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Abstract

We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts

(NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A

moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The

NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while
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CYP2E1*6 DD and GSTT1-plus (++/+−) genotypes were associated with a decrease in urine

naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure

to naphthalene. Further studies are warranted to characterize the relationship between NKA, other

exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH

exposure.
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Introduction

Jet propulsion fuels (kerosene-based fuel mixtures) are standard fuels for commercial

aviation as well as for military aircrafts and vehicles. Jet propulsion fuel type 8 (JP-8) is the

battle field fuel for all U.S. military operations and was chosen to replace its predecessor

JP-4 in 1972 by North Atlantic Treaty Organization (NATO) due to its higher flashpoint

(ATSDR 1998; Zeiger & Smith 1998; Carlton & Smith 2000; NRC 2003). In addition, JP-8

is used as a degreaser, heat source, and cooking fuel by the U.S. military. It is estimated that

5 billion gallons of JP-8 is used by the U.S. military and NATO each year (NRC 2003). It

has been recognized as the single largest source of chemical exposure for the military

personnel (Carlton & Smith 2000). Dermal exposure to jet fuel, along with inhalation

exposure, was observed to contribute significantly to body burden in the U.S. Air Force

(USAF) fuel-cell maintenance workers (Chao et al. 2006; Kim et al. 2007). In addition, due

to its low vapor pressure and slower evaporation rate in comparison to its predecessor JP-4,

increased duration of dermal contact with JP-8 presents increased risk for dermal exposure

(Chao et al. 2005). Although JP-8 contains hundreds of aliphatic and aromatic hydrocarbons,

naphthalene and its metabolites (1- and 2-naphthol) in urine have been established as

effective surrogate biomarkers of exposure to JP-8 (Egeghy et al. 2003; Serdar et al. 2003;

Serdar et al. 2004; Chao et al. 2006; Kim et al. 2007).

Accurate quantification of the contribution of dermal exposure to the systemic dose is

required in order to complement and improve current exposure assessment models for long-

term health effects of jet fuel exposure, a facet that is missing from current epidemiological

research. Quantitation of the individual dermal dose and determination of the mechanism of

action hinges upon development of biomarkers that can encompass both acute and chronic

exposure and upon development of specific analytical procedures to quantitate these

biomarkers. The only method for quantitation of dermal exposure to jet fuel (JP-8) reported

to date measures the unmetabolized naphthalene (surrogate for JP-8) on the skin surface,

which can only be attributed to recent exposure because of rapid absorption and

biotransformation of naphthalene (Chao et al. 2005; Chao et al. 2006). Naphthalene

metabolites bound to skin keratins would be appropriate as specific biomarkers for dermal

exposure, as the bioactivation required for naphthalene metabolite adduction to keratin only

occurs in the suprabasal layer of the epidermis (Kang-Sickel et al. 2008; Kang-Sickel et al.
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2010), where keratin is synthesized de novo and the non-living squame is formed (Watt

1988). Approximately 20–28 days are required for differentiation and maturation of

suprabasal keratinocytes (Junqueira & Carneiro 2005; Furukawa et al. 2008) to migrate from

the basal layer to the surface to form the stratum corneum, which requires continuous

replacement. Therefore, non-invasive sampling of stratum corneum by sequential tape-

stripping can be used to monitor an individual’s past (< 28 days) exposure to naphthalene-

containing mixtures and characterize individual variation in dermal metabolic capacity and

keratin adduction in human populations.

The potential contribution of dermal exposure to total JP-8 exposure is suggested based on

the correlation between the metabolite levels in urine (e.g. 1- and 2-naphthol) and various

surrogates of dermal exposure, including skin irritation, work inside the fuel cell, and

removing and cleaning fuel puddles (Egeghy et al. 2003; Serdar et al. 2004). However, these

surrogate indicators provide only qualitative, not quantitative, information. We previously

established that naphthalene (as a model polycyclic aromatic hydrocarbon) and its

metabolites 1-naphthol (1NAP) and 2-naphthol (2NAP) in urine can be used as quantitative

biomarkers of a complex jet fuel mixture exposure to the skin (Chao et al. 2006). We further

established that dermal exposure to jet fuel, along with inhalation exposure, contributes

significantly to the total body burden in the exposed USAF fuel-cell maintenance workers

(Chao et al. 2005; Chao et al. 2006; Kim et al. 2007). We have also shown that highly

specific polyclonal antibodies to naphthalene metabolites can be used for a sensitive

enzyme-linked immunosorbent assay (ELISA) for quantification of NKAs as biomarkers of

dermal exposure to jet fuel (Kang-Sickel et al. 2008; Kang-Sickel et al. 2010). In dermal

tape-strip samples collected from 105 individuals exposed to JP-8, naphthyl-conjugated

keratin peptides were detected at levels from 0.004 to 6.104 pmol adduct/μg keratin, but

were undetectable in unexposed volunteers (Kang-Sickel et al. 2008; Kang-Sickel et al.

2010).

Our first objective was to characterize the association between biomarkers of dermal

exposure (i.e., NKAs) and urine naphthalene and naphthalene metabolite levels in 105 fuel-

cell maintenance workers along with inhalation exposure as well as individual and work

place factors that may contribute to these biomarker levels using multiple linear regression

models. However, naphthalene and its metabolites are substrates for biotransformation

enzymes, including cytochrome P-450s (CYPs), glutathione-S-transferases (GSTs), and

NAD(P)H:quinone oxidoreductases (NQO1) (Buckpitt et al. 2002; Preuss et al. 2003;

Waidyanatha et al. 2004a). Genetic polymorphisms account for interindividual differences

in the expression of these enzymes and, thus, may contribute to the differences in biomarker

levels and exposure-related toxicity. In the skin, as in the liver, metabolizing enzymes

convert naphthalene to more polar metabolites but also catalyze the synthesis of reactive

metabolites that bind to nucleophilic macromolecule (protein or DNA) to form adducts

(Ross & Nesnow 1993; Isbell et al. 2005; Shimada 2006; Saeed et al. 2009). Therefore, our

second objective was to examine the potential contribution of genetic variants of four genes

(CYP2E1, GSTM1, GSTT1, and NQO1), which code for biotransformation enzymes intrinsic

to naphthalene metabolism, to the observed levels of NKAs and urine biomarkers in this

worker population.
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Materials and methods

Study population

Exposure data were available from the broad exposure assessment and health effects study

of the personnel exposed to JP-8 at six USAF bases in the continental United States

(described in Egeghy et al. 2003; Chao et al. 2005; Chao et al. 2006). While 339 USAF

personnel were enrolled in the overall study, 105 fuel-cell maintenance workers from five

bases who were monitored for both dermal and systemic levels were included in this study.

These workers serviced primarily F-series fighter jets or C-130 transporter jets. The workers

comprised of 98 males (93.3%) and 7 females (6.7%), 92 Caucasians (87.6%), and 13 non-

Caucasians (African-American, Hispanic, or Asian; 12.4%), and 46 were smokers (43.8%).

The average age of the workers was 24.7 ± 5.0 years and ranged from18 to 40 years.

Workers were recruited with informed consent from active duty USAF personnel who

routinely worked with and were exposed to JP-8. This study was approved by the

institutional review board of each of the participating investigators and for the USAF, and

the study complied with all applicable U.S. requirements and regulations.

Questionnaires and work diaries were recorded after the work shift to obtain detailed

information on demographic factors including age, ethnicity, gender, smoking status, job

tasks and durations, use of personal protective equipment (PPE), and other work-related

characteristics. Each of the workers had been assigned a priori into one of three exposure

categories (high, moderate, low) based on the primary job tasks (Chao et al. 2005). Workers

who entered fuel tanks (entrants) on the sampling day were classified as high-exposure

group. The medium-exposure group consisted of workers who were attendants and/or

runners assisting the entrants. Other field workers who had occasional contact with JP-8

were classified as the low-exposure group (Chao et al. 2005).

Collection and analyses for skin, inhalation, and urine samples

The collection of dermal tape-strip samples and analysis for naphthalene (Chao et al. 2005)

and four NKA levels (Kang-Sickel et al. 2008; Kang-Sickel et al. 2010) have been described

previously. Briefly, tape-strip samples were collected post-exposure using three sequential

adhesive tape-strips in each site (2.5 cm × 4.0 cm, surface area 10 cm2; Cover-Roll™ tape,

Beiersdorf AG, Germany) from three exposed body regions with potentially the greatest

JP-8 exposure, as identified by the subject and confirmed via visual inspection by the

investigators. In each site, side-by-side samples were collected, one set for determination of

naphthalene level and the other set for determination of NKA level. Each tape was applied

onto the skin surface with a constant pressure and removed at an approximately 45° angle

after 1 min. For determination of naphthalene level, tape was folded and placed into a

labeled scintillation vial containing 5 ml acetone and 20 μL of 25 μg/mL naphthalene-d8

(internal standard) and stored at −80°C until analysis by gas chromatography-mass

spectrometry (GC-MS). For determination of NKAs, tape was rolled with the adhesive side

facing out and placed into a 2 mL cryovial and stored at −80°C until the keratin from the

tape sample was extracted and quantified by Bradford assay and four NKAs (1-naphthyl-

keratin-1, 2-naphthyl-keratin-1, 1-naphthyl-keratin-10, and 2-naphthyl-keratin-10)

quantified by ELISA (Kang-Sickel et al. 2008).
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Inhalation exposure to naphthalene was monitored during the 4 h work shift using passive

monitors attached to the workers’ collars. End-exhaled breath samples were collected before

and immediately after the work shift using 75 cm3 glass bulbs. The full-face supplied-air

respirator was worn by 69 (100%) of the a priori high-exposure group workers, while 10

(59%) of medium-exposure and none of the low-exposure workers wore a respirator. Both

breathing-zone air and breath samples were analyzed by thermal desorption followed by GC

with photo-ionization detection, as described elsewhere (Egeghy et al. 2003). The collection

of urine samples was performed before and after the work shift and the concentrations of the

urine 1NAP and 2NAP were determined by GC-MS, as described elsewhere (Serdar et al.

2003).

Genotyping for candidate genes

A sample of whole blood was collected into a 10 mL EDTA tube (Vacutainer©; Beckton-

Dickinson and Company, Franklin Lakes, NJ, USA) for each worker at the beginning and at

the end of the work shift. The samples were packed with Blue Ice© (Rubbermaid, Atlanta,

GA, USA) and shipped to arrive at the lab within 24 h at a temperature of 4°C. Genomic

DNA was isolated from nucleated blood cells for genotyping from 0.4 mL of whole blood

using InstaGene Genomic DNA Kit (Cat #732-6028, BioRad, Hercules, CA, USA). When

additional DNA was needed for genotyping, genomic DNA was isolated from 0.3 mL of

whole blood that had been stored at −70°C using Gentra Puregene Blood Kit (Qiagen

Sciences, Inc., Germantown, MD, USA) following the manufacturers procedures.

The CYP2E1 DraI (mutant allele: CYP2E*6) restriction fragment length polymorphism was

identified by minor modifications of methods described by Kato et al. (1995). Minor

modifications of the CYP2E1 methods included using AmpliTaq Gold Polymerase and

Applied Biosystems polymerase chain reaction (PCR) Buffer II in the reaction mixture and a

10 min preincubation of the reaction mixture at 95°C prior to beginning of the specified

amplification program. The PCR amplification and restriction products were examined on

2% agarose E-gels (Invitrogen Life Technologies, Carlsbad, CA, USA) or 2% agarose gels

prepared in the laboratory containing ethidium bromide and visualized on an ultraviolet

transilluminator. The CYP2E1 has a polymorphic DraI restriction site in intron six. The

DraI restriction site is present in the CYP2E1 DraI Type D genotype, whereas the site is

missing in the CYP2E1 DraI Type C genotype.

The GSTM1 genotyping was based on the method of Huang et al. (1997). The PCR reaction

mixture contained thermophilic DNA polymerase 10X buffer with 15 mM MgCl2, 2.5 pmol

of each dNTP primer, 20 μM of each GSTM1 primer, 20 μM of each β-globin primer, 2.75

μL Taq polymerase, and 2 μL of DNA template (100–300 ng) in a total reaction volume of

50 μL. The reaction mixture was placed in a thermocycler (model PTC-100, MJ Research

Inc., Waltham, MA, USA) for 30 cycles at 95°C for 30 s followed by 45 s at 56°C, 72°C for

45 s, and a final step at 72°C for 10 min. The PCR products were separated by

electrophoresis on 2.5% agarose gels containing ethidium bromide and visualized on an

ultraviolet transilluminator. The β-globin gene served as an internal control and generated a

100 bp PCR product in all reaction tubes. Only genomic DNA from GST-positive

individuals served as a template for amplification of an additional 273 bp product.
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The GSTT1 genotype was identified using primers described by Hirvonen et al. (1996). The

PCR reaction mixture contained 1X Applied Biosystems PCR Buffer II, 2 mM MgCl2, 2.5

pmol of each dNTP primer, 30 pmol of GSTT1 primer, 10 pmol of each β-globin primer, 1

unit AmpliTaq Gold Polymerase, and 2 μL of DNA extract in a total reaction mixture of 30

μL. The reaction mixture was placed in a thermocycler (model PTC-100, MJ Research Inc.,

Waltham, MA, USA) for 10 min at 95°C followed by 25 cycles of 94°C for 1 min, 59°C for

1 min, 72°C for 1.5 min, and a final step of 72°C for 5 min. The PCR products were

examined as described for CYP2E1 above. The β-globin gene served as an internal control

and generated a 100 bp PCR product in all reaction tubes. The GSTT1-null individuals were

identified by their DNA templates that produced no amplification with GSTT1 specific

primer.

The method described by Wiemels et al. (1999), with minor modifications, was used to

characterize the single nucleotide polymorphism rs1800566 in NQO1. Minor modifications

in the NQO1 methods and examination of PCR amplification and restriction products were

carried out as described for CYP2E1 above. This genetic variant has a C to T transition in

nucleotide 609 in exon 6 of NQO1 (Guha et al. 2008).

Duplicate reactions for all genotypes were conducted on a minimum of 20% of the

participants and all duplicate results were in complete concordance.

Statistical analyses

All statistical analyses were conducted using the SAS software (Version 9.1.3, SAS

Institute, Cary, NC, USA) at a significance level of 0.10. All exposure and biomarker data

(NKA levels, dermal, breathing-zone air, and breath naphthalene levels, as well as urine

naphthalene and naphthol levels) were natural log-transformed to satisfy normality

assumptions prior to statistical analyses. All statistical models were constructed and analyses

conducted based on subjects with available data points; therefore, the sample sizes in these

analyses differed due to missing values of independent variables.

The total NKA level for each worker was calculated by summing the four keratin-

normalized adduct levels measured in all sampling sites. Pearson correlation was examined

between the total NKA level and JP-8 exposure measures (i.e. dermal, breathing-zone, pre-

and post-exposure breath naphthalene levels) and urine biomarkers [i.e. naphthalene, 1NAP,

2NAP, and total naphthol (TNAP = 1NAP + 2NAP) levels]. Analysis of variance (ANOVA)

with the significance level of 0.1 was performed to test the effects of genetic variants in four

metabolic genes (CYP2E1, GSTM1, GSTT1, and NQO1), which have been indicated in

naphthalene metabolism (Tingle & Park 1993; Wilson et al. 1996; Yang et al. 1999; Lee et

al. 2001), on the levels of total NKAs and urine biomarkers observed in this worker

population.

Multiple linear-regression analyses were conducted to examine workplace and personal

factors contributing to total NKA levels in all workers and in a priori determined high-

exposure group upon jet fuel exposure. Stepwise variable selection was used to determine

final regression models, with α = 0.10 as the inclusion level for predictors. The basic

multiple linear regression model was as follows:
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(1)

where Yi is the natural log-transformed total NKA level measured in the ith worker’s tape-

strip samples; α is the intercept; Xij represents the ith worker’s jth dermal naphthalene level;

Cik represents the kth covariate value for the ith worker based on work diary and

questionnaire, including exposure duration, job task, PPE, age, gender, and smoking status,

as well as metabolic genotypes CYP2E1, GSTM1, GSTT1, and NQO1.

A second multiple linear regression analysis was used to investigate the relationship

between the urine biomarkers and the total NKA levels as well as the contribution of the

covariates also analyzed in model 1. Again, the models were constructed separately for all

workers and for the a priori determined high-exposure group only. The basic multiple linear

regression model was as follows:

(2)

where Yi is the natural log-transformed urine biomarker level, measured in the ith worker’s

urine samples; α is the intercept; Xij represents the ith worker’s jth total NKA level; Cik

represents the kth covariate value for the ith worker, which included exposure data, PPE,

metabolic genotypes CYP2E1, GSTM1, GSTT1, and NQO1, age, ethnicity, gender, and

smoking status. Collinearity was examined for all models using variance inflation, condition

indices, and eigenvalues. Possible outliers were examined by studentized residuals.

Results

No significant correlation was observed between the total NKA levels and various exposure

measures (i.e. dermal, breath, and breathing-zone naphthalene levels) or with the urine

1NAP, 2NAP, or TNAP levels with the exception of urine naphthalene level (Pearson

correlation r = 0.184, p = 0.061) (Table 1).

The association between biomarker levels (i.e. total NKA level and urine 1NAP, 2NAP,

TNAP, or naphthalene level) and the genotype of each of the four genes (CYP2E1, GSTM1,

GSTT1, and NQO1) are presented in Table 2. A significant difference in total NKA level

was observed between individuals with GSTT1-null genotype and those with at least one

copy of GSTT1 gene [GSTT1-plus (++/+−)] (p = 0.080). Individuals carrying NQO1

homozygous variant (TT) also had significantly lower keratin adduct levels than those with

homozygous wild-type (CC) (p = 0.085).

The regression analysis showed that total NKA level was influenced by dermal naphthalene

level (lndermal), duration of exposure on the sampling day (exposure duration), and age

(Table 3). The dermal naphthalene level and the age of the worker were inversely associated

with total NKA level, while exposure duration increased total NKA levels. When we

investigated the factors related to workers assigned into the a priori high-exposure group
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only (n = 68), these same three predictors as for all workers were observed to be significant

(Table 3). None of the four metabolic genotypes were observed to be significantly

associated with total NKA level in either multiple linear-regression analysis when other

significant covariates were included in the models.

Based on the Pearson correlation results (Table 1), a second regression model was

constructed using urine naphthalene as the outcome variable. The significant predictors for

urine naphthalene levels were total NKA level, post-exposure breath naphthalene level

(lnpost-breath), CYP2E1*6 DD (wild type) genotype, presence of one or both copies of

GSTT1 gene (++/+−), and gender (Table 4). The total NKA level, post-exposure breath

naphthalene level, and male gender were associated with an increase in the urine

naphthalene level, while the CYP2E1*6 DD genotype and the presence of one or both copies

of GSTT1 gene (++/+−) were associated with a decrease in urine naphthalene level. When

this analysis was limited to the workers in the a priori high-exposure group (n = 64), 24.5%

of the total variance in the urine naphthalene level was explained by the total NKA and post-

exposure breath naphthalene levels as well as presence of GSTT1 genotype.

Discussion

Previously, we demonstrated the human skin’s capacity to express enzymes for xenobiotic

metabolism and to form NKAs in response to naphthalene exposure (Kang-Sickel et al.

2008; Kang-Sickel et al. 2010). We also demonstrated that these adducts can be

quantitatively measured in the exposed skin of workers, facilitating naphthalene exposure

assessment, particularly in regard to the dermal route (Kang-Sickel et al. 2008; Kang-Sickel

et al. 2010). In addition, inhalation and dermal exposure were identified as significant

factors contributing to the total systemic dose of naphthalene, measured as urine naphthol

levels, in workers exposed to jet fuel (Serdar et al. 2004; Chao et al. 2006; Kim et al. 2007).

Similarly, urine naphthalene was identified as a biomarker for both dermal and inhalation

exposure to polycyclic aromatic hydrocarbons (PAHs) (Campo et al. 2009; Sobus et al.

2009a; Sobus et al. 2009b).

Here, we examined the relationship between the total skin NKA levels and urine biomarkers

of naphthalene exposure, as a surrogate for JP-8 exposure. We observed a significant

correlation between total NKA and urine naphthalene levels (r = 0.184, p = 0.061) but not

between total NKA and breath naphthalene or urine naphthol levels. Jet fuel workers who

entered and worked in the fuel tanks were equipped with in-line respirators and cotton

coveralls. In this study, 75% of the fuel-cell maintenance workers (79/105) wore full-face

supplied-air respirators. Thus, the principal route of contact and exposure to naphthalene is

expected to be dermal. The NKA in the skin are formed via metabolism in the suprabasal

layer of the skin (Kang-Sickel et al. 2010) and manifested after the processes of keratinocyte

maturation, proliferation, differentiation, and migration to the surface of stratum corneum,

which take approximately 28 days (Junqueira & Carneiro 2005; Furukawa et al. 2008).

Since each tape-strip removes approximately 1 layer of stratum corneum (i.e. three

sequential tape-strips remove approximately three layers) and based on the average

keratinocyte maturation and differentiation processes for a healthy individual, the measured

total NKA levels reflect dermal exposure that occurred approximately 3–4 weeks prior to

Kang-Sickel et al. Page 8

Biomarkers. Author manuscript; available in PMC 2014 September 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



sampling. Once naphthalene is metabolized into reactive naphthalene-1,2-oxide and the

keratin adduction occurred in the skin, the intermediate reactive metabolites do not go

through the nonenzymatic rearrangement and enter the system circulation as 1NAP or 2NAP

to be further metabolized or excreted. If the individual’s metabolic capacity in the skin

became saturated, excess naphthalene would appear in the blood and enter the systemic

circulation (Kim et al. 2006a, Kim et al. 2006b). Distribution would favor the kidneys due to

the rates of perfusion. Metabolism of naphthalene could occur in the kidney cortex and outer

medulla. Urine 1NAP and 2NAP levels reflect metabolism in both the epidermis and the

kidney and, to a lesser extent, the liver. Exhaled or urine naphthalene levels observed at the

end of the workday reflect the total excess naphthalene in the systemic circulation.

Therefore, the stronger associations for the parent compound (naphthalene) than for

naphthol metabolites in urine suggest that the levels of dermal exposure exceeded the skin’s

capacity to metabolize naphthalene.

The lack of association between the skin NKA levels and the breath naphthalene or urine

naphthol levels is likely due to the fact that the inhalation exposure to jet fuel was

overestimated (75% of the workers uses in-line respirators) and, thus, the relative

contribution of dermal exposure to the systemic exposure was increased. This lack of

association may also be partially due to the differences in the biological half-lives of parent

compound and its metabolites in different tissues/organs, and their representations of

different exposure windows (Ruchirawa et al. 2002). For example, the half-life of

naphthalene in breath is estimated to be 22 min (Egeghy et al. 2003), while half-lives for

urine naphthols are 1.2–4.6 h in a rapid phase, and 14–46 h in a slow phase (Bieniek 1994;

Heikkila et al. 1995).

Our results indicating the lack of correlation between breath and urine biomarkers and skin

protein adducts is supported by previously published studies on various urine biomarkers

and protein adduct levels in regard to PAH exposure. Omland et al. (1994) observed no

correlation between the levels of benzo(a)pyrene-albumin adducts and 1-hydroxypyrene (1-

HP), a urinary biomarker for PAH exposure, in iron foundry workers. No correlation was

observed between 1-HP and DNA or serum protein adducts in traffic police in Bangkok and

Thailand, in Danish foundry workers, in Hungarian aluminum plant workers, or in Danish

bus and postal workers, and garage workers (Sherson et al. 1992; Nielsen et al. 1996; Autrup

et al. 1999; Schoket et al. 1999; Ruchirawa et al. 2002). In addition, in our study the

exposure intensity from one-day measurements may not have represented the exposure that

occurred during the past 20–28 days, as measured by the keratin adduct levels, that the

worker experienced. Therefore, the potential for this lack of correlation was expected.

Using multiple linear regression models in order to consider both environmental and genetic

factors, we observed that the total NKA levels measured in the skin of fuel-cell maintenance

workers were positively associated with exposure duration but inversely associated with the

measured dermal naphthalene level and age. Interestingly, we observed previously that

exposure duration was associated with lower dermal naphthalene level (Chao et al. 2005).

According to our study protocol, the subjects were to work for 4 h and then return to the

examination station at the end of the work shift. Thus, the exposure duration was defined as

the time between starting work and dermal sampling. Due to the lag-time between exposure
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and dermal sampling as well as the relatively fast dermal penetration rate of naphthalene, as

duration of exposure increased, more naphthalene was absorbed into the stratum corneum,

and metabolized by keratinocytes to form keratin adducts. Thus, less naphthalene remained

on the surface of the stratum corneum for sampling by tape-stripping.

Based on the coefficient of age on the total NKA level (−0.019 for all workers and −0.022

for high-exposed group; Table 3), the data suggest an approximate 2% reduction of

naphthalene metabolisms in skin with each year of age increase in this subject population.

This finding is consistent with a 3% reduction in naphthoquinone-albumin adduct level, and

2% reduction in 1,4-benzoquinone-albumin adduct level per year of increase in workers

exposed to PAHs (Rappaport et al. 2002; Waidyanatha et al. 2004b). Experimental evidence

also suggests that percutaneous absorption of some chemicals decrease with increasing age

(Christophers & Kligman 1965; Tagami 1972; Roskos et al. 1989). This change may be due

to the lower water and lipid contents in aged skin compared to young skin, which may

account for decreased skin permeability (Blank & McAuliffe 1985) and partitioning of

exogenous chemicals into the stratum corneum.

Because naphthalene is metabolized by phases I and II enzymes (Buckpitt et al. 2002; Preuss

et al. 2003; Waidyanatha et al. 2004a), we examined the effects of four metabolic genotypes

(CYP2E1, GSTM1, GSTT1, and NQO1) on the measured total NKA levels in the skin and on

the urine biomarker levels (Table 2). We also examined the effects of these genotypes on the

total NKA (Table 3) and the urine naphthalene levels (Table 4) using linear regression

modeling by considering both personal and environmental factors.

Higher levels of DNA adducts and urine naphthols have been observed in GSTM1-null in

comparison to the GSTM1-plus individuals who were exposed to PAHs (Yang et al. 1999;

Lee et al. 2001; Pavanello et al. 2008). However, our results indicated that GSTM1 was not a

significant contributing factor for keratin adduct or urine biomarkers levels (Table 2). In

addition, GSTM1 genotype was not observed to have an effect on dermal exposure, as

measured by keratin adduct levels (Table 3), or systemic dose, as measured by urine

naphthalene levels (Table 4), when other significant factors were accounted for in the

multiple linear regression analyses.

Our results showed that individuals with GSTT1-plus (++/+−) genotype had significantly

higher total NKA levels than the GSTT1-null individuals (p = 0.080) (Table 2). However,

the effects of GSTT1 became insignificant in regard to total NKA levels once other personal

and environmental factors were considered in the linear regression model (Table 3).

Interestingly, GSTT1-plus (++/+−) genotype was negatively associated with the urine

naphthalene levels in the linear regression model (Table 4). No significant association

between GSTT1 genotype and naphthalene metabolism has been observed (Lee et al. 2001;

Nan et al. 2001). In other studies, individuals with GSTT1-null genotype were observed to

have higher risk for benzene toxicity (Wan et al. 2002) and bladder cancer (Hung et al.

2004). On the contrary, Garte et al. (2007) observed a protective effect due to GSTT1-null

genotype in regard to DNA damage. Our results and the conflicting data in the scientific

literature indicate the lack of understanding of the involvement of GST in naphthalene

metabolism and the complexity of investigating individual susceptibility factors in the
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context of environmental/occupational exposure. The effect sizes of the personal and

environmental factors, such as exposure duration and dermal naphthalene level, may

outweigh the effect associated with these metabolic genotypes. A single polymorphism may

have only a weak effect, while susceptibility may be derived from effects of multiple genes,

and the interaction from genes and the environment (Hung et al. 2004).

The second multiple linear regression model showed that urine naphthalene level increased

as the total NKA and post-exposure breath naphthalene levels increased (Table 4). This

observation also suggests that jet fuel exposure was sufficient to saturate the body’s

metabolic capacity since more naphthalene is being excreted without being metabolized.

The induction of CYP2E1 is known to increase the formation of naphthols from

naphthalene, and the polymorphisms in this gene are associated with urine 2NAP levels in

Korean coke oven workers, who were exposed to PAHs via both inhalation and dermal

routes (Wilson et al. 1996; Nan et al. 2001). Therefore, the inverse association between

CYP2E1*6 wild-type (DD) and the urine naphthalene levels was expected. Interestingly, the

same association was not observed in the model constructed with a priori high-exposure

group. It is possible that in the high-exposure group, the metabolic capacity of CYP2E1 had

been reached, which prevented observation of a significant effect of its genotypes on urinary

naphthalene levels in this subject population.

In conclusion, this is the first study to investigate the contribution of both environmental and

genetic factors in regard to the formation of skin keratin adducts and the relationships

between total NKA levels and other JP-8 exposure biomarkers in occupationally exposed

workers. Only naphthalene through dermal route of exposure can induce formation of NKAs

in the skin (i.e. these adducts are route-specific indicators of exposure; inhalation exposure

will not contribute to the formation of these adducts). Therefore, quantitation of naphthyl-

keratin protein adducts in the skin of jet fuel-exposed individuals allows us to investigate the

importance of dermal exposure, penetration, metabolism, and adduction of naphthalene and

to predict more accurately the contribution of chronic dermal exposure to total body burden

for use in exposure assessment models. The total NKA levels were affected by both the

work scenarios and extrinsic and intrinsic personal factors, and were associated with the

urine naphthalene levels, indicating their potential as quantitative biomarkers of dermal

exposure. In addition, this novel dermal exposure biomarker represents the past exposure

that occurred 20–28 days prior to sampling, and can be utilized in exposure assessment for

other common PAHs and environmental pollutants. Further studies are needed in regard to

the relationship between skin NKAs, biological effect markers, and JP-8 health effects to

further explore the potential application of these adducts as biomarkers of naphthalene

exposure and related health effects.
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Table 1

Pearson correlation coefficients (r) between the total skin NKA levels [ln(ng adduct/μg keratin)] and the

exposure and biomarker levels observed in the fuel-cell maintenance workers exposed to jet fuel.

Exposure or biomarker n Pearson correlation (r) p-value

Dermal naphthalene (ng/m2) 105 −0.038 0.704

Pre-exposure breath naphthalene [ln(ng/m3)] 103 0.149 0.133

Post-exposure breath naphthalene (ng/m3) 101 0.038 0.707

Breathing-zone naphthalene [ln(ng/m3)] 100 0.043 0.668

Urine 1NAP [ln(μg/L)] 104 0.080 0.418

Urine 2NAP [ln(μg/L)] 104 0.012 0.907

Total urine naphthols [ln(μg/L)] 104 0.033 0.740

Urine naphthalene [ln(μg/L)] 104 0.184 0.061

Note: n = number of fuel-cell maintenance workers.
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