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Viral Profiling Identifies Multiple Subtypes of Kaposi’s Sarcoma
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ABSTRACT Kaposi’s sarcoma (KS), caused by KS-associated herpesvirus (KSHV), is the most common cancer among HIV-
infected patients in Malawi and in the United States today. In Malawi, KSHYV is endemic. We conducted a cross-sectional study of
patients with HIV infection and KS with no history of chemo- or antiretroviral therapy (ART). Seventy patients were enrolled.
Eighty-one percent had T1 (advanced) KS. Median CD4 and HIV RNA levels were 181 cells/mm? and 138,641 copies/ml, respec-
tively. We had complete information and suitable plasma and biopsy samples for 66 patients. For 59/66 (89%) patients, a detect-
able KSHV load was found in plasma (median, 2,291 copies/ml; interquartile range [IQR], 741 to 5,623). We utilized a novel
KSHYV real-time quantitative PCR (qPCR) array with multiple primers per open reading frame to examine KSHV transcription.
Seventeen samples exhibited only minimal levels of KSHV mRNAs, presumably due to the limited number of infected cells. For
all other biopsy samples, the viral latency locus (LANA, vCyc, VFLIP, kaposin, and microRNAs [miRNAs]) was transcribed abun-
dantly, as was K15 mRNA. We could identify two subtypes of treatment-naive KS: lesions that transcribed viral RNAs across the
length of the viral genome and lesions that displayed only limited transcription restricted to the latency locus. This finding dem-
onstrates for the first time the existence of multiple subtypes of KS lesions in HIV- and KS-treatment naive patients.

IMPORTANCE KS is the leading cancer in people infected with HIV worldwide and is causally linked to KSHV infection. Using
viral transcription profiling, we have demonstrated the existence of multiple subtypes of KS lesions for the first time in HIV- and
KS-treatment-naive patients. A substantial number of lesions transcribe mRNAs which encode the viral kinases and hence could
be targeted by the antiviral drugs ganciclovir or AZT in addition to chemotherapy.
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aposi’s sarcoma (KS) is the most common malignancy asso-

ciated with HIV infection (1). KS is a leading cancer among
both men and women in countries where KS-associated herpesvi-
rus (KSHV) is endemic and HIV has become epidemic (1, 2). In
the United States and Europe, KS remains the most common can-
cer in HIV patients, even after active antiretroviral therapy (ART)
has become widely available (3—6). The decline in KS, which fol-
lowed the initial introduction of ART for HIV in the United States
and Europe, has plateaued, and it is anticipated that KS will re-
main the leading cancer for persons living with or at high risk for
acquiring HIV infection.

The clinical course of KS can range from an indolent state to a
severe, progressive disease leading to significant morbidity and
mortality. Advances have been made in the treatment of KS (re-
viewed in references 7 and 8). However, optimal therapy and long-
term management, particularly in resource-limited settings, are
not well defined. Standard cytotoxic chemotherapy (liposomal
polyethylene glycol (PEG)-doxorubicin, or “Doxil”) is curative in
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only a subset of KS patients and is limited by the cumulative life-
time dose of doxorubicin and its derivatives. Access to liposomal
PEG-doxorubicin and the supportive care needed for chemother-
apy remain problematic in resource-limited settings, which in-
cludes all countries where KS and KSHV are endemic. ART is
essential for HIV-infected KS patients, but despite ART, up to a
third of KS patients have disease recurrence or do not respond to
ART alone (9, 10). Ten to twenty percent of KS patients initiating
ART may develop worsening KS disease, a condition called KS
inflammation reconstitution syndrome (KS-IRIS) (11-14). KS
also develops in HIV patients despite ART, i.e., in patients with no
detectable HIV load and near-normal CD4 levels.

KS is a tumor of endothelial cell lineage, which is characterized
histologically by slit-like vascular spaces, extravasated red blood
cells, elongated “spindle”-like endothelial cells, and an infiltrate of
lymphocytes or other inflammatory cells. The discovery of KSHV
was a major advance in our understanding of this disease (15),
since essentially all cases of KS carry KSHV and the continued
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presence of KSHV is required for KS tumorigenesis. KSHV is a
human gammaherpesvirus that encodes more than 84 proteins
that mediate viral replication and virus-host interactions (re-
viewed in reference 16). Theoretically, all KSHV proteins can be
considered potential therapeutic targets. The viral proteins are
expressed only in the tumor cells and probably also in preneoplas-
tic cells, which form the latent reservoir that can progress to tumor
cells. Two viral proteins that exhibit kinase activity are the viral
thymidine kinase Orf21 and the viral protein kinase Orf36. These
proteins have been shown to convert antiherpesvirus drugs, spe-
cifically ganciclovir, into their functional, toxic forms (17). Gan-
ciclovir inhibits KSHYV viral replication (18-21) and at high con-
centrations can inhibit tumor growth (17, 22-24).

The clinical experience of antiherpesvirus drugs in KS has
yielded mixed results. We believe that this was in part because
patients were enrolled without knowing if their lesions expressed
the viral kinases (25-28). Knowing whether and which lesions
express the viral kinases represents a gap in our current under-
standing. Increased understanding of KSHV gene expression in
different types of KS may lead to patient intervention and strati-
fication as a form of “personalized” KS therapy.

We found that treatment-naive AIDS-KS lesions differed sig-
nificantly in their degree of KSHV transcription, allowing for a
stratification of AIDS-KS cases according to the degree of so-
called “lytic” gene expression. Such molecular biomarker-based
division may be useful in optimizing treatment for KS patients.
Previous studies evaluating this principle were small. Our group
has prior experience in KSHV profiling of primary KS tissue.
Those prior studies were based on archival samples from HIV-
infected AIDS patients in the United States, which were heavily
pretreated with chemotherapy, ART, or both (29, 30). To expand
our understanding of KSHV gene expression, we conducted a
cross-sectional study of 70 ART- and chemotherapy treatment-
naive KS patients attending the Lighthouse (LH) clinic in Lilon-
gwe, Malawi. We describe the KSHV viral load and KSHV mRNA
transcription pattern in KS lesions from these patients so as to
develop novel stratification methods that may provide prognostic
and/or predictive information.

RESULTS

Study population and clinical characterization. From Novem-
ber 2008 through August 2010, we screened 217 HIV-infected KS
patients. Seventy (32%) of the screened patients were eligible and
enrolled in the profiling project. Fifty percent of patients were
enrolled in the first 100 days, attesting to the high prevalence of KS
in Malawi (see Fig. SI in the supplemental material). Primary
reasons for exclusion included previous use of ART (26%), che-
motherapy (9.5%), or both (48%) and disease restricted to the
oral cavity (5.5%). In total, 105 patients were excluded. Among
enrolled clients, 71% were male. The median (interquartile range
[IQR]) age, body mass index (BMI), CD4 level, and HIV RNA
level were 32 years (29 to 38), 22.4 kg/m? (20.5 to 24.3), 181 cells/
mm? (85 to 261), and 138,641 copies/ml (54,900 to 285,000), re-
spectively. Eighty-one percent presented with T1 (poor-risk) KS.
Fifteen (22%) patients had 1 to 10 KS lesions, 42 (60%) patients
had 10 to 50 lesions, and 12 (17%) patients had more than 50
lesions. Thirty-two (46%) patients had edema, 6 (9%) had con-
current oral KS, and 4 (6%) showed evidence of visceral KS (be-
cause of the absence of computed tomography scans, we cannot
exclude that more of the patients had visceral KS) (see Table S1).
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KSHYV load did not correlate with CD4 count or HIV load.
We observed no significant correlation between the log HIV load
and CD4 counts per microliter (Fig. 1A). We observed no signif-
icant correlation between log KSHV load and disease stage (lim-
ited KS [TO0] versus T1) or any other clinical parameters by mul-
tivariate linear regression. We chose to measure cell-free KSHV
load rather than KSHV DNA in peripheral blood mononuclear
cells (PBMC), since this is directly related to viral replication. The
median plasma KSHV DNA load was 3.36 log copies (IQR, 2.87 to
3.75).In 7/66 (11%) samples, the KSHV load was below our limit
of detection (200 copies/ml) even though we could detect KSHV
mRNA in biopsy specimens from 6 of these 7 patients. Since we
were able to amplify the internal control in these serum samples,
they represent cases of clinically apparent KS in the absence of
detectable systemic KSHV viral load.

After excluding the 7 samples with a KSHV load below the limit
of detection, the log,, KSHV load and log,, HIV load were nor-
mally distributed (Fig. 1C and D). Since the CD4 count was not
normally distributed, (Fig. 1E), we used square-root-transformed
CD4 counts for all subsequent analyses. We observed no correla-
tion between the log,, KSHV load and log,, HIV load or between
the log,, KSHV load and square-root-transformed CD4 count.
Three patients (triangles in Fig. 1B) had a CD4 count of >600 cells
per microliter, high HIV load, and substantial KSHV loads in
plasma at the same time. Overall, our data demonstrate that the
KSHYV load, HIV load, and CD4 counts are independent of each
other in therapy-naive, HIV+ KS patients in regions to which
KSHV is endemic.

Two subtypes of KS. One aim of this research was to determine
whether molecular profiling of KSHV transcription in a suspected
lesion was feasible and could provide an alternative to traditional
pathology in resource-limited settings. We found RNAlater to be a
suitable fixation and transport medium at tropical room temper-
ature. Figure 2A describes the data analysis plan. First, we ex-
cluded any cases with incomplete clinical data. Five out of 66 (8%)
biopsy specimens had “housekeeping” mRNAs with abnormally
low levels (threshold cycle C; > 32), suggestive of RNA degrada-
tion. These samples were excluded from further analysis. We
could not detect the mRNA for the KSHYV latent genes in 10 biopsy
specimens for which we could detect “housekeeping” mRNAs.
This suggests that very few cells in the lesions were infected or that
the level of latent gene expression per cell was minimal. Nine of
these ten patients had a detectable KSHV load in plasma and mul-
tiple KS lesions. We cannot exclude that the wrong lesions or a
highly fibrous or necrotic lesion was biopsied. These 10 samples
were therefore excluded from further analysis. To arrive at the
final high quality data set, we removed additional samples, which
had KSHV latent mRNA levels that were detectable but much
lower than the mean of the set. This provided us with 48 high-
quality samples, which were split into a discovery set and a valida-
tion set. These samples were run on different days and with dif-
ferent lots of reagents, i.e., as true experimental replicates. We
used a new, second-generation real-time quantitative PCR
(qPCR) array consisting of 188 individual qPCR primer pairs (see
Fig. S2 in the supplemental material).

Figure 2B shows the density curves for 12 samples from the
discovery set, i.e., the fraction of primers with indicated cycle
number C;. A higher C; corresponds to lower mRNA abundance.
The housekeeping mRNAs (blue) were more abundant and simi-
lar across all samples than the viral mRNAs (red). Two “bulges”
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FIG 1 Lack of correlation between KSHV load, CD4 count, and HIV load in
ART-naive patients presenting with HIV-associated KS in an area of KSHV
endemicity. (A) Scatter plot of log,, HIV load (in copies per ml) on the vertical
axis versus CD4 cell count per microliter on the horizontal axis. The solid red
line indicates a linear regression taking into account only data points with a
CD4 level of <550. The blue striped lines indicate the cutoff levels of CD4
counts used in panel B. (B) Scatter plot of log,, KSHV load (in copies per ml)
on the vertical axis versus log,, HIV load (in copies per ml) on the horizontal
axis. The symbols are coded by CD4 group as indicated above the panel. The
black striped lines indicate the limit of detection for KSHV (200 copies /ml)
and a cutoff for low HIV load (4.4 log,, copies/ml). The HIV load assay had a
limit of detection of 50 copies/ml). (C) QQplot of distribution of log HIV
copies/ml. Theoretical quantiles are shown on the horizontal axis and sample
quantiles on the vertical axis. Vertical blue bars on the inner vertical axis
represent the distribution histogram, and yellow highlights the region desig-
nated low HIV load (low). (D) QQplot of distribution of log KSHV copies/ml.
Yellow highlights the region designated nondetectable KSHV in plasma (ND).
(E) QQplot of CD4 count/ul distribution. Note the curvature of the points,
which denotes systematic difference from a normal distribution (P < 0.05 by
Shapiro-Wilk test).
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were observed for the “housekeeping” mRNAs, representing
highly abundant (C; < 305 actin, gapdh, and B2m) and less abun-
dant (C > 30; hprt) “housekeeping” mRNAs. In contrast, many
viral mRNAs were undetectable, leading to the sharp peak ata C.
of 45. A peak at C;-45 indicates the end of the PCR. Such a mRNA
was not detectable, and no PCR product was formed. We could
distinguish two subtypes of KS: samples with a significant peak at
a C; = 45, i.e., very limited viral transcription (yellow back-
ground), and samples with a lower peak at a C;-of 45 and a signif-
icant, second “bulge” ata C; of <40, i.e., many viral mRNAs were
detectable (gray background).

Figure 3 shows a heat map of viral transcription in the n = 35
sample validation set (a heat map of the discovery set is shown in
Fig. S3 in the supplemental material; also provided, as Fig. S5, is a
high-resolution image of Fig. 3). This unsupervised approach un-
covered two subtypes: a and b. Subtype a contained biopsy speci-
mens with a highly restricted, latent pattern of KSHV transcrip-
tion; subtype b contained biopsy specimens with a more extended
pattern of KSHV transcription. Note that mRNAs with marginal
mean expression or those which did not change across samples
were trimmed prior to clustering. The KSHV primer pairs (and
underlying mRNA levels) fell into 3 different clusters. Note that
both the overall levels and the pattern of transcription influence
cluster membership. The ordering within any cluster was not sig-
nificant. Whereas the samples could be divided into two subtypes,
a and b, the various KSHV mRNAs, as measured by real-time
qPCR primer pairs, could be divided into multiple classes or clus-
ters, labeled 1, ii, and iii. Members of cluster i were highly ex-
pressed in many samples. Members of cluster ii were expressed at
high levels in only a few samples. Members of cluster iii were
expressed at low levels in only a few samples. KSHV mRNA classes
are further analyzed using more accurate methods detailed below.
In sum, on the basis of unsupervised hierarchical clustering, KS
lesions could be divided into two subtypes: those with limited viral
gene transcription and those with evidence for widespread KSHV
gene transcription.

KSHV mRNA patterns in KS. We are confident about the ex-
istence of different subtypes of KS, because the number of vari-
ables, i.e., primer pairs (n = 188), exceeded the number of samples
(n = 35). Independent corroboration using principal-component
analysis (PCA) and analysis of normalization methods is pre-
sented in Fig. $4 in the supplemental material. Identifying clusters
of differentially regulated viral mRNAs was much more challeng-
ing, because here the design was underpowered. Ideally, one
would like to have as many samples as genes. This would require
188 biopsy specimens. We attempted to identify mRNAs that dif-
fer among the KS subtypes and thus may be developed into prog-
nostic and/or predictive biomarker signatures by making the as-
sumption that latency locus mRNAs do not change in levels and
could therefore be used to normalize all data (ddC;) (30). This
also normalizes for tumor cell content per sample, since all KS
tumor cells and only the KS tumor cells transcribe viral latent
mRNAs, as previously shown by in situ methods (31, 32). Fig-
ure 4A shows the relative expression (ddC;) at each position on
the genome. Red indicates members of cluster b., i.e., biopsy spec-
imens with evidence of extended viral transcription, and blue in-
dicates members of cluster a, i.e., biopsy specimens with limited
transcription.

Due to the fact that poly(A) mRNA was isolated from the tu-
mor samples in order to increase sensitivity and to decrease back-
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FIG 2 (A) The data and sample flow into two cohorts: “discovery” and “validation.” (B) The distribution of the raw data (C;). Real-time qPCR outputs C.
values, which represent the number of cycles needed to yield a positive signal. The cycle number C;-is shown on the horizontal axis for each of 12 different samples
from the “discovery” cohort. Shown in red is the distribution of the result of qPCR with KSHV mRNA-specific primers, and in blue the distribution of the result
of gPCR with human/housekeeping mRNA-specific primers is shown. The yellow background indicates samples with very limited KSHV transcription; the gray

background highlights samples with significant KSHV transcription.

ground due to residual DNA, we noticed a poly(A) site position
effect: the signal for the vFLIP primers, which are located proximal
to the poly(A) site for the tricistronic LANA/vCYC/vFLIP latency
mRNA (as well as the bicistronic vCYC/ vFLIP mRNA), yielded a
higher signal than the more distal vCYC and LANA primers. Like-
wise, the most poly(A)-site-proximal vGPCR primers yielded a
higher signal than the more distally located K14 primers, even
though both measure the same mRNA. This did not affect the
comparison between samples, however, since those comparisons
were done on a primer-by-primer basis.

Next, we averaged all primer pairs located within the same Orf
together (Fig. 4B). Again, red indicates biopsy specimens with
evidence for extended KSHV transcription, and blue indicates bi-
opsy specimens with limited KSHV transcription. For some genes,
e.g., K3 and K4, no mRNA was detectable in the latent KS sub-
types. For most KSHV genes, e.g., Orf10 and Orf6, mRNA levels
were significantly higher in the “extended” transcription cluster
(red) than in the tightly latent cluster (blue). Orf58 represents an
example of an mRNA with consistently high levels in the “ex-
tended” transcription subtype, as indicated by the short red bar,
and extremely variable mRNA levels within the “latent” subtype,
as indicated by the very long blue bar. K15 represents an example
of an mRNA with consistently variable expression in both KS sub-
types. In the case of K1 and K15, some of the variability may be due
to strain differences, since these two genes are highly polymor-
phic.

The large number of samples and primers allowed us to test the
hypothesis that transcription differed for specific orfs among the
subtypes (Fig. 4C). To adjust for multiple comparisons, we con-
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trolled the false discovery rate to a significance level of 0.05. Fig-
ure 4E shows that approximately 30 KSHV mRNAs differed sig-
nificantly between the two KS subtypes (also see Table S2).
Figure 4F shows that among the top 30 differently regulated KSHV
mRNAs, we would expect no more than 2 false-positive results.
Table S2 lists these mRNAs.

In sum, using multiple analytical approaches, more than 180
individual markers, and two independent biological data sets, we
established the existence of at least two KS subtypes in
chemotherapy- and ART treatment-naive KS lesions. Potentially,
up to 30 KSHV genes could be developed into either individual
biomarkers or a composite biomarker signature for the purpose of
prognosis and treatment stratification of KS prior to therapy.

DISCUSSION

Advances in molecular profiling and in histopathology have
taught us the value of tumor subtyping and stratification in un-
derstanding pathology and designing better treatment regimens,
as has been seen, e.g., in breast cancer. The same rationale applies
to KS. Clinicians have long distinguished plaque, patch, and nod-
ular KS lesions. Pathologists have long distinguished plaque,
patch, and nodular histological stages (33, 34), though the histol-
ogy does not always correspond to the clinical notation.

For HIV+ KS patients, ART represents first-line therapy since
ART alone can lead to the resolution of KS in some patients. It is
unclear, however, which KS patients respond to ART alone, which
KS patients benefit from immediate, ART-concurrent chemother-
apy, and which KS patients benefit from ART-concurrent, anti-
KSHYV therapy (ganciclovir, valganciclovir, and cidofovir) (10,
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FIG 3 Heat map representation of two-way unsupervised clustering of the
“validation” set of KS biopsy specimens. Before clustering, those mRNAs
which did not change or which were not detectable in any of the samples were
removed. Red indicates the highest, yellow indicates intermediate, and blue
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35-37). Some patients, particularly in regions to which KS is en-
demic, respond to ART initiation with exaggerated disease,
termed KS immune reconstitution syndrome (KS-IRIS) (11-14).

The current KS staging is based on immune status (CD4
count), KS disease stage, and systemic involvement (T0, T1) (38).
In the post-ART era, CD4 count may no longer provide prognos-
tic information (39). It is unclear whether the same KS staging
criteria that were developed in the United States and Europe dur-
ing the initial phase of the AIDS epidemic, where KSHV was ac-
quired late in life and predominantly by sexual contact (40, 41),
also apply to KS that develops in HIV* patients in areas of KSHV
endemicity, where KSHV is often acquired before the onset of
sexual maturity.

We observed only marginal correlations between extents of
disease, systemic KSHV load, HIV load, and CD4 counts. In the
post-ART era, approximately 30% of KS in the United States man-
ifested itself in long-term ART-controlled individuals (9, 42, 43)
with no detectable HIV load and >250 CD4 cells/ul. An implica-
tion of this study is that in areas to which KS is endemic, KS disease
is observed in the setting of low as well as moderate CD4 counts
(>250 CD4 cells/ul). Cases of extensive KS, despite high CD4
counts, were also seen in an ART-naive South African cohort (44)
and in Uganda (38). This may be a unique feature of AIDS-KS in
regions of KSHV endemicity.

The diagnosis of KS is a challenge in areas where pathology is
limited. A molecular assay would greatly improve diagnosis. We
observed 7 cases of KS with no detectable systemic KSHV load. For
6 of these patients, the KS lesions nevertheless tested positive for
KSHV mRNA. Others also failed to detect KSHV in blood in as
many as 25% of patients (45, 46). Thus, detecting KSHV mRNA in
lesions may improve diagnosis. An advantage of molecular assays,
particularly if they can be developed into robust point-of-care
assays, is that they obviate the need for evaluation by pathologists,
who are not affordable or not present in many low- and middle-
income countries.

We previously demonstrated that lesions from advanced
AIDS-KS cases from the pre-ART era and KS that developed in
HIV-suppressed individuals on successful ART separated into two
groups based on their KSHV transcription profiles (29, 30). Evi-
dence of “extended” KS kinase transcription was virtually absent
in classic KS, where ganciclovir monotherapy did not induce KS
regression (25). These earlier studies were limited in size and com-
prised of groups of heavily pretreated patients. Those limitations
were overcome in the current study, which involved only
treatment-naive patients. Here, we identified multiple subtypes of
KS transcriptional signatures. Half the samples exhibited a “la-
tent” transcription pattern, which was limited to transcripts
across the KSHV latency locus (LANA/vCyc/vFLIP/miRNAs).

Figure Legend Continued

indicates no or low signal for a given primer pair on the vertical axis. Each PCR
primer pair is named on the left and coded by the Orf name and forward
primer position. The green overlay indicates mRNAs that originate in the
KSHYV latency region, and the yellow overlay highlights primer pairs that de-
tect expression of the KSHV K14/vGPCR transcript. The dendrogram on top
showing clustering of KS biopsy specimens indicates two clusters of samples, a
and b. Sample, i.e., biopsy specimen identities are listed on the bottom. The
larger number of samples allowed for more detailed clustering of KSHV tran-
scription. Three clusters of KSHV transcripts could be identified, and those are
labeled on the right as i, ii, and iii. A high-resolution figure with exact primer
locations can be found in the supplemental material.
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FIG 4 Analysis of individual KSHV transcripts across two KS subtypes in the validation set (1 = 35). (A) Dot plot of the ddC - values on the vertical axis versus
KSHYV genome position on the horizontal axis. The ddC; values were obtained by first normalizing to the geometric mean of a set of “housekeeping mRNAs” and
then the level of vFLIP mRNA (indicated at ddC;. = 0). Red indicates samples from the “expanded” subtype, and blue indicates samples from the “restricted” KS
subtype. All samples with a ddC; value of <—20 were set to ddC; = —20 and considered background. (B) Box plot of the ddC . values on the vertical axis versus
KSHYV Orf on the horizontal axis. All primers within the same Orf were averaged to give the “white” median value. The extent of the box indicates the 25th to 75th
percentiles of the data. Outliers are not shown. Red indicates samples from the “expanded” subtype, and blue indicates samples from the “restricted” KS subtype.
The vFLIP measurements used for normalization are shown on the far right. (C) P value distribution of Wilcoxon nonparametric comparison of relative mRNA
levels by Orf between “red” and “blue” KS subtypes. (D) g value distribution, which represents adjustment for multiple comparison. A significance level oflog(q)
< 1.5,1e., g < 0.03, is shown. (E) Distribution of the expected number of significant tests at a given g value cutoff. (F) Distribution of the expected number of

false-positive comparisons based on the number of significant tests. Table S2 lists these mRNAs.

This kind of transcription predominates in primary effusion lym-
phoma (PEL) grown in culture (47), as well as most latently
KSHV-infected endothelial cells (48). The other half of samples
exhibited extended but incomplete viral transcription. The mR-
NAs of known signaling/pathogenesis molecules, such as K1, K15,
and some of the viral interferon regulatory factors (VIRFs), were
detectable, as were mRNAs encoding Orf21/thymidine kinase and
Orf36/protein kinase. Similar “extended” transcription has been
observed in PEL xenografts (49), in some PEL with substantial

6 mBio mbio.asm.org

rates of spontaneous lytic reactivation (50), and other KSHV-
infected endothelial cells (51-53). Other studies now also find
extended viral transcripts under conditions of incomplete/abor-
tive gammaherpesvirus replication (50, 54, 55).

Only one of the samples exhibited a complete (within the sen-
sitivity of detection) lytic transcription profile, as would be seen in
virus-producing cell lines (47, 56, 57). For this cross-sectional
study, we do not have follow-up data on the patients and thus
cannot directly assess the prognostic or predictive value of tran-
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scriptional profiling. Two larger clinical trials, A5263/AMC066
for advanced (T1) KS and A5264/AMC067 for limited (T0) KS,
are currently enrolling patients across sub-Saharan Africa. These
trials will also profile KS transcription and will allow us to corre-
late the molecular profile to disease progression and treatment
responses. Even this limited cohort suggests that ART-naive KS
patients may benefit from antiherpesvirus therapy in addition to
ART and/or anticancer therapy and that these benefits would be
most pronounced if patients were stratified based on transcrip-
tional profiling of KS biopsy specimens.

MATERIALS AND METHODS

Study setting. The Lighthouse (LH) ART clinic at Kamuzu Central Hos-
pital serves as the Center of Excellence for the Central Region of Malawi.
In addition to providing primary care and general ART services for 20,000
ART clients according to Malawi ART guidelines, the LH provides spe-
cialized services for referred cases, including combination chemotherapy
for KS, evaluation of severe toxicities and ART treatment failure, and
modification of ART for second line and nonstandard regimens. All ser-
vices at LH are provided for free.

Design and participants. A cross-sectional study was designed. All
adult (age = 18 years) KS patients presenting to the LH clinic between
November 2008 and August 2010 were evaluated for potential enroll-
ment. Patients with prior chemotherapy or antiretroviral therapy use were
excluded, as were individuals with disease limited to the oral cavity (due to
an inability to safely biopsy such lesions in the clinical setting).

Clinical procedures. KS clinical staging was performed according to
AIDS Clinical Trials Group (ACTG) criteria (T1, advanced stage, versus
TO, limited disease); blood was obtained for CD4 cell count and KSHV
quantification, and a punch biopsy was performed for evaluation of viral
transcription. The 2- by 2-mm punch biopsy samples were immersed in
RNAlater (Ambion Inc.) due to its suitability for collection at the bedside,
local storage, intercontinental transport (samples could be shipped at
room temperature), and automated RNA isolation.

Clinical laboratory procedures. CD4 counts and HIV RNA determi-
nation were performed in real time at the UNC Project laboratory using a
FACSCount system and Roche Amplicor assay 1.5. KSHV DNA was iso-
lated using the MagnaPure system (Roche Inc.). The KSHV load was
determined in plasma DNA by real-time qPCR as described, using the
LANA?78 primers (5'-GGAAGAGCCCATAATCTTGC and 5'-GCCTCA
TACGAACTCCAGGT) and SYBR green (Roche Inc.) as the method of
detection.

Real-time qPCR profiling. KSHV mRNA levels were deter-
mined in batch at the UNC—Chapel Hill Vironomics Core as per our
published procedures (30, 58). These are available at http://www.med
.unc.edu/vironomics/protocols.

Statistical analysis. We performed basic descriptive statistics with bi-
variate comparisons according to ACTG tumor status using x> method-
ology or Student’s t test as appropriate. Further statistical analysis was
performed using the software environment R, version 2.15.1, as indicated
in Text S1 (Methods) in the supplemental material.

Ethics. The study was IRB approved in Malawi and at the University of
North Carolina (UNC) (IRB no. 08-0567) as “AMC-S001: CID 0802—a
pilot study of Kaposi sarcoma-associated herpesvirus (KSHV) gene ex-
pression in patients with newly diagnosed Kaposi sarcoma (KS) in Ma-
lawi.” All subjects provided written informed consent.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org
Nlookup/suppl/doi:10.1128/mBio.01633-14/-/DCSupplemental.
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