey availability [13].

The aim of this study was to experimentally investigate,

for the first time, the impact of ocean warming (þ48C) and

ocean acidification (DpH ¼ 0.5) on elasmobranchs, namely

on the early ontogeny (embryos and recently hatched juven-

iles) of the tropical bamboo shark Chiloscyllium punctatum.

This small, bottom-dwelling and oviparous shark commonly

inhabits Indo-West Pacific intertidal areas, from sandy and

rocky substrates to sea grass beds and coral reefs [15]. It is

worth noting that the Indo-West Pacific region has been

warming at a relatively rapid rate compared with several

other world regions [2,16]. Moreover, early ontogenetic stages

of several marine species are expected to be the most vulnerable

to such climatic shifts [17,18], and this higher vulnerability may

ultimately become a serious bottleneck for the persistence of

those species in the ocean of tomorrow. Under this context,

we evaluated the effect of both warming and ocean acidification

on the (i) embryonic survival (%), (ii) development time,

(iii) embryo’s specific growth rate (SGR) (% day21), (iv) yolk

consumption (cm3 day21), (v) metabolic rates of early, inter-

mediate and pre-hatching embryos, (vi) Fulton condition of

newly hatched juveniles, and (vi) survival, metabolic and

ventilation rates of juvenile bamboo sharks.
2. Material and methods
(a) Egg collection and incubation
Sixty recently spawned embryos of bamboo shark (C. punctatum)

were collected by hand by local fishermen between April and

July 2013 in the area of Lungsod Ng Cebu (Philippines; around

108110N 1238580E) and transported by Tropical Marine Centre

UK. On arrival at the aquaculture facilities of Laboratório
Marı́timo da Guia (LMG-Cascais, Portugal), all embryos were

still irregular in shape and colour, and motionless [19]. The

shark embryos were incubated (suspended 5 cm below the water

surface with strings to ensure good aeration) within twelve

(three replicates per treatment) 50 l incubation systems (n ¼ 5 per

system). To understand the development and physiological mech-

anisms by which shark early ontogenetic stages may (or may not)

be able to withstand future ocean changes, the embryos were accli-

mated at (i) rising pCO2 (DpH ¼ 0.5; 0.14% CO2), and (ii) ocean

warming expected in 2100 [1], 48C above the average ambient

temperature (268C) in that Indo-West Pacific region [2,16]. More

specifically, the embryos were reared at (i) 268C pH 8.0 (tempera-

ture and pH control), (ii) 268C pH 7.5 (temperature control and

hypercapnic scenario), (iii) 308C pH 8.0 (warming scenario with

pH control), and (iv) 308C pH 7.5 (warming and hypercapnic scen-

ario). The respective control pCO2 values (see electronic

supplementary material, table S1) were found within the intervals

obtained by McElhany & Busch’s [20] Indo-West Pacific region.

The life support systems were replenished daily with 100 l of

new seawater to maintain total alkalinity and dissolved inorganic

carbon speciation owing to bacterial activity (i.e. nitrifiers, denitri-

fiers) and acidification of the treatments (two out of four). The

semi-closed systems were filled with 1 mm filtered, UV-irradiated

seawater, with the tanks being illuminated from above with

white fluorescent lamps under a photoperiod of 14 h light : 10 h

dark. Water quality was ensured using wet–dry filters (BioBalls),

protein skimmers (Schuran, Jülich, Germany) and 30 W UV-steri-

lizers (TMC, Chorleywood, UK). Ammonia and nitrite were

monitored regularly and kept below detectable levels. pH was

adjusted automatically, via solenoid valves, with the Profilux con-

trolling system (Kaiserslautern, Germany) connected to individual

pH probes. pH values were monitored every 2 s and lowered by

injection of a certified CO2 gas mixture (Air Liquid, Portugal) via

air stones or upregulated by aerating the tanks with CO2-filtered

(using soda lime, Sigma-Aldrich) air. Seawater carbonate system

speciation was calculated weekly from total alkalinity according

to Sarazin et al. [21] (spectrophometrically at 595 nm) and pH

measurements. All seawater physico-chemical parameters of the

different experimental (temperature and pH) set-ups are shown in

electronic supplementary material, table S1. pH was quantified

via a Metrohm pH meter (826 pH mobile; Metrohm, Filderstadt,

Germany) connected to a glass electrode (Schott IoLine, SI

analytics,+0.001) and calibrated against the seawater buffers

Tris–HCl (Tris) and 2-aminopyridine–HCl (Mare, Liège, Belgium)

according to Dickson et al. [22]. pH measurements were performed

under temperature-controlled conditions using a water bath

(Lauda, Germany,+0.18C). Bicarbonate and pCO2 values were cal-

culated using the CO2SYS software [23], with dissociation constants

from Mehrbach et al. [24] as refitted by Dickson & Millero [25].
(b) Survival and development time
Upon arrival at our facilities, the age of each individual

shark was estimated according to the embryonic descriptions

of Ballard et al. [26] and Harahush et al. [19]. The 60 encapsula-

ted embryos were then individually tagged in the egg capsule

(with coloured zip ties), and the opaque external fibrous layer

of the case was scraped off to enable visual and photographic

analyses. As a result, the developing embryos could be easily

surveyed inside their capsules when placed in front of a light

source. This procedure was conducted every day to check for

survival throughout embryogenesis. Photographs were taken

on a weekly basis, and each embryo was analysed through the

use of the image-processing software IMAGEJ to determine

the yolk sac length and width, and the embryo’s total length

(TL). The yolk measurements were then used to calculate the

yolk volume using the formulae V ¼ 1/6(pW2 L) (V, volume;

W, width; L, length) [27].
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Figure 1. Impact of ocean acidification (DpH 0.5) and warming (þ48C) on
(a) survival (%) and (b) development time of bamboo shark (Chiloscyllium
punctatum) embryos. Values represent mean+ s.d. Asterisks represent sig-
nificant differences between temperature treatments at the same pH
condition. For more statistical details, see electronic supplementary material,
table S2. (Online version in colour.)
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The embryo SGR was determined using the formula

[(ln embryo TL (T2) – ln embryo TL (T1))/number of days

elapsed between T1 and T2] � 100, with T1 being the previous

(week) measuring date and T2 being the latter measuring date.

Development time was defined as time until hatching.

(c) Fulton condition after hatching
Immediately after hatching, juvenile bamboo sharks were removed

from their respective incubation systems, weighed, measured (TL)

and individually tagged beneath the dorsal fin (Floy Tag & Mfg).

Fulton’s condition (measure of individual fish’s health) was calcu-

lated using the formula K ¼ (weight/TL3) � 100. Afterwards, the

juvenile sharks were placed again in the same incubation systems

and fed with mysid shrimps ad libitum on a daily basis (during

30 days post-hatching).

(d) Routine metabolic rates, thermal sensitivity and
ventilation rates

Oxygen consumption rates, here used as a proxy of routine

metabolic rates (RMRs), were determined according to Rosa &

Seibel [28,29]. RMR was analysed at four different stages of

early development: (i) early embryos (body still somewhat trans-

parent and presence of external filamentous gills; equivalent to

stages 25–29 of Ballard et al. [26]); (ii) intermediate embryos

(with more or less half the initial yolk volume already consumed

and dark brown brands are present over a light pink body;

equivalent to stages 30 and 32 of Ballard et al. [26]); (iii) late/

pre-hatching embryos (embryo occupies the entire area of the

circular pouch, with no visible yolk; equivalent to stages 33–34

in Ballard et al. [26]); and (iv) juveniles (30 days post-hatching).

It is worth noting that between 30 and 40 days after deposition,

the bottom edge of the egg case of the bamboo shark weakens

and the respiratory fissures (or marginal seals) open, allowing

the entry of seawater and subsequent circulation within the egg

case. Consequently, and contrary to what happens in some

invertebrate groups [30], the shark embryonic development

does not elicit dramatic changes in the abiotic conditions inside

the egg case.

Embryonic and juvenile stages (n ¼ 5 per stage) were

placed within a flow-through respirometry set-up (1 l; Loligo

Systems, Denmark) connected to the different incubation systems

(i.e. sharing the same seawater carbonate characteristics of the

different thermal and CO2 treatments). To avoid bacterial contami-

nations, the seawater from the incubation systems was filtered

(0.2 mm) and UV-irradiated before reaching the respirometers.

The water was pumped at a constant flow rate (between 5 and

50 ml min21, for early embryos and juveniles, respectively)

through the respirometers with the use of peristaltic pumps

(Cole-Parmer, USA). Oxygen concentrations were recorded at the

entrance and exit of each respirometer chamber with Clarke-type

O2 electrodes connected to a Strathkelvin Instruments 929

Oxygen Interface. Before and after each run, the experimental

set-up was calibrated and checked for electrode drift and microbial

oxygen consumption. Each experiment was 6 h long: 2 h for

acclimation and the following 4 h for oxygen measurement.

Thermal sensitivity (Q10) was determined using the standard

equation Q10 ¼ [R(T2)/R(T1)]10/(T2 – T1), where R(T2) and R(T1)

represent the oxygen consumption rates at temperatures T2 and

T1, respectively.

After 30 days post-hatching, each juvenile shark was

observed within the incubation systems in order to register

their ventilation rates (number of breaths per minute). This pro-

cedure was repeated three times per individual (each with 5 min

duration). Bamboo sharks were observed in the afternoon before

they were fed (to exclude any potential bias caused by feeding on

the respiration).
(e) Statistical analyses
Two-way ANOVAs (repeated measurements; using pH and

temperatures as variables) were conducted to detect significant

differences in development time, yolk consumption, SGRs, juven-

ile RMR and ventilation rates. The differences in embryos’ RMR

were investigated with three-way ANOVAs (i.e. with pH, tempera-

ture and life stages as variables). Normality and homogeneity of

variances were verified by Kolmogorov–Smirnov and Bartlett

tests, respectively. Subsequently, post hoc tests (Tukey HSD and

unequal N HSD) were performed. All statistical analyses were per-

formed for a significance level of 0.05, using STATISTICA v. 10.0

software (StatSoft, Tulsa, USA).
3. Results
(a) Embryonic survival and development time
Survival of bamboo shark embryos at the present-day thermal

scenario (268C) was 100% at both normocapnic and hypercapnic

conditions (figure 1a). However, under future ocean warming

(þ48C), survival significantly decreased (two-way ANOVA,

p , 0.05), ranging between 80% and 89% at normocapnic and

hypercapnic conditions, respectively. No significant effect of

pH on embryonic survival was observed ( p . 0.05; see also

electronic supplementary material, table S2).

The duration of the embryonic period was shortened

with increasing temperature in both pH treatments (figure 1b,

two-way ANOVA, p , 0.05; electronic supplementary material,

table S2). At present-day temperature and pH conditions,

embryogenesis lasted 98+9 days; warming up to 308C,

under normocapnia, caused embryos to hatch after 79+11
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days. Under hypercapnia, embryogenesis at 268C lasted

102+ 12 days at 268C, whereas under the future warming

and hypercapnic scenario, it was completed in 81+ 6 days.

The increase in development time at lower pH (7.5) under

both thermal treatments was not significant ( p . 0.05; see

also electronic supplementary material, table S2).

(b) Yolk consumption and specific growth rates
Yolk consumption rates were similar between normocapnia and

hypercapnia at both thermal scenarios (figure 2a; two-way

ANOVA, p . 0.05). Yet yolk was consumed at a significantly

higher rate at 308C (about 0.16 cm3 day21) than at 268C
(around 0.12 cm3 day21; p , 0.05; electronic supplementary

material, table S2).

SGRs showed similar trends in treatment-specific differ-

ences; that is, while pH did not elicit any significant change

(figure 2b; two-way ANOVA, p . 0.05), the warming scenario

significantly increased embryonic growth (about 1.8% day21;

p , 0.05; electronic supplementary material, table S2) when

compared with the present-day thermal scenario (around

1.3% day21).

(c) Metabolic rates and thermal sensitivity of shark
embryos

RMRs were significantly affected by temperature, pH and

embryonic stage (early, intermediate and late/pre-hatching

embryos; figure 3; three-way ANOVA, p , 0.05; electronic

supplementary material, table S3). At all three embryonic

stages, hypercapnia led to a significant decrease in RMR
under the warming scenario ( p , 0.05). RMR values ranged

between 6.33 (in early stages under 268C and pH 7.5) and

127.01 mmol O2 h21 per embryo (pre-hatching stage under

308C and pH 8.0). Consequently, embryonic Q10 values

(i.e. thermal sensitivity of metabolism between 268C and

308C) ranged above 3 under normocapnia across all embryo-

nic stages, and close to 1.5 in intermediate and late stages

acclimated to low pH (grey line in figure 4).
(d) Fulton condition of recently hatched sharks and
survival

Immediately after hatching (day 0), the Fulton condition

(K ) of juvenile bamboo sharks was significantly different in

individuals that experienced future warming and hypercap-

nia (figure 5a; two-way ANOVA, p , 0.05; electronic

supplementary material, table S4). Nonetheless, while pH
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did not affect K under present-day thermal conditions (K-values

between 0.37 and 0.39), K changed under the future warming

condition (K ¼ 0.34). Thirty days after hatching, survival rapidly

declined in individuals experiencing both ocean warming

and acidification (figure 5b; two-way ANOVA, p , 0.05;

electronic supplementary material, table S4). At present-day

temperature, survival decreased significantly from 100% under

normocapnia to 61% under hypercapnia. At future warming

conditions, survival decreased from 71% under normocapnia

to 44% under hypercapnia.
(e) Metabolic and ventilation rates and Q10-values of
juvenile sharks

The RMR of juvenile sharks (30 days after hatching) was

significantly affected by temperature and pH (figure 6a;

two-way ANOVA, p , 0.05). Moreover, there was a signifi-

cant interaction between these two environmental variables

( p , 0.05; electronic supplementary material, table S4).

Temperature elicited a significant increase in RMR both

at normocapnic (Q10-value of 5.37) and hypercapnic (Q10-value
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of 2.98) conditions ( p , 0.05). Although pH did not cause

any relevant change at 268C (normocapnia: 82.6 mmol+
12.3 O2 h21 ind21; hypercapnia: 74.6 mmol+3.9 O2 h21 ind21),

it significantly decreased RMR under the future warming

scenario (from 161+2.6 O2 h21 ind21 to 115+17.2 O2 h21;

p , 0.05). Ventilation rates of juvenile sharks showed a similar

trend, with the number of breaths per minute increasing signifi-

cantly with warming and normocapnia (figure 6b; two-way

ANOVA, p , 0.05; electronic supplementary material, table

S4). Yet such an increasing pattern with warming did not

happen under hypercapnia. Additionally, the impact of ocean

acidification on ventilation rates was significant only under the

higher thermal scenario ( p , 0.05).
R.Soc.B
281:20141738
4. Discussion
One of the most important mechanisms that will allow marine

organisms to cope with future environmental changes is acclim-

ation [31]. Here, we showed that, after an acclimation process that

comprised an extensive embryonic period and 30 days post-

hatching, the hypercapnic and warming scenario was already

outside the range of tolerance of this tropical shark. This finding

was clearly supported by the high mortality (.50%; figure 5b)

and decreased fitness recorded in the juvenile phase (figure 5a).

Under future ocean conditions, this relatively inactive bottom-

dwelling shark displayed a more lethargic behaviour (data

not shown), and decreased metabolic and ventilatory capabili-

ties, which might have cascading effects on its growth and

subsequent reproduction. Such potential impacts may be stron-

ger in more active shark species displaying higher metabolic

costs associated with energetically demanding life strategies

(e.g. pelagic species with ram ventilation). Temperature-induced

respiratoryacidosis and hypercapniacause short-term acid–base

imbalance, but as in most fish, pH compensation in sharks is

done rapidly and efficiently across the gills through the direct

transfer of acid–base equivalents between the animal and the

external environment [32,33]. As shark ventilation may be influ-

enced by acid–base status [33,34], the decreased (although not

significantly) ventilation observed under ocean warming and

acidification conditions (figure 6b) likely indicates acid–base

imbalance (metabolic and respiratory acidosis). If compensation

of acid–base imbalance was not achieved, the exposure to

reduced pH (and elevated pCO2) would explain the reduc-

tion of shark metabolism (figure 6a) [35–37]. One should

keep in mind that metabolic depression, or even suppression,

is considered an adaptive strategy to cope with short-term

hypercapnia (and hypoxia), but it is not advantageous under

the chronically high CO2 conditions predicted for the ocean of

tomorrow [28,30].

Early-life stages are known to display narrow environmen-

tal tolerance windows owing to developmental constraints and
insufficient capacity of central organs [7,38]. Consequently, at

high temperature borders, oxygen (O2) supply in shark

embryos may have become limited via ventilatory and circula-

tory constraints, and its combined effect with CO2 should have

decreased their thermal tolerance [7]. Based on this concept,

the scope for aerobic performance in the bamboo shark

should decline above the optimal temperature range, with con-

sequences for locomotion, growth and reproduction. In this

study, ocean warming had more pronounced impacts on

shark early-life stages than acidification. During embryo-

genesis, with the exception of RMR (figure 3c), none of the

measured parameters (survival, development time, yolk con-

sumption and SGR) was significantly affected by hypercapnia

(see electronic supplementary material, table S2). However,

RMR under the warming scenario was significantly affected

by pH (figure 3; electronic supplementary material, table S3).

Hypercapnia was indeed a crucial factor on embryos’ RMR as

energy expenditure rates were highly temperature-dependent

under normocapnia, with Q10-values ranging between 3 and

6. Yet, under high CO2 conditions, such rates became less

temperature-dependent (Q10-values around 1.5). Reduced pH

caused the embryos to become more ‘hypometabolic’ (figure 4),

which is expected to be accompanied by a reduction in protein

synthesis and, consequently, decreased SGR (figure 2b) [39,40].

A greater degree of physiological impairment in shark embryos

under hypercapnia had deleterious repercussions on juvenile

fitness (figure 5a) and survival (figure 5b). Although not

proven here [41], our findings may also suggest the idea that

subtle events in shark’s early-life (embryo) stages can promote

‘carry-over effects’ to later periods of its life cycle.

Although the vulnerability of tropical sharks to climate

change is species-specific, factors such as temperature, sea

level rise and freshwater input are assumed to elicit the greatest

effects upon estuarine, coastal inshore and reef species [13].

Such effects are likely to be expressed through changes in species

abundance and distribution (e.g. poleward movements and

migrations to deeper waters) [42]. Until now, ocean acidification

was not considered as a primary climate-related threat to elasmo-

branchs; only indirectly through habitat and community changes

(e.g. reef sharks) [12,13]. Experimental approaches such as those

shown in the present study are critical to directly assess risk and

vulnerability of sharks to ocean acidification and warming,

and can ultimately help managers and policy-makers to take

proactive measures targeting most endangered species.
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