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ABSTRACT: BACKGROUND: Although it is well established that African Americans (AA) experience 

greater social stressors than non-Hispanic Whites (NHW), the extent to which early life adversity and 

cumulative social stressors such as perceived discrimination, neighborhood violence, subjective social 

status, and socioeconomic status contribute to disparity in coronary heart disease (CHD) and stroke 

between AA and NHW are not well understood. PURPOSE: The purpose of this paper is to propose a 

conceptual model based upon McEwen’s Allostatic Load Model suggesting how the relationships among 

social context, early life adversity, psychological stress, inflammation, adaptation, and epigenetic signature 

may contribute to the development of CHD and ischemic stroke.  We hypothesize that social context and 

prior life adversity are associated with genome-wide as well as gene-specific epigenetic modifications that 

confer a proinflammatory epigenetic signature that mediates an enhanced proinflammatory state.  

Exposure to early life adversity, coupled with an increased allostatic load places individuals at greater risk 

for inflammatory based diseases, such as CHD and ischemic stroke.  RESULTS: Based on a review of the 

literature, we propose a novel model in which social context and psychological stress, particularly during 

early life, engenders a proinflammatory epigenetic signature, which drives a heightened inflammatory 

state that increases risk for CHD and stroke. In the proposed model, a proinflammatory epigenetic 

signature and adaptation serve as mediator variables. CONCLUSIONS: Understanding the extent to 

which epigenetic signature bridges the psycho-social environment with inflammation and risk for CHD 

may yield novel biomarkers that can be used to assess risk, development, and progression of CHD/stroke. 

Epigenetic biomarkers may be used to inform preventive and treatment strategies that can be targeted to 

those most vulnerable, or to those with early signs of CHD, such as endothelial dysfunction.  Furthermore, 

epigenetic approaches, including lifestyle modification and stress reduction programs, such as 

mindfulness-based stress reduction, offer promise to reduce health inequity linked to social disadvantage, 

as emerging evidence demonstrates that adverse epigenetic marks can be reversed. 
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Coronary heart disease (CHD) and ischemic stroke 

account for more than one third of all U.S. deaths and are 

estimated to cost $444 billion per year [1]. Although 

death rates for CHD and ischemic stroke have decreased 

in recent years, disparities among African Americans 

(AA) and non-Hispanic Whites (NHW) are striking and 

remain a growing concern [2]. For example, the death 

rate for AA from CHD is 37% higher than for Whites 

and the risk of having a first-time stroke is almost two 

times greater for AA than for Whites [1,3,4].  Traditional 
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risk factors related to CHD/stroke, such as obesity, 

hypertension, and diabetes do not fully explain the 

disparities found between AA and NHW individuals 

[5,6]. Evidence demonstrates that chronic stress 

contributes to inflammatory processes leading to 

CHD/stroke [7,8]. Identification of psychobiological 

determinants of disease acknowledges the individual as 

the center of a dynamic environment where multiple 

social, psychological, biological, and cultural factors 

mediate and moderate disease progression and outcomes 

over the life span [9].  Such a view is consistent with 

allostatic load, a concept derived from the term 

allostasis, meaning the maintenance of stability or 

“homeostasis.” [10].  Allostatic load refers to the 

fluctuations in health status based on response to 

stressors and can be thought of as the “wear and tear” on 

the body that results from acute and chronic stressors.  

McEwen [10] conceptualized a model of the relationship 

between perceived stress and physiologic responses and 

the resulting allostatic load on the individual. Allostatic 

load is considered to be cumulative exposure to stressors 

across the life span, including early life adversity (such 

as childhood maltreatment) and social stressors ranging 

from exposure to community violence, perceived 

discrimination and socioeconomic hardship. The three-

hit theory (hit 1-genetic predisposition; hit 2-early-life 

environment; and hit 3-later-life environment) of 

vulnerability and resilience integrates the allostatic load 

model stating that “in a given context vulnerability is 

enhanced when failure to cope with adversity 

accumulates” [11 p.1859].  

Studies demonstrate that social stressors contribute to 

health status through various biological pathways [12-

16].  Furthermore, adverse early life experiences, may 

“prime” inflammatory pathways predisposing an 

individual to mount a greater proinflammatory response 

to future stressors in adulthood [17-19].  In addition, 

early life adversity, such as exposure to child abuse, 

emotional and physical neglect may epigenetically alter 

DNA methylation levels creating a proinflammatory 

epigenetic signature that influences acute stress 

reactivity and inflammatory cytokine production.  This, 

in turn, predisposes such individuals to a heightened 

proinflammatory response to stress as an adult [20,21]. 

Exposure to early life adversity, coupled with an 

increased allostatic load (due to multiple social, 

psychological, biological, and cultural factors) places 

individuals at greater risk for inflammatory based 

diseases such as CHD.  

 Although it is well established that, as a group, AA 

experience greater social stressors than NHW [22], the 
extent to which early life adversity and cumulative social 

stressors such as perceived discrimination, neighborhood 

violence, subjective social status (SSS), and 

socioeconomic status (SES ) contribute to disparity in 

CHD/stroke disease between AA and NHW are not well 

understood. Chronic stress doubles the risk of 

myocardial infarction and contributes to 

proinflammatory processes implicated in CHD and 

stroke [8]; and it is critical to clarify the underlying 

social-biological pathways. A conceptual model may 

assist in guiding future research explaining the 

mechanisms for how social stressors contribute to CHD 

disparities. Therefore, the purpose of this paper is to 

propose a conceptual model based upon McEwen’s 

Allostatic Load  Model [10]. We propose social context 

and psychological stress, particularly during early life, 

engenders a proinflammatory epigenetic signature, 

which drives a heightened inflammatory state that 

increases risk for CHD and stroke. 

 

Stress, Inflammation and CHD/Ischemic Stroke  

 

Inflammation plays a key role in the development of 

CHD and ischemic stroke [23,24].  The most common 

mechanism for the development of CHD and ischemic 

stroke is atherogenesis, a complex process by which the 

artery becomes obstructed with plaque. The process 

appears to begin early in life with the deposit of small 

lipoprotein particles in the intima and progresses with 

leukocyte recruitment, formation of lipid-laden 

macrophages, and foam cells.  Evidence continues to 

accumulate supporting  a state of chronic, low-grade 

inflammation in the development of atherosclerosis [25].  

Endothelial cells and leukocytes within atherosclerotic 

plaques produce a variety of inflammatory mediators, 

such as heat shock proteins (HSP) [26] and interleukin-6 

(IL-6) [25].  Progression of an atherosclerotic lesion 

from an early fatty streak to an advanced 

fibroproliferative atherosclerotic lesion is believed to be 

related to infiltration of T cells and macrophages into the 

intimal wall. Activated T-cells present in atherosclerotic 

lesions can secret interferon (IFN)-γ which induces 

vascular cellular adhesion molecule (VCAM-1) [25] 

which is  found to be associated with endothelial 

dysfunction and is a marker of early CHD [27].   

Psychosocial stress triggers increases in several 

circulating proinflammatory cytokines [28,29]. Evidence 

demonstrates that elevations in circulating 

proinflammatory cytokines play a causal role in 

mediating stress-induced vascular inflammation and 

atherogenesis [30,31]. This may involve alterations in 

endothelial cell function, as proinflammatory cytokines 

induce endothelial cell dysfunction[31], likely by  down 

regulating endothelial nitric oxide synthase (eNOS) and 
increasing vascular oxidative stress [30,32]. For 

example, treatment of porcine pulmonary artery 

endothelial cells with a combination of IFN-gamma, 
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TNF-alpha, and IL-1 reduced eNOS mRNA and protein 

[33]. Also, TNF-alpha and IL-1 beta down-regulated 

eNOS mRNA expression in human coronary artery cells 

[34]. In contrast, the anti-inflammatory cytokine IL-10, 

decreased the effect of proinflammatory cytokine 

induced endothelial dysfunction [35]. Of note, 

glucocorticoids, may also contribute to stress-triggered 

endothelial dysfunction, as inhibition of adrenal 

glucocorticoid secretion was shown to prevent 

endothelial dysfunction in healthy volunteers exposed to 

stress [36].  

Ample evidence demonstrates that both acute [37] 

and chronic psychological stress [38], as well as negative 

emotions, like anger [39], contribute to endothelial 

dysfunction. Acute psychosocial stress was shown to 

impair flow mediated endothelial dilation, an index of 

endothelial dysfunction [40,41].  Impaired endothelial 

flow mediated vasodilation occurs rapidly and is of long 

duration. For example, by 10 minutes following a 3- 

minute mental stress task, healthy subjects exhibited a 

50% reduction in flow-mediated endothelium-dependent 

vasodilation, lasting for 45 minutes [37]. Also, in healthy 

subjects, a laboratory speech task (preparing and 

delivering a speech in front of an evaluative panel) 

produced a significant reduction in flow mediated 

vasodilation at 30 and 90 minutes post stress, with levels 

reduced to that comparable to diabetic subjects with 

chronic endothelial dysfunction [40].  Thus, these 

findings provide evidence that link acute stress exposure 

to both inflammation and endothelial dysfunction, an 

early indicator of CVD.  Whether an increased allostatic 

load and a background of cumulative life stress 

exaggerate both the inflammatory and endothelial 

response to stress remains to be determined. 

 

Social Context, Stress, and Inflammation  
 

A pervasive feature common to those raised in an 

adverse environment with social disadvantage is 

exposure to a greater frequency and intensity of chronic 

stressors. These chronic stressors include economic 

hardship, discrimination, neighborhood violence and low 

perceived social status.  It is well known that individuals 

exposed to chronic stress are vulnerable to anxiety and 

depression [42,43].  Epidemiological studies document 

that psychological stress may have a significant 

deleterious effect on the development and progression of 

atherosclerosis [44,45].  In fact, some contend that nearly 

40% of patients with atherosclerosis have no other 

known risk factors, other than psychological stress [46].  

Furthermore, an individual’s social context, especially  
during childhood and adolescence, is now recognized to 

be a powerful predictor of adult health [47] suggesting 

that the origins of health disparity are rooted in one’s 

early social environment and life experiences [48].  

Provocative findings from the Adverse Childhood 

Experiences (ACE) study reveal that in a sample of 

17,000 adults, those who were exposed to family 

violence, abuse, and neglect during childhood had a 1.5-

2.0 fold greater rate of cardiovascular disease, 

autoimmune disorders, and premature death than those 

who did not experience such early life adversity [49]. 

Evidence derived from experimental  animal models 

confirm these findings and suggest causal pathways of 

adverse early life experiences affecting adult health 

outcomes, especially CHD [50]. Such causal pathways in 

humans remain to be established. 

Data substantiate an independent link between early 

adverse life events and elevated levels of 

proinflammatory cytokines [17,51-54]. Repeated 

exposure to psychological stress induces chronic 

inflammation that can facilitate atherosclerosis [28]. 

Moreover, chronic stress is associated with an increased 

risk of recurrent acute coronary events and mortality 

[55,56].  TNF-alpha and IL-6 are intimately involved in 

the pathogenesis of atherosclerosis and their association 

with chronic psychological stress is well-described [30]. 

Furthermore, evidence suggests that lower levels of 

subjective social status in AA are associated with higher 

levels of HSP [16]. As such, the association of 

psychological stress with low grade inflammation 

appears to be an important precursor to a variety of 

disease states and to reduce quality of life. However, the 

precise mechanism(s) by which stress stimulates low 

grade inflammation and precipitates or contributes to 

disease is unknown. Hence, future research is essential to 

clarify the role of interactions between psychological 

stress and genetic and epigenetic factors in the 

development and progression of cardiovascular disease 

[57,58]. 

Enduring and/or intense life stress, especially during 

early life, impacts lifelong emotionality and heightens 

stress reactivity, as evidenced by greater anxiety and 

cortisol response to future stressors in adulthood [59,60].  

It is theorized that exposure to early life adverse events 

during critical windows of development, including 

childhood and adolescence, alters neuroendocrine-

immune pathways to result in chronic low grade 

inflammation during adulthood that predisposes the 

individual to inflammatory disease [40].  Biological 

embedding posits that early life adversities and 

cumulative disadvantages “recalibrates” the 

physiological response to stress in a manner that results 

in a dysfunctional stress response pattern during 

adulthood that increases risk for disease [61,62]. 
Evidence demonstrates that adults exposed to early life 

adversities respond to acute stress with an exaggerated 

inflammatory response [17,63] and a reduced cortisol 
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response [64], furthering their risk for developing 

inflammatory disease, such as CHD or stroke [17]. 

Although there is evidence demonstrating that 

individuals with CHD mount a greater response to an 

acute laboratory stress challenge than those without 

CHD [65], no studies were found that examined the 

influence of chronic and cumulative stress on the acute 

stress response in individuals at risk for CHD/stroke.  A 

recent study demonstrated that adverse prior life events 

are associated with heightened inflammatory markers, 

such as IL-6, in AA but not for Whites [66].  It is well 

established that AAs experience significantly greater 

early adverse events compared to Whites [22]. Future 

research examining the link between adverse life events 

and inflammation in adulthood may shed light on health 

disparities found among AA. 

 

Epigenetic Signature, Social Context, Stress, and 

Inflammation 

 
Epigenetics signature refers to a variety of processes that 

affect gene expression independent of actual DNA 

sequence [59]. Epigenetic information provides 

instruction on how, where, and when genetic information 

will be used.  Hence, the importance of epigenetic 

information is that it regulates gene expression. 

Epigenetics can refer to heritable effects on gene 

expression, or to the stable long-term alteration of the 

transcriptional potential of a cell, which may not 

necessarily be heritable.  Most importantly, epigenetic 

information is susceptible to change, and represents an 

excellent target to understand how the environment may 

impact physiological function.  The impact could be 

manifest as long as the environmental factor is present or 

could persist in its absence [20,67]. The effect could be 

transient (during the duration) or extended (subsequent) 

to the environmental impact and although not necessarily 

transmittable (mitotically and/or meiotically), could 

exert significant influence.  While epigenetics refers to 

effects on single and/or sets of genes, epigenomics refers 

to global epigenetic modifications that encompass the 

entire genome. As such, genetic information provides the 

blueprint for the manufacture of the proteins necessary to 

cellular function; whereas, epigenetic information 

provides instruction for the use of that blueprint, 

permitting an ordered and regulated gene expression 

pattern.  

 

 

 

 
 

Figure 1: Epigenetics over the lifespan. Source: Figure is used with permission and is from “Prospects for Epigenetic 

Epidemiology” by D.L. Foley, J.M. Craig, R. Morely, C.A. Olsson, T. Dwyer, K. Smith et al. 2009, American Journal of 

Epidemiology, 169, pp. 389-400. Copyright 2009 by Oxford University Press [95].  
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Epigenetically regulated gene expression is a 

consequence of small covalent chemical modifications, 

which mark the genome and play a role in turning genes 

on or off [68]. DNA methylation is one such a mark.  In 

this process, methyl groups attach to the backbone of the 

DNA molecule at cytosine rings found at CpG 

dinucleotides [69].  These methyl groups typically turn 

genes off by affecting the accessibility of DNA.  Another 

type of mark, known as histone modifications, indirectly 

affects the accessibility of DNA.  There are a variety of 

such chemical marks that modify the amino terminal 

tails of histones (e.g. acetylation, methylation, 

phosphorylation), changing how tightly or loosely DNA 

is packaged.  If the wrapping is tight, a gene may be 

hidden from the cell's transcription machinery, 

consequently less accessible and hence switched off. In 

contrast, if the wrapping is loosened, a gene that was 

formerly inaccessible can become accessible.  For 

example, histone deacetylation results in transcriptional 

repression.  Conversely, histone acetylation, which 

involves the covalent addition of acetyl groups to the 

lysine moieties in the amino terminal histone tails, 

results in an increase in gene expression. Other relevant 

epigenetic regulators of gene expression are non-coding 

RNAs (ncRNAs, i.e., transcripts that are not translated 

into protein), which can range in size from a few 

nucleotides to several kilobase.  These ncRNAs can 

mediate both transcriptional and post-transcriptional 

gene silencing as well as activation [70].  

One of the best characterized epigenetic processes is 

DNA methylation.  Within recent years, the impact of 

epigenetic mechanisms in cardiovascular 

pathophysiology has become increasing recognized as a 

major factor in the interface between genotype and 

environment, which is largely responsible for phenotype 

variability.  Compelling evidence demonstrates that the 

epigenome dynamically responds to changes in 

environment throughout an individual’s life, controlling 

normal development, homeostasis, aging, and mediating 

responses to environmental stimuli [71]. One’s 

epigenetic signature can be modulated by one’s 

environment over the lifespan, and thus the epigenome 

serves as an important bridge linking life experiences, 

phenotypic expression, and disease risk (Figure 1).  

Emerging evidence demonstrates that an individual’s 

behavior, stress response, disease susceptibility, and 

even longevity are influenced by their epigenome and 

their epigenetic signature.  Importantly, both are 

potentially malleable and thus, potentially reversible, 

through lifestyle environmental factors, such as nutrition, 

exercise, behavior modification and stress reduction (e.g. 
mindfulness-based stress reduction [72-75].  Such 

behavioral modifications have the capacity to impact 

complex, multifactorial diseases such as those affecting 

the cardiovascular system.  

Mathews and Janusek [60] demonstrated that 

epigenetic pattern and immune dysregulation are 

associated with psychosocial distress. Their work 

suggests that this may be mediated by exposure to 

cortisol [76].  The role of epigenetics in the development 

and progression of complex diseases, such as cancer 

[77], atherosclerosis [78], and stroke [71] continues to be 

elucidated through ongoing research.  Animal studies 

provide causal evidence that stress modifies epigenetic 

signatures and plays a role in stress adaptation [79,80].  

In primates, increased global DNA methylation was 

found to be associated with heightened behavioral stress 

reactivity following early life stress. Convincing 

evidence indicates that prior life adversity, such as low 

SES, contributes to DNA methylation levels [67,81,82] 

and may influence the regulation of the proinflammatory 

response to stress [79,80].  McGuinness et al. [67] 

demonstrated low SES to be associated with global DNA 

hypomethylation and IL-6 levels in a population-based 

study of men and women living in deprived areas of 

Glasgow. Results from animal studies, suggest that 

alterations in DNA methylation due to maternal 

maltreatment may exert  lifelong and even trans-

generational effects [20].  Our recent findings 

demonstrate both childhood emotional neglect and 

exposure to neighborhood violence in urban AA men 

(mean age 21 yrs) to result in a greater IL-6 response and 

a lower cortisol response to a laboratory paradigm of 

social evaluative stress. Moreover, the extent of DNA 

methylation of the IL-6 promoter in peripheral blood 

mononuclear cells moderated the association of 

childhood emotional neglect and exposure to violence. 

That is, AA men  with lower DNA methylation and 

higher levels  of emotional neglect  or violence exposure 

produced the greatest amount  of  IL-6 in response to 

social evaluative stress [83]. Given that AA experience 

greater prior life adversity [22], alteration in the 

proinflammatory response may underlie CHD/stroke 

disparities among minorities and may relate to global 

DNA methylation levels.  Understanding the linkages 

among social stressors, CVD risk, and epigenetic 

signature may yield novel biomarkers with clinical utility 

to assess risk, development, and progression of 

CHD/stroke disease [71]. 

As noted above, prior research demonstrates that 

early life abuse results in a life long burden of behavioral 

and pathophysiological problems [84,85] including an 

increased proinflammatory tone 20 years later [54].  

Evidence in animal models suggests that such effects 
may emerge as a result of epigenetic modification.  For 

example, findings derived using animal models 

demonstrate that early life stress or maltreatment result 
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in DNA methylation modification of genes expressed in 

the brain, shaping HPA stress reactivity and behavioral 

stress responsiveness throughout life [86,87,88].  In 

humans, epigenetic modifications for the regulatory 

regions of NR3C1 (i.e., glucocorticoid receptor) have 

been observed in post-mortem brains of human suicide 

victims with a positive history of childhood abuse and 

likely relate to dysregulation of the HPA axis [89]. 

Moreover, such epigenetic modification are not limited 

to the brain in that prior life adversity was shown to 

produce epigenetic modifications in peripheral blood 

cells and those modifications related to increased 

inflammation [67,90,91].  Changes in global DNA 

methylation may be some of the earliest cellular events 

in disease onset [92] and such aberrant changes have 

been linked to a broad range of diseases, including CVD. 

Based on our review of the literature, we propose a 

conceptual model in which we hypothesize that social 

context and psychological stress engenders a 

proinflammatory epigenetic signature, which confers an 

enhanced proinflammatory status and increased CHD 

and ischemic stroke risk (Figure 2).   

 

 

Figure 2.  The Figure depicts the proposed conceptual model. The model is based on allostatic load theory, which 

posits that cumulative life stress results in an altered calibration of the physiological response to acute stress, which 

predisposes individuals to inflammatory diseases, such as CHD and ischemic stroke [61,96,97].  Behavioral (i.e. 

symptoms such as fatigue), psychological (i.e. depression and anxiety), and inflammatory (i.e. elevated proinflammatory 

cytokines) responses are driven by cumulative life stressors.  We hypothesize that social context and prior life adversity 

are associated with genome-wide as well as gene-specific epigenetic modifications that confer a proinflammatory 

epigenetic signature that mediates an enhanced proinflammatory state. Furthermore, the degree of predisposition to 

disease subsequent to psychological stress and inflammatory response are modulated by an individual’s adaptive 

capacity  [11].  

 

 

IMPLICATIONS AND FUTURE RESEARCH 

 

In the last decade, increasing knowledge in the field of 

epigenetics has dramatically changed our understanding 

of how one’s environment, including one’s social 

environment, affects gene regulation to influence one’s 

health over the lifespan and even the health of future 

generations.   It is very likely that epigenetic processes 
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are the missing link that explicates how one’s social 

context and early-life adverse experiences alter the 

stress-related inflammatory responses over the lifespan, 

which, in turn, contributes to social inequalities in risk 

for CHD/stroke.   In the future, epigenetic biomarkers 

may be used to identify CHD/stroke risk, informing 

clinical decision making so that preventive and treatment 

strategies can be targeted to those most vulnerable.  

Furthermore, epigenetic approaches, including lifestyle 

modification offer promise to reduce health inequities 

linked to social disadvantage, as evidence demonstrates 

that adverse epigenetic marks attributed to early life 

adversity can be reversed [93]. Mind-body approaches, 

such as mindfulness based stress reduction, meditation, 

and yoga are emerging as highly promising interventions 

to reduce stress underlying pathophysiological pathways 

leading to CHD/stroke.  Such innovative therapeutic 

approaches are only beginning to be investigated.  

Advances in research that investigates linkages 

among social context, epigenetics, and inflammation in 

those at risk for CHD/stroke have potential to support 

health policies aimed at the social roots of disparity in 

CVD.  For example, the recognition of aspects of the 

family and community that increase the risk of 

epigenetic modification may reveal aspects of the early 

environment that can be modified as part of community-

level efforts to improve well being in those at risk.  As 

well, the identification of protective factors (i.e., coping 

strategies, social support, resiliency) will yield 

information about malleable processes that can be 

targeted to maximize the efficacy of preventive and 

treatment strategies.  This may include providing 

prenatal care and early childhood enrichment programs 

or interventions that may more effectively reduce risk for 

health disparity in CHD/stroke.   

Research examining the interaction among social 

stressors, epigenetic mechanisms, and CHD/ischemic 

stroke is in its infancy.  The continued development of 

new techniques to examine epigenetic mechanisms, 

including gene-epigene interactions, as well as 

epigenome-wide associations studies (EWAS)[94] will 

no doubt carry us into a new age of understanding how 

individuals adapt to their environments, ultimately 

leading to evidenced-based interventions that will 

eliminate health disparities in CHD/stroke. 
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