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INTRODUCTION
Insufficient sleep length is increasingly common1,2 and has 

been shown to have serious behavioral consequences such as in-
creased human error-related accidents and decreased cognitive 
performance.3 Moreover, sleep loss has been shown to accel-
erate neurodegeneration in mouse models of Alzheimer disease.4

Although sleep deprivation is common, there are substan-
tial interindividual differences in the resulting behavioral im-
pairment,5,6 as reflected in differences in brain activation and 
cognitive performance.7,8 These differences appear “trait-like” 
because they are highly reproducible over time in the same indi-
vidual, are very different between individuals,5,6 and are highly 
heritable.9 Sleep loss leads to extensive changes in gene expres-
sion in different brain regions in mice10 as well as in other or-
gans, including liver,11 heart, and lung.12 Thus, it is conceivable 
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that changes in gene expression produced by sleep loss might be 
different in those individuals who are behaviorally resistant to 
sleep loss compared with those who are particularly sensitive.

One approach to assess this hypothesis is to determine 
whether sleep loss produces changes in gene expression in pe-
ripheral blood from humans with different susceptibility to sleep 
deprivation.13 Surprisingly, in a recent study, acute sleep loss 
following normal sleep resulted in few genes showing increased 
(n = 46) or decreased (n = 76) trends in expression as a function 
of time awake, and the magnitude of expression change of these 
genes was small.14 Another study identified more genes with al-
tered expression following sleep deprivation, although the level 
of these changes was extremely small.15 A more robust effect 
of sleep loss that was observed was a decrease in amplitude of 
the diurnal rhythmicity of gene expression in peripheral blood 
during acute sleep deprivation.14 This may be the result of the 
known effect of sleep loss on binding of the CLOCK/BMAL 
transcription factor complex to E-boxes of clock genes.16

To address whether changes in gene expression with sleep 
loss are different in those individuals who are resistant to, or 
sensitive to, the effects of sleep loss, we assessed subjects who 
had been previously identified as having widely different neu-
robehavioral responses to sleep deprivation.9 We reassessed 
these subjects in this study by psychomotor vigilance reac-
tion task (PVT) every 2 h while awake to assess performance 
lapses17 with parallel blood draws every 4 h during 24-h normal 
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baseline (sleep and wakefulness), 38 h of continuous wakeful-
ness, and during subsequent recovery sleep, for a total of 19 
time-points per subject. The aims of this study were to assess 
whether these two groups of subjects demonstrate different di-
urnal transcriptional rhythms at baseline, different changes in 
these rhythms as a function of sleep state, or different transcrip-
tional patterns as a function of time awake.

We found that subjects who were behaviorally sensitive to 
sleep deprivation had a less adaptable circadian rhythm of gene 
expression in blood than those behaviorally resistant to sleep 
deprivation, who showed a blunting of circadian rhythm in 
blood while sleep deprived.

MATERIALS AND METHODS

Participants
Based on PVT analysis of 200 twin-pair participants in a pre-

vious sleep deprivation study,9 subjects were selected for this 
study as being resistant and sensitive to sleep deprivation (dis-
cussed in Supplemental Methods). Only a single member of a 
twin pair was recruited. The consent of the Institutional Review 
Board of the University of Pennsylvania and the Clinical and 
Translational Research Center of the University of Pennsyl-
vania was granted for this study and informed consent obtained 
from all research subjects.

Study Procedure
Following actigraphy for 2 w, subjects arrived at the Clinical 

and Translational Research Center at the University of Pennsyl-
vania, (Philadelphia, PA) in the evening of Day 0 and had 1 night 
of undisturbed sleep for adjustment. The study started with a base-
line assessment starting at 08:00 the next morning (Day 1) with 
blood sampling every 4 h and PVTs every 2 h (when awake) (see 
Figure 1). On Day 2 the sleep deprivation started at 08:00 and 
lasted until 22:00 on Day 3, a total of 38 h. Thereafter the subjects 
were allowed one night of recovery sleep, from 22:00 to 08:00 
on Day 4 (final blood draw and PVT) (see Figure 1). For more 
detailed information on the sleep deprivation visit, the initial tele-
phone screen and the baseline visit, see Supplemental Methods.

Blood Sampling and Microarray
Blood was sampled every 4 h from 08:00 on the baseline day, 

throughout 38 h of sleep deprivation and 10 h of recovery sleep, 

for a total of 19 time points (see Figure 1). 2.5 mL of blood 
were collected into PAXgene™ Blood RNA Tubes (PreAna-
lytiX GmbH, Hombrechtikon, Switzerland) at room tempera-
ture. After blood draw, the tubes were gently inverted and kept 
at room temperature for less than 10 min prior to freezing at 

-20°C. Samples were moved to -80°C freezer 24 h after comple-
tion of all sample collection in accordance with the instructions 
from PreAnalytiX (www.preanalytix.com). Two of 266 total 
blood samples (19 time points per 14 subjects) could not be 
collected because of faulty intravenous devices.

Messenger RNA Isolation, Microarray Profiling and Processing
Messenger RNA (mRNA) isolation and analysis was per-

formed by the Covance Gene Expression Laboratory (Seattle, 
WA) using standard protocols. Briefly, Paxgene tubes were 
processed according to manufacturer’s protocol. Total RNA 
was isolated using TRIzol water solution (4:1 ratio). Chloro-
form (100%) was added to the TRIzol/GITC lysate (1:5 ratio) 
to facilitate separation of the organic and aqueous components 
using the phaselock (Eppendorf) system. The aqueous super-
natant was further purified using the Promega SV-96 total 
RNA kit, incorporating a deoxyribonuclease treatment during 
the procedure. Isolated total RNA samples were then assayed 
for quality (Agilent Bioanalyzer, Agilent Technologies, Inc., 
Santa Clara, CA) and yield (Quant-iT™ RiboGreen®, Life 
Technologies, Carlsbad, CA) metrics prior to amplification. 
Fifty ng total RNA samples were amplified and labeled using a 
custom automated version of the NuGEN Ovation WB protocol 
(NuGEN Technologies, Inc., San Carlos, CA) before hybrid-
ization to custom human Affymetrix GeneChip® microarrays 
arrays (Affymetrix, Inc., Santa Clara, CA) containing 52,378 
probe sets (representing 18,983 unique gene symbols) designed 
to monitor additional annotated transcript variants and poly A 
sites compared to commercially available microarrays (GEO 
Accession #GPL10379, www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL10379). All analyses in this paper are done at 
probe set level and not gene level because of the custom de-
sign of the microarray. Hybridization, labeling, and scanning 
were conducted using Affymetrix ovens, fluidics stations, and 
scanners following recommended protocols (NuGEN Tech-
nologies, Inc., San Carlos, CA). Two hundred sixty-four of the 
266 planned samples were collected successfully (14 subjects × 
19 time points). Upon extraction, 13 of the 264 samples failed 

Figure 1—Experimental design. Time points for blood draws (every 4 h across wake [yellow] and sleep periods [black]) and psychomotor vigilance test (PVT) 
data collection (every 2 h while awake). A total of 27 PVTs and 19 blood draws per subject were performed throughout the study period.
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Covance RNA quality control metrics. Two additional samples 
did not pass Covance amplification quality control metrics. 
Therefore, a total of 249 samples were hybridized to micro-
arrays. All 249 microarray profiles passed standard quality 
control metrics and were included in downstream analysis. A 
principal component analysis showed no obvious outliers after 
hybridization and that the data clustered mainly by subject.

Probe intensity data were processed using RMAExpress 
1.0.4 (http://rmaexpress.bmbolstad.com/).18 Data quality was 
assessed using boxplots and histograms of raw signal intensi-
ties. Normalization was performed using the robust multiarray 
average (RMA) method19 to form one expression measure per 
probe set per array. Briefly, the RMA method is a three-step 
process that adjusts the background of perfect match (PM) 
probes, applies a quantile normalization of the corrected PM 
values, and calculates final expression measures using the 
Tukey median polish algorithm.

Agglomerative hierarchical bottom-up clustering was per-
formed, starting with every single object (gene or sample) in a 
single cluster. Then, in each successive iteration, it agglomer-
ated the closest pair of clusters according to our selected dis-
tance metric, until all of the data were in one cluster. We used 
Pearson correlation distance (1 - correlation) as the distance 
metric. The hierarchy within the final cluster has the following 
properties: clusters generated in early stages are nested in those 
generated in later stages and clusters with different sizes in the 
tree can be valuable for discovery. Matlab statistical toolbox 
R2010b (7.11.0) was used to perform clustering (The Math-
Works, Inc., Natick, MA).

The data discussed in this paper have been deposited in the 
National Center for Biotechnology Information’s Gene Expres-
sion Omnibus20 and are accessible through GEO Series acces-
sion number GSE56931 study (www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE56931).

Statistical Analyses
Statistical analysis for demographics, PVT measurements, 

and subjective reporting were performed using STATA 11.0 
and SAS 9.2 for intraclass correlation coefficient (ICC) anal-
ysis. For bivariate analysis, the chi-square test and t-test were 
used for nominal and continuous variables respectively. All 
microarray statistical tests were based on the Fs statistic21 im-
plemented within the R/maanova software package.22 P values 
were adjusted according to the false discovery rate (FDR) pro-
cedure of Benjamini and Hochberg23 using the p.adjust() func-
tion in R. A 5% FDR threshold was used for all analyses unless 
otherwise noted.

We used a linear mixed-model approach to detect probe sets 
with circadian patterns. Gene expression measures ( yij) for each 
probe set are fit to the model:

 yij = μ + β1cos(2πtij / 24) + β2sin(2πtij / 24) + si + Pi + εij

where μ is the overall mean, β1 and β2 are the coefficients of re-
gression for the circadian effect terms, tij for the j th observation 
on the i th patient, si is the fixed effect of sex (female or male) 
for the i th patient, Pi is the random patient effect and εij refers 
to unknown random errors. Collecting repeated measurements 
on the same subjects required the random effects parameter (Pi) 

to avoid violating the assumption of independent error terms. 
Random effects are assumed to have a normal distribution with 
a mean of 0 and a variance of σ2, where σ2 is estimated using the 
restricted maximum likelihood method.24 Probe sets with sig-
nificant circadian effects were found by testing the hypothesis 
β1 = β2 = 0 using data subset for the baseline condition (Day 1, 
08:00 until Day 2, 20:00). Amplitude was calculated as:

 A = √(β1 + β2)2 2

and phase was calculated as the angle between the posi-
tive x-axis and the vector from the origin to the point given 
by (β1, β2) using the two-argument arctangent function in R. 
Linear trends during sleep deprivation (Day 3, 12:00 until Day 
3, 20:00) were found by adding the term (β3 t) to the model and 
testing the hypothesis β3 = 0.

Expression differences between baseline and sleep depriva-
tion states (analysis 2) or baseline, sleep deprivation and re-
covery (analysis 3) were identified using the linear mixed-model:

 yij = μ + si + STATE + Pi + εij 

where STATE is incorporated as a fixed effect and the other 
terms are described previously. For analysis 2, the data were 
subset for “24:00, 04:00, 08:00, 12:00, 16:00, and 20:00” from 
each state. For analysis 3, the data was subset for “24:00, 04:00, 
08:00” from each state. A number of other models were evalu-
ated that incorporated interactions between sex (female or male) 
or subject status (sensitive or resistant) and other model terms. 
However, no sex- or subject-dependent interactions were found 
in any scenario and therefore these models are not described 
here. Random effects were assumed to be independently nor-
mally distributed with a mean of 0.

Additionally, the results from the linear modeling approach 
to assess circadian genes were compared to results obtained 
from an analysis involving cosinor analysis25 as well as the non-
parametric JTK_Cycle algorithm.26 All analyses were reported 
with FDR < 5% and were only based on data prior to the actual 
sleep deprivation.

The cosinor analysis was applied to within-patient normal-
ized expression data. To remove baseline interpatient variability, 
all data for each subject were ratioed to the average of the six 
baseline time points covering the first 24 h of the study, so that 
the average of all genes over this period is zero for each subject. 
The expression Yi, was modeled using multiple regression:

Yi = ai*cos(2*π*t/24) + bi*sin(2*π*t/24) + εi

The regression coefficients ai and bi were used to determine the 
amplitude:

Ai = √(ai + bi )2 2

and the phase in hours, 24atan2(bi,ai) / 2π. The latter uses two-
argument arctangent that correctly assigns the phase quadrant 
over the entire 24-h period.

The JTK_cycle algorithm uses the Jonckheere-Terpstra (JT) 
statistical test to assess the relative ordering of time course ex-
pression data and then applies Kendall’s tau test to assess the 
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rank correlation between this ordering and a set of oscillatory 
reference curves.26 Given the wide intrasubject variation in base-
line expression values, the time course data for each gene and 
subject was normalized by the median expression of that gene 
in that subject prior to application of the JTK_Cycle algorithm.

Significant probe sets were identified by a FDR < 5% 
threshold and were cross-referenced for enrichment of bio-
logical processes and pathways against multiple public and 
commercial databases, specifically GeneGo (www.genego.
com), Gene Ontology (www.geneontology.org), KEGG (www.
genime.jp/kegg/), and Ingenuity (www.ingenuity,com). The 
hypergeometric distribution (probability distribution after sam-
pling without replacement) was used to calculate over-repre-
sentation of P values in the combined databases. Bonferroni 
corrected P values (expectation, or E-values) were calculated to 
control for multiple comparisons across all resources. E-values 
below 0.1 were considered significant. Lights on and lights off 
periods were defined as times 8:00 – 22:00 and 22:00 – 8:00, 
respectively. Probe sets with peak expression during these time 
periods were grouped for blood cell type enrichment analyses.

Additionally, the Gene Set Enrichment Analysis Tool from 
the Broad Institute (GSEA v 2.08, Cambridge, MA),27 was used 
to identify functionally related gene sets that showed overall 
expression changes in any of the employed statistical tests. 
GSEA identifies gene sets that are enriched toward the top or 
bottom of a ranked list of genes.28 Core genes accounting for 
the enrichment signal were defined by the leading-edge subset 
as defined by the GSEA program.27 The probes were ranked by 
the value of the F-statistic for the relevant statistical test and the 

“preranked” tool in the GSEA package was used with default 
settings. Gene sets describing KEGG pathways29 were obtained 
from the GSEA molecular signatures databases (c2.cp.kegg.
v3.1). Pathways that met a FDR threshold of 10% were consid-
ered significant. We followed the recommended guidelines for 
each application described above for selecting thresholds for 
statistical significance in order to obtain a reasonably sized list 
of genes or pathways to explore.

For blood cell type enrichment analysis, we used previ-
ously published blood gene expression Ramilo modules30 to 
identify the cell types and/or biological processes that showed 
significant enrichment within the identified circadian signature, 
during the lights on and lights off periods. Hypergeometric P 
values were calculated for the overlap between genes that be-
longed to a Ramilo module and all circadian genes (8,064 probe 
sets, FDR < 5%). FDRs were calculated using the Benjamini-
Hochberg method for the 28 assessed modules.

RESULTS

Demographic Data and Behavioral Analysis
The 14 subjects studied were five males and nine females. 

Eleven were Caucasian and 3 African-American, with an av-
erage ± standard deviation age 29.7 ± 8.9 y and mean body mass 
index of 25.4 ± 3.6 kg/m2. There were no significant demographic 
differences between the seven sensitive and seven resistant sub-
jects to sleep deprivation (Table S1, supplemental material).

Subjects were defined as neurobehaviorally sensitive and re-
sistant to sleep deprivation based on performance in a PVT17 
during sleep deprivation in a prior study9 as measured by the 

number of performance lapses (see Methods). We specifically 
recruited seven of the most resistant and seven of the most sen-
sitive subjects to the effects of sleep loss (see Supplemental 
Methods). During the extended wakefulness period of the 
present study, subjects performed PVTs every 2 h (Figure 1). 
Both resistant and sensitive subjects had an increase in the 
number of performance lapses during the progression of sleep 
deprivation but the increase was significantly higher for the 
sensitive group (Figure S1, supplemental material). No sig-
nificant differences were found between sensitive and resistant 
subjects in subjective sleepiness, mood, and exhaustion mea-
sures during sleep deprivation (Table S2, supplemental ma-
terial). To confirm that the neurobiological response to sleep 
deprivation demonstrates trait-like stability, we compared the 
PVT and subjective sleepiness scores from the previous and 
current trials (these trials were separated by a mean ± standard 
deviation of 885.6 ± 507 days). The highest ICC found was 
for the mean PVT lapses in the last 24 h of sleep deprivation 
and in the linear slope of PVT lapses during sleep deprivation 
after adjustment for circadian effects (ICC 0.61 and 0.56, re-
spectively; see Table S3, supplemental material). Thus, despite 
the large time difference between the repeated tests, there was 
substantial reproducibility of behavioral response to sleep loss.

During the baseline period of the normal sleep/wake cycle 
and during sleep deprivation, as well as recovery sleep, blood 
was repeatedly obtained every 4 h and collected in PAXgene 
tubes (Figure 1).

Circadian Signature of Gene Expression Under Normal Sleep-
Wake Conditions

A mixed-effects linear regression model incorporating ef-
fects for sex and random effects for subjects was used to iden-
tify genes that cycled with a 24-h period during the baseline 
protocol preceding sleep deprivation (see Methods). All sub-
jects and all time points prior to actual sleep deprivation (Day 1, 
08:00 – Day 2, 20:00) were included in the analysis. We found 
4,481 unique cycling genes (8,064 probe sets) out of a total 
of 18,983 genes on the array (52,378 probe sets) using a FDR 
threshold below 5%. This corresponds to 23.6% of all unique 
genes and 15.4% of all tested probe sets on the array used in 
this study. Diurnal changes in gene expression are shown in 
Figure 2A.

We compared the mixed-model 8,064 probe sets identified 
with those obtained by 2 other published approaches to identify 
genes with cycling expression, i.e., cosinor analysis25 (8,909 
probe sets) and the JTK_cycle algorithm31 (7,924 probe sets). 
The results from all three approaches were highly overlapping 
with 6,465 (80%) of probe sets being identified as significantly 
cycling by all three analytical approaches (FDR < 5%). No sig-
nificant interactive effect on diurnal changes in gene expres-
sion involving subject status (sensitive or resistant) was found 
during the normal baseline condition (data not shown).

Most of the mixed-model 8,064 circadian probe sets (4,481 
unique genes) peaked between 01:00-03:00 or 13:00-15:00 as 
shown in Figure 2B. Overall, a much higher number of bio-
logical functional categories were significantly enriched among 
genes that peaked during the day, 08:00-22:00 (266 pathways) 
than during the night, 22:00 – 08:00 (71 pathways) (Table S4, 
supplemental material). The biggest portion of “day pathways” 
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(195 in total) were identified between 10:00 and 14:00. Im-
mune system biological functional categories dominated during 
the day, whereas RNA processing and protein synthesis were 
top functions identified during the night.

We also assessed the diurnal rhythm of known core clock 
genes32–34 in blood and found that most of them showed a robust 
diurnal rhythm. Specifically, several of the clock genes analyzed, 
including NPAS2, ARNTL (BMAL1), CSNK1D, NR1D2(REV-
ERB), and DBP peaked near the same time as the majority of cy-
cling genes identified (around 02:00 and 14:00). But others such 
as PER1, PER2, PER3, and CSNK1E peaked 3 - 6 h prior to the 
14:00 peak (Figure S2, supplemental material). Other canonical 
circadian genes, including CRY1, CRY2, RORA, RORB, RORC, 
DEC1, BHLHE41 (DEC2), and CLOCK, showed some varia-
tion in expression but did not pass the FDR < 5% threshold. No 
differences in the diurnal rhythm of clock genes were observed 
in sensitive and resistant subjects (Figure S2).

Effects of Sleep Deprivation on Gene Expression
We tested for changes in gene expression with prolonged 

sleep deprivation after accounting for circadian effects and sex. 
We used three different analysis strategies to find: (1) genes with 
a significant linear change (up or down) in expression as a func-
tion of time awake during sleep deprivation after accounting for 
circadian effects; (2) genes with significant mean differences 
in expression between the baseline and sleep deprivation days 
comparing the same time of day; and (3) genes with differences 
in expression during habitual sleep hours (12:00, 04:00, 08:00) 
among the three “states,” i.e., normal sleep, sleep deprivation 
and recovery sleep. These final two comparisons mitigated cir-
cadian effects by doing the analysis at the same time of day.

Temporal Analysis: Linear Changes in Gene Expression
At the FDR threshold of 5%, there were only two significant 

unique genes (three probe sets), SREBF1 and CPT1A, across 
all subjects that showed a linear trend with time awake. On av-
erage, SREBF1 had decreased expression while CPT1A showed 
increased expression during sleep deprivation. CPT1A also had 
a significant circadian rhythm in expression but SREBF1 did not 
based on the FDR < 5% threshold. The observed effect of sleep 
deprivation on the expression of these genes was very minor 
(linear slope of -0.03 and 0.06 Ig/h, respectively) (Figure 3). Both 
of these genes are involved in the regulation of lipid metabolism, 
specifically regulation of acetyl-CoA carboxylase 1 activity in 
lipogenic tissue. To compliment this analysis of individual probe 
sets, we did a gene enrichment analysis (GSEA)27 on the same 
normalized data using the KEGG Pathway.29 We found one sig-
nificant biological class; fatty acid metabolism (FDR = 0.08) 
with CPT1A being the top core enrichment gene. We examined 
nine of 13 core enriched genes in fatty acid metabolism in our 
study and found that they had a significant but small linear effect 
with the same trend (four positive and five negative linear slopes 
ranging from -0.02 to 0.06). There was no difference between 
sensitive and resistant subjects.

State Analysis: Baseline Versus Sleep Deprivation
A second analysis was used to assess whether significant 

changes in gene expression were found for a pairwise 24-h 
comparison of baseline sleep/wake and sleep deprivation. No 
significant differences in gene expression between baseline and 
sleep deprivation were found (FDR < 5%) and no significant 
biological functional classes were found by GSEA on the same 
normalized data (KEGG Pathway, FDR 5%) 29.

Figure 2—A robust circadian signature identified in human blood. (A) Agglomerative hierarchical clustering (blue dendrogram) of the mixed-model 8,064 
probes with significant 24-h circadian changes (false discovery rate [FDR] < 5%, x-axis) ordered by collection time on y-axis, mixed subjects (y-axis, total 
blood samples n = 249). The total sleep deprivation period is shown by blue block (start: day 2, 08:00, end: day 3, 10:00). Values shown are the log-
transformed ratios (Log R) of observed expression values to the corresponding average across the initial baseline 24-h period for each subject. (B) The 
phase distribution of peak expression of the 8,064 probe sets (or 4,481 genes) with significant 24-h circadian cycling during baseline sleep and wake: 48-bin 
histogram (30 min each across 24 h) shows the number of probe sets that reach their maximum expression in a particular half-hour period. The peak time of 
day is calculated from the sine and cosine regression coefficients in the statistical model.
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Sleep Time Analysis: Baseline, Sleep Deprivation, and Recovery 
Sleep

A third approach was used to maximize our ability to detect 
the possible effect of state on gene expression by analyzing all 
three different states (normal sleep, sleep deprivation, and re-
covery sleep) simultaneously, using the habitual “sleep hours” 
only (12:00, 04:00, 08:00). Forty-eight unique genes (67 probe 
sets) were found to differ significantly between the three dif-
ferent states (FDR < 5%, Table S5, supplemental material).

Post hoc analysis was performed to assess the significance 
of differences between normal sleep, sleep deprivation, and re-
covery sleep. Out of 48 “state” responsive genes, comparing 
normal sleep to sleep deprivation, 12 genes decreased expres-
sion from normal sleep to sleep deprivation (fold change range 

-1.05 to -1.16), 18 genes increased expression (fold change 
range 1.06 to 1.39) and 18 did not change significantly. Com-
paring sleep deprivation to recovery sleep, 8, 29, and 11 genes 
decreased, increased expression, or did not change significantly, 
respectively. Similarly, the fold changes were small between 
enforced wakefulness and recovery sleep with a range of 1.23 
to -1.42. There was also no difference between sensitive and re-
sistant subjects between the three different states and we found 
no significant biological enrichment for those 48 genes by ei-
ther multiple database or GSEA approaches.

Effect of Sleep Loss on Diurnal Rhythm of Gene Expression
Because previous studies have shown that sleep loss affects 

the amplitude of diurnal rhythm of gene expression,14 we ques-
tioned whether sleep loss affected the diurnal amplitude differ-
ently in resistant and sensitive subjects.

We first compared the distribution of cycling gene probes 
using different P values across the 24 h at baseline and during 
the sleep deprivation period in resistant and sensitive subjects 
for all 52,378 probes (Figure 4). At baseline, sensitive subjects 
with a high number of PVT lapses and resistant subjects with a 
low number of PVT lapses had similar numbers of significantly 
cycling probe sets. However, during sleep deprivation, resis-
tant subjects had far fewer differentially cycling probe sets than 
sensitive subjects at any given P value (Figure 4).

To further investigate the difference between sensitive and 
resistant subjects, we looked at the amplitude changes in the 
diurnal rhythm of gene expression going from baseline to 
sleep deprivation in the two groups. We specifically exam-
ined the most robust circadian genes by assessing the 1,397 
probe sets that cycled in both sensitive and resistant subjects 
at an FDR < 5% during baseline (when groups were analyzed 

Figure 3—The two genes with a significant linear trend in expression with sleep deprivation (false discovery rate < 5%); (A) SREBF1 and (B) CPT1A. Data 
are shown as mean ± standard deviation in normalized intensity on y-axis. The linear effects of sleep deprivation were very small for both genes: -0.03 and 
0.06, respectively. No difference was found between sensitive and resistant subjects.
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separately), broken down into sets that peaked during the light-
on and light-off periods, 788 and 609 probe sets, respectively.

We found that in sensitive subjects with a high number of 
lapses during sleep deprivation, there were no significant 
changes in amplitude for diurnal cycling between baseline and 
sleep deprivation either in the lights-on (Figure 5B, paired t-test 
P = 0.89) or lights-off periods (Figure 5D, paired t-test P = 0.17). 
In contrast, in subjects resistant to sleep deprivation there was a 
highly significant decrease in circadian probe set amplitude in 
the lights-on period (Figure 5A, paired t-test P = 1.7e-76) and a 
smaller but significant effect in the lights- off period (Figure 5C, 
paired t-test P = 1.7e-6).

To better understand the biological meaning of this observa-
tion, we compared both the primary circadian signature (8,064 
probe sets, FDR < 5%) and the subset most effected in resistant 

subjects (the 788 probe sets with peak expression during the 
lights-on period) to published expression modules of specific 
blood cell types.30 For the primary circadian signature across all 
subjects, we found that probe sets expressed higher during the 
day than night were significantly enriched for myeloid lineage 
(M1.5, M2.6, e.g., monocytes) and cytotoxic T cells (M2.1, see 
Table S6, supplemental material). During the night, the higher 
expressed probe sets were enriched for T cells (M2.8), and 
B cells (M1.3, see Table S6). Of note, platelet-, plasma cell-, 
neutrophil-, and hemoglobin-associated gene sets had no sig-
nificant day-night oscillations (not shown). The signature 788 
probe sets that demonstrated expression pattern differences 
between sensitive and resistant subjects were also enriched 
with genes from myeloid lineage and cytotoxic T cell modules 
(Figure 6A and 6B, respectively). Agglomerative clustering of 

Figure 5—Distribution of amplitude changes in behaviourally resistant (A and C) and sensitive (B and D) subjects from baseline to sleep deprivation using 
1,397 most robust circadian probe sets (false discovery rate < 5%). Probe sets are divided into lights on (A and B) and lights off (C and D) based on their 
peak expression time. No significant changes are found in behaviorally sensitive subjects but a highly significant decrease in amplitude is found in resistant 
subjects, especially during lights on. The amplitude change is shown as sleep deprivation minus baseline.
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these 788 probe sets suggested that the myeloid lineage was 
associated with the largest pattern of amplitude change among 
these genes (Figure 6).

DISCUSSION
We found that a large percentage of genes expressed in blood 

had a diurnal rhythm. The major difference between subjects 
who are resistant to sleep loss and those who are not is in the ef-
fect of sleep deprivation on diurnal rhythmicity of gene expres-
sion. Those who are resistant to the effects of sleep loss showed 
a significant reduction in the amplitude of the diurnal cycling 
of gene expression, whereas those who are sensitive did not, 
a potential molecular mechanism to the individual differential 
response to sleep deprivation.

Circadian Changes in Gene Expression
Earlier studies have examined circadian signatures in the 

mouse brain35 and mouse peripheral tissues such as liver, 
heart, and fat tissue.35–37 These studies have found that circa-
dian oscillations occur in 8-21% of the gene transcripts.35,36,38 
The percentage of transcripts cycling in these mice tissues is 
comparable to the 23.6% of the unique genes and 15.4% of 
probe sets cycling in blood in humans that we observed, despite 
species differences between studies. Two recently published 
studies on the circadian human metabolome have also shown 
cycling of 15% of the metabolome in plasma and saliva39 and 
that constructing a blood metabolome timetable to determine 
internal clock time is possible.40 A recently published study by 
Möller-Levet et al.14 have also shown cycling of 9% of genes 
in human blood cells under constant routine conditions. Similar 
to our study, they found a biphasic peak in the expression of 

circadian genes where most genes peak at the same time of 
day.14 However, the peaks found by Möller-Levet et al.14 were 
delayed by approximately 2 h compared to our results. This 
phase difference may be because of interference caused by the 
inclusion of a linear regression term related to time awake in 
their model in addition to the circadian terms. When assessed in 
our data, the linear term interfered with phase determination if 
the assessment period was 24 h. The phase difference may also 
reflect the use of melatonin rhythms to establish a baseline time 
scale in the study by Möller-Levet et al.

The oscillations of known core clock genes32–34 were assessed 
specifically in our study. We found that ARNTL (BMAL1), 
NPAS2, NR1D1(REV-ERB), PER1, PER2 ,and PER3, as well as 
CSNK1D and CSNK1E, had a circadian rhythm in blood cells. 
This is in agreement with previous studies looking at circadian 
gene expression in several peripheral tissues.36,37,41–44 However, 
a circadian rhythm for CRY1, CRY2, RORA, RORB, RORC, 
DEC1, BHLHE41 (DEC2), and CLOCK was not observed. 
CRY1 and CRY2 have been found to have a circadian rhythm 
in some tissues43,44 but not others.35–37 RORA has been shown to 
have only a slight oscillation in many peripheral tissues41,42 and 
RORC to have various rhythms in different peripheral tissues.42 
CLOCK was not found to have a circadian expression pattern 
in agreement with earlier studies in blood and other periph-
eral tissues.35–37,43,45 As mentioned in the results, the circadian 
genes PER1, PER2, and PER3 preceded the peak expression of 
most cycling genes, suggesting they are upstream of the later 
changes. James et al.46 similarly found that PER1 and PER2 
expression in blood peaked around the time of awakening. Sim-
ilar to our findings, they also observed that ARNTL(BMAL1) 
peaked around 14:00.

Figure 6—Interindividual circadian differences in response to sleep deprivation. A reduction in the pattern of diurnal cycling during sleep deprivation is not 
found in behaviourally sensitive subjects (A), only in resistant subjects (B). The heat maps represent agglomerative hierarchical clustering of the 788 probe 
sets that peak during light on in both (A) sensitive and (B) resistant subjects, respectively (false discovery rate [FDR] < 5%), ordered by time (y-axis) in (A) 
sensitive and (B) resistant subjects, respectively. The log-transformed ratios (Log R) of observed expression values relative to the corresponding average 
across the initial baseline 24-h period for each subject are shown. There is a much larger reduction in the amplitude of diurnal cycling (amplitude) of the 788 
probe sets in resistant subjects (B) than in sensitive subjects (A) when comparing the baseline and sleep deprivation periods, which predominantly was 
represented by myeloid lineage cells (green labeled). Cytotoxic T cell gene expression is shown in red d.
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Immune processes were the most significantly enriched bio-
logical functions among the genes peaking in expression during 
the morning and afternoon time blocks (06:00-10:00, 13:00-
14:00, and 14:00-18:00). A few hours prior to lights off/normal 
sleep (18:00-22:00 pm), CD40 antigen signaling through tumor 
necrosis factor receptor superfamily member 5 was most sig-
nificant. During the nighttime hours, specifically, between 
22:00-02:00 and 02:00-06:00, protein biosynthesis and RNA 
processing were the most enriched biological functions, re-
spectively. Interestingly, these same biological pathways were 
found previously to peak during sleep in the mouse brain.47

Sleep Deprivation Changes in Gene Expression
Our study shows very stable interindividual differences in 

neurobehavioral impairment to sleep deprivation, for a longer 
time period than has previously been shown (average 2.4 y be-
tween our studies), confirming and extending the findings of 
Van Dongen et al.5 and in agreement with Kuna et al.,9 which 
showed a large effect of heritability on performance during 
sleep deprivation.

Our results show, however, a very limited transcriptional 
signature for sleep loss. Only two genes, SREBF1 and CPT1A, 
were found to have significantly altered linear expression 
(FDR < 5%) during sleep deprivation compared to a normal 
sleep/wake cycle. SREBF1, involved in lipid synthesis,48 de-
creased expression whereas CPT1A, also involved in lipid 
metabolism,49 increased expression as sleep deprivation pro-
gressed. These changes were very modest in scale. SREBF1 has 
previously been found to be decreased in the brain of mice (ce-
rebral cortex and hypothalamus) during sleep deprivation47 but 
no significant changes were found for CPT1A in the brain in the 
same study.47 Macromolecule biosynthesis, including choles-
terol synthesis and lipid transport, was found to be a key func-
tion of sleep in mouse brain47 in accordance with our results 
as SREBF1 and CPT1A are involved in lipid synthesis48 and 
lipid metabolism,49 respectively. Interestingly, studies in mouse 
brain found significant linear changes in thousands of genes in 
the brain. Moreover, changes in expression of a large number 
of genes in specific biological pathways between sleeping and 
sleep deprived animals have been found in liver, heart, and 
lung.11,12 These studies were conducted, however, in mice with 
the same genotype, thereby reducing the effect of interindi-
vidual differences. We did find 48 genes with a sleep signature 
when comparing normal sleep to sleep deprivation and recovery 
sleep during the night hours only. However, all changes were 
very modest and no enriched biological categories were found 
among the differentially expressed genes. Therefore, based on 
our data, assessment of individual genes in blood will not show 
whether a person is sensitive or resistant to sleep deprivation.

Our results can be compared to other studies of changes in 
blood-gene expression with sleep deprivation. A recent study 
by Pellegrino et al.15 found approximately 500 genes changing 
expression when they compared a normal sleep cycle following 
2 nights of sleep deprivation and following recovery sleep, at 
the same diurnal time. The study design is different in that 
Pellegrino et al. compared expression at one time of day only 
(08:00) in the three conditions. However, similar to our study, 
all changes are extremely small with fold changes ranging from 

-1.18 to 1.18. The difference in number of genes found between 

these two studies may lie in the variations in study design and 
in stringency of statistical thresholds. Only three of the 50 
genes found significant in our study are also found in the study 
by Pellegrino et al. (PSMF1, SLC25A37 and TUBB2A) and all 
three genes are downregulated after recovery sleep compared 
to sleep deprivation in their study but upregulated in ours.

Another recent study by Möller-Levet et al.14 compared the 
gene expression profiles of 26 subjects during sleep deprivation 
both after 1 w of normal sleep and 1 w of insufficient sleep (≤ 6 
h per night) in a crossover design. This study found 122 genes 
with either a linear increase (46 genes) or decrease (76 genes) in 
expression during sleep deprivation following a normal sleep/
wake cycle. The number of genes increased to 856 genes when 
sleep deprivation was performed following 1 w of insufficient 
sleep (368 up and 488 down). Surprisingly, even though they 
used a within-subject design, only 53 of the original 122 genes 
that showed a linear change in expression in sleep deprivation 
following a normal sleep/wake cycle continued to do so after 1 
w of insufficient sleep, indicating that the expression changes 
found in sleep deprivation can be quite varied even within indi-
viduals. As with our study and the Pellegrino study, all changes 
were small. Möller-Levet et al.14 used a different statistical ap-
proach than that used here. They first assessed within individual 
subjects genes that changed expression with sleep deprivation 
and then looked at the number of subjects in which the same 
gene was found. They did not assess change averaged across all 
subjects. Of the large number of genes found to change in any 
way in the study by Möller-Levet et al. because of sleep depriva-
tion, only eight were also found significant in our study (ALPL, 
ANXA3, CD59, EML4, FOSB, NRG1, RIOK3, TMOD1). It 
is, however, difficult to assess whether the changes are in the 
same direction because the study by Möller-Levet et al. did not 
measure gene expression during a normal wake/sleep cycle or 
recovery sleep for reference.

Another recent study50 assessed gene expression changes 
with sleep deprivation in human saliva for 96 inflammation-
related genes using a low-density array. They compared expres-
sion in the same subjects at the same time of day (14:00) after 
normal sleep and 30 h of extended wakefulness. Two genes 
were found to have elevated expression, ANXA3 and 17GAM. 
The changes in expression of these genes in saliva are much 
greater (1.5-2.5 fold changes) than that found in peripheral 
blood. It is of interest that ANXA3 was identified in our study, 
in the study by Möller-Levet et al.14 and also in saliva.

Taken together, the results of studies looking at changes in 
the blood transcriptome with sleep loss suggest the following: 
(1) whereas the diurnal changes in gene expression are robust 
and affect a large percentage of total transcripts, changes with 
sleep deprivation are very limited; (2) the very small changes 
in gene expression with sleep deprivation, the lack of reproduc-
ibility across studies and within the same individual raises con-
cerns whether the changes observed represent a true biological 
signal or potentially statistical noise.

Effect of Sleep Loss on Diurnal Rhythm of Gene Expression
An important finding of the study by Möller-Levet et al.14 is 

that a large number of genes that have a circadian expression 
pattern in baseline conditions lose circadian rhythmicity during 
sleep deprivation. We replicated this finding and extended it. 



SLEEP, Vol. 37, No. 10, 2014 1598 Circadian Signature in Response to Sleep Loss—Arnardottir et al.

Specifically, we find a major difference in the suppression of 
circadian rhythmicity of gene expression between sensitive 
and resistant subjects to sleep loss. Resistant subjects showed 
robust suppression of circadian rhythmicity whereas sensitive 
subjects did not. This was observed both when assessing the 
number of cycling probe sets at different P value thresholds 
to define cycling and when looking at changes in amplitude of 
the most robust circadian cycling probe sets. The decrease in 
circadian rhythm amplitude was highly significant in resistant 
subjects but not in sensitive subjects. Blood cell type module 
analysis showed that genes associated with cytotoxic T cells 
and cells of myeloid origin peak in expression during daytime, 
as has been previously published.51 Our data additionally sug-
gest that the decrease in circadian rhythm amplitude found in 
resistant subjects, is mostly found in cells of myeloid origin, 
such as monocytes.

The mechanism behind the blunting of the circadian rhythm 
in blood may be caused by the decreased binding of certain 
core clock gene transcription factors to the promoter regions 
of clock genes during sleep deprivation as shown by Mongrain 
et al.16 in the mouse cerebral cortex. They found, using chro-
matin-immunoprecipitation, decreased binding of CLOCK and 
BMAL1 to the DBP promoter, as well as decreased binding of 
NPAS2 and BMAL1 to PER2 during sleep deprivation. It is 
possible, although not yet proven, that our observed associa-
tion between changes in circadian rhythmicity with sleep de-
privation and the resistant versus sensitive subject trait in our 
study is causative. Recent studies suggest that at a molecular 
level the processes underlying sleep homeostasis and circadian 
regulation are not independent52 as was originally proposed in 
the two-process model.53 In support of this is the demonstration 
that a mutation in the clock-associated gene DEC2 in humans 
results in short sleep and resistance to the effects of sleep loss.54 
The causality of this mutation was demonstrated by expressing 
the human mutation in Drosophila and mice resulting in shorter 
sleep and less recovery sleep following sleep deprivation, i.e., 
reduced sleep homeostasis.54 DEC2 represses the binding of 
Clock1-BMAL1 heterodimer to E boxes in the transcriptional 
regulatory area of cycling genes.33,55 The mutation that alters 
sleep duration and confers resistance to sleep loss reduces the 
ability of DEC2 to suppress CLOCK-BMAL1 transactivation 
of clock gene expression.54 Thus, there is clearly a link between 
regulation of clock gene expression and response to sleep 
loss. The mechanisms by which sleep loss alters the binding 
of CLOCK-BMAL1 to regulatory sites for clock genes is un-
known, as is the reason why this mechanism appears to differ 
between individuals. These topics will require further study.

Implications for Identifying a Biomarker for Sleep Loss
One important goal of the current research is to address 

whether identifying a biomarker/s that can be used to assess 
chronically reduced sleep is feasible.56 One approach would be 
to assess changes in gene expression in peripheral blood, which 
is readily accessible and cost effective. Our data and other re-
cently published studies14,15 do not provide evidence that this 
is a viable strategy. The changes in expression are small and 
there are very robust time-of-day effects that would need to 
be accounted for in applying this approach to individuals. It is 
conceivable, however, that the small signal might, in part, be a 

consequence of the cellular heterogeneity from which the RNA 
was derived. Studying only a homogeneous population of cir-
culating cells such as monocytes, based on our study results, is 
of future interest. A similar approach is being used for studies 
of biomarkers in cardiovascular disease reviewed in a previous 
study57 and cancer (solid tumors),58 but the fold changes are still 
relatively small.

Although challenging, there have been assertions with re-
spect to biomarkers for sleep drive in humans.59 There is an 
increase in salivary amylase mRNA in humans with extended 
wakefulness,59 but this is quite variable between individuals. In 
considering any biomarker, it is important to address sensitivity 
and specificity. Salivary amylase activity has been proposed as 
a marker of sympathetic nervous system activity.60,61 As such, 
levels are altered by psychological stress62 and acute increases 
may reflect levels of emotional arousal.63 Thus, it is highly un-
likely that salivary amylase will be a specific enough biomarker 
of sleep loss to be of value in this regard.

In conclusion, we find a robust circadian oscillation for 
nearly a quarter of assessed unique genes in peripheral blood 
in humans. The effects of sleep deprivation on gene expression 
independent of circadian processes are small. They affect few 
genes and are small in magnitude. The major effect of sleep 
loss on the blood transcriptome is suppression of the circadian 
rhythm of gene expression. We observed differences in the de-
gree of suppression of circadian rhythmicity of gene expression 
between those who are sensitive and those who are resistant 
to the effects of sleep loss. Specifically, resistant individuals 
have more marked suppression of circadian rhythmicity than 
sensitive individuals and likely have more robust compensatory 
mechanisms to sustain wakefulness. Based on other data, it is 
conceivable that this finding could be the basis for differential 
vulnerability to sleep loss, although determining this will re-
quire additional studies.
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Scale score > 10),5 depression in the past 6 mo, kidney prob-
lems, anemia or low blood count, excessive caffeine use (more 
than eight cups per day), alcohol problems (two or more drinks 
per day or two or more positive answers on the CAGE ques-
tionnaire,6 and drug addiction. Subjects were excluded from 
the study if they were taking the following medications: central 
nervous system stimulants, sleeping pills, sedatives, hypnotics, 
beta-blockers, and cholesterol-lowering medication. Subjects 
were screened for sleep disorders before the previous study per-
formed on average 2.4 y earlier. If the weight of subjects had 
increased more than 10% since the previous study or subjects 
reported habitual snoring and witnessed apneas, we planned 
that they would be asked to come in for a repeat sleep study 

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL METHODS

Participants
Based on psychomotor vigilance task (PVT) analysis of 200 

twin-pair participants in a previous sleep deprivation study,1 a 
single member of the twin pair studied previously was invited 
to participate in this study. The number of PVT performance 
lapses, i.e., a reaction > 500 msec, across the previous sleep de-
privation was used as selection criterion, inviting only subjects 
below the 33rd (resistant subjects) and above the 67th (sensitive 
subjects) percentiles to participate in the study. The slope of 
the increase in PVT lapses was calculated using the following 
regression model:

E(ΔYit) = β i1**cos(2*Π*t / 24) + β i2**sin(2*Π*t/24) + = β i3*t 

where ΔYit is change in the value of the PVT parameter from 
time = 0 to time = t for subject i. The parameters of interest 
are subject-specific linear changes in performance measures 
during sleep deprivation, βi3 after adjustment for circadian ef-
fects (cos and sin terms). The use of change scores allows re-
moval of the intercept parameter, therefore only assessing the 
change in performance, not the actual baseline score. The PVT 
lapses prior to sleep deprivation were not different between 
sensitive and resistant subjects. Subjects in the sensitive (slope 
of PVT lapses > 0.286) and resistant groups (slope of PVT 
lapses < 0.121), were contacted for participation in this study 
representing the 33rd and 67th percentiles of PVT performance, 
respectively. The slopes of the change in subjective sleepi-
ness (Karolinska Sleepiness Scale [KSS],2 visual analog scales 
(VAS) of mood and exhaustion (scale 0-10, with the higher 
number referring to worse condition)3,4 across the sleep depri-
vation trial were calculated in the same manner.

Study Design: Initial Telephone Screen
Exclusion criteria included shift and night work, major med-

ical illnesses in the past year (such as diabetes or cancer), preg-
nancy, hot flashes caused by menopause, diagnosis of a sleep 
disorder, excessive daytime sleepiness (Epworth Sleepiness 

Figure S1—Neurobehavioral impairment of sensitive versus resistant 
subjects during sleep deprivation. The average number of performance 
lapses throughout the sleep deprivation period (psychomotor vigilance 
test [PVT] every 2 h). Behaviorally sensitive subjects had a significantly 
higher increase in PVT lapses during 38 h of sleep deprivation than 
behaviorally resistant subjects (mean ± standard deviation slope of 
resistant versus sensitive subjects; 0.59 ± 0.37 versus 0.18 ± 0.14, 
P = 0.02) after adjustment for circadian effects, see Supplemental 
Methods.

0

5

10

15

20

25

30

35

9 11 13 14 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21

Resistant vs. Sensitive
P-value = 0.02

Av
g 

# o
f P

VT
 la

ps
es

 (S
E)

Time, hours
Day 2 Day 3

Sensitive Subjects Resistant Subjects

Table S1—Demographic data for sensitive and resistant subjects to the behavioral impairment of sleep deprivation.

All subjects (n = 14) Resistant subjects (n = 7) Sensitive subjects (n = 7) P
Age (y) 29.7 ± 8.9 30.3 ± 8.9 29.1 ± 9.6 0.82
Sex (male/females) 5 / 9 3 / 4 2 / 5 0.58
BMI (kg/m2) 25.4 ± 3.6 24.5 ± 3.7 26.2 ± 3.6 0.39
Ethnicity (Caucasian/African-American 11 / 3 6 / 1 5 / 2 0.52
Epworth Sleepiness Scale score 5.3 ± 2.8 4.9 ± 3.1 5.7 ± 2.5 0.79
CES-D score 14.6 ± 2.3 14.3 ± 2.2 15.0 ± 2.6 0.61
SF-36 mental score 54.6 ± 4.5 56.0 ± 3.2 53.0 ± 5.5 0.26
SF-36 physical score 56.4 ± 2.4 55.7 ± 2.7 57.3 ± 1.8 0.25

The chi-square test and t-test were used for nominal and continuous variables, respectively, and P < 0.05 considered significant. Mean ± standard deviation 
is shown for continuous variables.BMI, body mass index; CES-D, Center for Epidemiological Studies Depression Scale; SF-36, 36-Item Short Form Health 
Survey.
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to exclude sleep apnea. No subject met these criteria. Forty 
subjects were contacted for participation in the study. Twelve 
subjects were ineligible for the study because of use of antide-
pressants (n = 1), not interested (n = 4), time constraints (n = 5), 

and moving to a different time zone (n = 2). Therefore, 28 sub-
jects were enrolled into the study. No subject needed a repeat 
sleep study based on the aforementioned criteria. Of 28 en-
rolled subjects, 22 subjects completed the study, six withdrew 

Table S2—The subjective behavioral impairment of sensitive and resistant subjects during sleep deprivation.

Sensitive subjects (n = 7) Resistant subjects (n = 7) P *
KSS score – pre PVT 5.6 ± 1.9 6.5 ± 0.8 0.33
KSS score – post PVT 6.6 ± 1.9 7.0 ± 1.4 0.45
Subjective mood – pre PVT 4.1 ± 1.5 4.5 ± 1.7 0.60
Subjective mood – post PVT 4.6 ± 1.8 4.8 ± 1.9 0.84
Subjective exhaustion – pre PVT 5.0 ± 1.9 6.0 ± 1.0 0.25
Subjective exhaustion – post PVT 5.8 ± 2.5 6.9 ± 0.9 0.71

The questionnaires were administered before and after each psychomotor vigilance task (PVT), performed every 2 h. The mean numbers refer to the 
average score in subjective sleepiness (Karolinska Sleepiness Scale [KSS], visual analog scales [VAS] of mood and exhaustion [scale 0-10, with the higher 
number referring to worse condition] during the actual 24 h of sleep deprivation. The P value is calculated for the difference in t-test slopes of the subjective 
performance across the sleep deprivation (see additional discussion in Methods), P < 0.05 was considered significant. Data shown are mean ± standard 
deviation. * The same results are found when the t-test is performed for the average 24-h results.

Table S3—Trait-like interindividual difference in psychomotor vigilance task as a measure of impairment to sleep loss.

ICC
Between subject 

variance
Within subject 

variance Total variance P
Slope of change in PVT lapses 0.555 0.10 0.08 0.181 0.04
Slope of transformed PVT lapses 0.442 0.004 0.005 0.009 0.07
Mean PVT lapses in last 24 h of sleep loss (12 trials) 0.605 121.80 79.49 201.284 0.03
Slope of change in median reaction time 0.463 2.44 2.84 5.285 0.06
Slope of change in 10% fastest reaction time 0.388 0.135 0.214 0.350 0.09
Slope of change in 10% slowest reaction time 0.231 0.0001 0.0004 0.0005 0.21
Slope of change for subjective sleepiness – pre-PVT 0.262 0.003 0.009 0.01 0.19
Slope of change for subjective sleepiness – post-PVT 0.397 0.003 0.004 0.007 0.09

A comparison of two 38-h sleep deprivation trials with 885.6 ± 507.1 days between studies. Ho: Intraclass correlation coefficient (ICC) = 0 vs. Ha: ICC > 0. 
PVT, psychomotor vigilance task.

Table S4—Enriched biological pathways by 4-h bins in human blood during normal sleep/wake

Time interval
Total # significant 

pathways Top biological pathway E value Collection
Total sequences

Input Overlap Set gene Background
10:00-14:00 195 Immune system process 2.3-E25 GO 1073 285 2331 16675
14:00-18:00 51 Immune response 1.0-E09 GO 829 132 1376 16675
18:00-22:00 20 Signal transduction CD40 antigen 

(tumor necrosis factor receptor 
superfamily member 5)

0.00035 GeneGo 174 9 97 25130

22:00-02:00 54 Metabolism: protein biosynthesis 7.7-E08 GeneGo 1116 29 143 25130
02:00-06:00 3 RNA processing 0.00056 GO 861 74 774 16675
06:00-10:00 14 Immune system process 2.6-E-05 GO 331 87 2331 16675

E value represents Bonferroni corrected hypergeometric P after multiple pathway comparisons, and values below 0.1 were considered significant; Collection 
stands for the database where the finding was present, multiple searches across multiple databases were done simultaneously and then assessed for 
significance across all detected (see Methods for details). Input, Overlap and Set gene stand for total number of input genes recognized by annotated database, 
total number of input genes that overlapped with the specified pathway, and total number of genes currently mapped within the entire specified pathway, 
respectively. Background is the total number of genes annotated in the database collection. Significant gene sets by false discovery rate < 5% were cross-
referenced for enrichment of biological processes and pathways against multiple public and commercial databases, specifically GeneGo (www.genego.com), 
Gene Ontology (www.geneontology.org), KEGG (www.genime.jp/kegg/), and Ingenuity (www.ingenuity,com).
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devices AWLP and AW64, Philips Respironics, Bend, OR) and 
sleep-wake diary for 2 w prior to the sleep deprivation visit. 
Subjects were asked to abstain from nicotine (one smoker with 
fewer than 10 cigarettes per day in the study) and caffeine use 
for 24 h before and during the study. Subjects drinking more 
than eight cups of caffeine-containing beverages were excluded 
from the study to minimize stress caused by abstinence from 
caffeine.

Two subjects were assessed simultaneously in the sleep labo-
ratory and their blood draws were staggered by 5 min, always 
in the same order.

The caloric content of meals was standardized using the 
Harris-Benedict equation (an activity factor of 1.3 was assumed 
for all subjects).9 The meals were composed of 50% carbohy-
drate, 20% protein, and 30% fat. The meals were served to the 
subjects at fixed intervals during the day at 08:00, 12:00, 16:00, 
and 20:00 after the blood draws.

The PVT was administered for 10 min every 2 h when the 
subjects were awake (at 09:15, 11:15, 13:15, etc.).10 Addition-
ally, subjects answered three questionnaires before and after 
each PVT: the KSS,2 and VAS-F and VAS-M (for fatigue and 
mood, respectively).3,4 The KSS is a scale from 1-9 from “very 

from study because of time constraints or other reasons, one 
had a positive pregnancy test, and one did not follow up. The 
first seven sensitive and seven resistant subjects to complete the 
study were included in the microarray analysis reported here.

Study Design: Baseline Visit
A physical examination was performed and medical history 

obtained. Subjects were screened for the presence of drugs and 
alcohol in urine. A pregnancy test was performed in the fe-
males. Blood was collected for a complete blood count (CBC) 
and blood urea nitrogen (BUN) measurement. Subjects with 
CBC or BUN outside the normal range were to be excluded 
from the study. No subject was excluded based on these criteria. 
Subjects also completed the Center for Epidemiological Studies 
Depression Scale (CES-D)7 and the 36-Item Short Form Health 
Survey (SF-36).8

Study Design: Sleep Deprivation Visit
Subjects were asked to maintain a regular sleep-wake cycle 

for 2 w prior to the study, going to bed between 21:30 and mid-
night every night for 2 w and a minimum sleep of 7 h at night 
without naps. This was confirmed by actigraphy (Actigraphy 

Figure S2—Circadian changes in expression of four clock genes during normal sleep/wake in baseline for subjects sensitive and resistant to sleep deprivation. 
Data shown as mean ± standard deviation in normalized probe intensity on the y-axis; (A) PER2, (B) PER3, (C) DBP, and (D) NPAS2. No significant 
differences were found between the two groups. The PER genes peak between 04:00 and 08:00, DBP peaks around 03:00 and NPAS2 around 01:30.
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alert” to “very sleepy, an effort to stay awake, fighting sleep” 
and the VAS-F and VAS-M are 10-point scales from “fresh to 
exhausted” and “elated to depressed”, respectively. The PVT 
measurements were missing for one sensitive subject because 
of a faulty PVT device.

During the study, subjects were on 14-h lights on:10 h lights 
off regimen with lights on during the entire sleep deprivation 
period. Subjects were not allowed to leave the research center, 
use the telephone, read the newspaper, watch television, or per-
form vigorous exercise during the study. A trained staff member 
was present at all times to make sure that all requirements for 
the study were fulfilled and to keep subjects awake during the 
sleep deprivation period.
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Table S5—Probe sets with differential mean expression during three states: normal sleep/wake versus sleep deprivation versus recovery sleep (12:00, 04:00, 
and 08:00) using a false discovery rate < 5%. 

A total of 67 probe sets representing 48 unique genes. Fold-change differences assessed post hoc between the three states are shown (P divided by three 
to account for comparisons between all states). A significant increase in expression between states is shown in red, a significant decrease in green, and 
nonsignificant changes in black (P < 0.05). Fold change differences were assessed by the average of three time point (12:00, 04:00, and 08:00) for baseline 
versus sleep deprivation and sleep deprivation versus recovery sleep. FDR, false discovery rate.

ProbeSetID
Expression Pattern 
Baseline Sleep Loss 

Recovery

Fold Change 
Baseline vs 
Sleep Loss

100301994_TGI_at -1.03 1.09 ACER3 (PHCA) alkaline ceramidase 3

100155088_TGI_at -1.16 1.14 ADRB2 adrenoceptor beta 2

100303669_TGI_at -1.16 1.19 ADRB2 adrenoceptor beta 2

100157057_TGI_at -1.05 1.04 AIM1 absent in melanoma 1

100142421_TGI_at -1.08 1.10 ALAS1 aminolevulinate, delta-, synthase 1

100145563_TGI_at 1.16 1.03 ALPL alkaline phosphatase, liver/bone/kidney

100148927_TGI_at 1.21 1.01 ANXA3 annexin A3

100132151_TGI_at 1.07 1.10 BPGM 2.3-bisphosphoglycerate mutase

100156744_TGI_at 1.09 -1.11 C7orf50 chromosome 7 open reading frame 50

100137511_TGI_at -1.11 1.15 C9orf40 chromosome 9 open reading frame 40

100151174_TGI_at 1.04 1.05 C9orf78 chromosome 9 open reading frame 78

100123190_TGI_at 1.14 -1.04 CAMP cathelicidin antimicrobial peptide

100313167_TGI_at 1.27 1.01 CD177 CD177 molecule

100148681_TGI_at -1.07 1.12 CD36 CD36 molecule (thrombospondin receptor)

Official Symbol Official Gene Name
Fold Change 

Sleep Loss vs 
Recovery

Table S5 continues on the following page



SLEEP, Vol. 37, No. 10, 2014 1600E Circadian Signature in Response to Sleep Loss—Arnardottir et al.

Table S5 (continued)—Probe sets with differential mean expression during three states: normal sleep/wake versus sleep deprivation versus recovery sleep 
(12:00, 04:00, and 08:00) using a false discovery rate < 5%. 

A total of 67 probe sets representing 48 unique genes. Fold-change differences assessed post hoc between the three states are shown (P divided by three 
to account for comparisons between all states). A significant increase in expression between states is shown in red, a significant decrease in green, and 
nonsignificant changes in black (P < 0.05). Fold change differences were assessed by the average of three time point (12:00, 04:00, and 08:00) for baseline 
versus sleep deprivation and sleep deprivation versus recovery sleep. FDR, false discovery rate.

100138481_TGI_at 1.11 1.01 CD59 CD59 molecule, complement regulatory protein

100123837_TGI_at 1.07 1.02 CD59 CD59 molecule, complement regulatory protein

100311123_TGI_at 1.07 1.03 CD59 CD59 molecule, complement regulatory protein

100148857_TGI_at -1.04 1.23 DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6

100307564_TGI_at -1.07 -1.09 DOCK3 dedicator of cytokinesis 3

100122077_TGI_at -1.11 1.05 EML4 echinoderm microtubule associated protein like 4

100141931_TGI_at 1.39 -1.16 EMP1 epithelial membrane protein 1

100147008_TGI_at 1.04 1.10 FAM104A family with sequence similarity 104, member A

100302113_TGI_at -1.04 1.14 FAM198B (C4orf18) family with sequence similarity 198, member B

100128167_TGI_at -1.05 1.16 FAM198B (C4orf18) family with sequence similarity 198, member B

100162990_TGI_at 1.35 -1.42 FOSB FBJ murine osteosarcoma viral oncogene homolog B

100159649_TGI_at 1.07 -1.07 H3F3B H3 histone, family 3B (H3.3B)

100133565_TGI_at 1.18 -1.01 HIST1H4C histone cluster 1, H4c

100132341_TGI_at 1.20 1.14 ITLN1 intelectin 1 (galactofuranose binding)

ProbeSetID
Expression Pattern 
Baseline Sleep Loss 

Recovery

Fold Change 
Baseline vs 
Sleep Loss

Official Symbol Official Gene Name
Fold Change 

Sleep Loss vs 
Recovery

Table S5 continues on the following page



SLEEP, Vol. 37, No. 10, 2014 1600F Circadian Signature in Response to Sleep Loss—Arnardottir et al.

Table S5 (continued)—Probe sets with differential mean expression during three states: normal sleep/wake versus sleep deprivation versus recovery sleep 
(12:00, 04:00, and 08:00) using a false discovery rate < 5%. 

A total of 67 probe sets representing 48 unique genes. Fold-change differences assessed post hoc between the three states are shown (P divided by three 
to account for comparisons between all states). A significant increase in expression between states is shown in red, a significant decrease in green, and 
nonsignificant changes in black (P < 0.05). Fold change differences were assessed by the average of three time point (12:00, 04:00, and 08:00) for baseline 
versus sleep deprivation and sleep deprivation versus recovery sleep. FDR, false discovery rate.

100127419_TGI_at 1.08 -1.15 KIAA1683 KIAA1683

100150910_TGI_at 1.07 1.09 LGALS3 lectin, galactoside-binding, soluble, 3

100127781_TGI_at -1.06 1.07 METTL7A methyltransferase like 7A

100307404_TGI_at 1.02 1.07 METTL9 methyltransferase like 9

100150696_TGI_at 1.16 1.05 NRG1 neuregulin 1

100300593_TGI_at 1.16 1.05 NRG1 neuregulin 1

100304360_TGI_at -1.12 1.15 OLIG1 oligodendrocyte transcription factor 1

100309661_TGI_at 1.06 -1.11 PHF17

100145302_TGI_at 1.07 1.09 PI3 peptidase inhibitor 3, skin-derived

100151354_TGI_at 1.04 1.06 PITHD1 (C1orf128) PITH (C-terminal proteasome-interacting domain of  
thioredoxin-like) domain containing 1

100126954_TGI_at 1.04 1.11 PSMF1 proteasome (prosome, macropain) inhibitor subunit 1 (PI31)

100150704_TGI_at -1.12 1.11 RAPH1 Ras association (RalGDS/AF-6) and pleckstrin homology 
domains 1

100132405_TGI_at 1.06 1.19 RIOK3 RIO kinase 3

100124930_TGI_at -1.13 1.20 S1PR3 sphingosine-1-phosphate receptor 3
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Table S5 (continued)—Probe sets with differential mean expression during three states: normal sleep/wake versus sleep deprivation versus recovery sleep 
(12:00, 04:00, and 08:00) using a false discovery rate < 5%. 

A total of 67 probe sets representing 48 unique genes. Fold-change differences assessed post hoc between the three states are shown (P divided by three 
to account for comparisons between all states). A significant increase in expression between states is shown in red, a significant decrease in green, and 
nonsignificant changes in black (P < 0.05). Fold change differences were assessed by the average of three time point (12:00, 04:00, and 08:00) for baseline 
versus sleep deprivation and sleep deprivation versus recovery sleep. FDR, false discovery rate.

100127791_TGI_at 1.14 -1.03 SLC22A4 solute carrier family 22 (organic cation/ergothioneine 
transporter), member 4

100136139_TGI_at 1.03 1.03 SLC25A37 solute carrier family 25 (mitochondrial iron transporter), 
member 37

100146797_TGI_at 1.21 -1.00 SLPI secretory leukocyte peptidase inhibitor

100148151_TGI_at 1.09 1.22 TMOD1 tropomodulin 1

100154309_TGI_at 1.22 -1.15 TPPP3 tubulin polymerization-promoting protein family member 3

100141008_TGI_at -1.06 1.08 TPST2 tyrosylprotein sulfotransferase 2

100159906_TGI_at 1.14 1.19 TUBB2A tubulin, beta 2A class IIa

100144915_TGI_at -1.03 1.08 UBE2A ubiquitin-conjugating enzyme E2A

100144964_TGI_at -1.06 1.14 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100302138_TGI_at -1.05 1.14 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100312283_TGI_at -1.05 1.14 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100123021_TGI_at -1.09 1.15 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100302171_TGI_at -1.06 1.15 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100313669_TGI_at -1.06 1.15 UBE2J1 ubiquitin-conjugating enzyme E2, J1
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Table S5 (continued)—Probe sets with differential mean expression during three states: normal sleep/wake versus sleep deprivation versus recovery sleep 
(12:00, 04:00, and 08:00) using a false discovery rate < 5%. 

A total of 67 probe sets representing 48 unique genes. Fold-change differences assessed post hoc between the three states are shown (P divided by three 
to account for comparisons between all states). A significant increase in expression between states is shown in red, a significant decrease in green, and 
nonsignificant changes in black (P < 0.05). Fold change differences were assessed by the average of three time point (12:00, 04:00, and 08:00) for baseline 
versus sleep deprivation and sleep deprivation versus recovery sleep. FDR, false discovery rate.

100311177_TGI_at -1.07 1.16 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100305816_TGI_at -1.11 1.21 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100313150_TGI_at -1.09 1.21 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100307874_TGI_at -1.06 1.21 UBE2J1 ubiquitin-conjugating enzyme E2, J1

100304005_TGI_at -1.03 1.06 WAC WW domain containing adaptor with coiled-coil

100125712_TGI_at -1.00 1.09 ZFAND5

100306188_TGI_at 1.10 -1.11

100133468_TGI_at 1.27 -1.09

100151487_TGI_at 1.08 -1.09

100127169_TGI_at 1.15 1.10

100137740_TGI_at -1.10 1.15
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Table S6—Diurnal differences in blood cell types using baseline combined sensitive and resistant subjects circadian signature (8,064 probe sets, false 
discovery rate < 5%).

PBMC type, module ID
# Circadian probe sets (FDR < 5%) # Non-circadian 

probe sets
Overlap P

Light on Light off Light on Light off
B cell, M1.3 8 71 82 0.07 9.3E-35
T cell, M2.8 3 182 92 1.7E-06 1.6E-129
Cytotoxic T cell, M2.1 56 15 60 6.9E-28 0.048
Myeloid, M1.5 133 3 101 3.3E-83 2.0E-04
Myeloid, M2.6 200 3 119 2.8E-138 5.2E-08

Noncircadian genes are shown as a control. Lights on and light off refers to the time when the respective probe sets peaked in their expression. FDR, false 
discovery rate; PBMC, peripheral blood mononuclear cells.


