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Abstract

Genome wide complex trait analysis (GCTA) is extended to include environmental effects of the

maternal genotype on offspring phenotype (“maternal effects”, M-GCTA). The model includes

parameters for the direct effects of the offspring genotype, maternal effects and the covariance

between direct and maternal effects. Analysis of simulated data, conducted in OpenMx, confirmed

that model parameters could be recovered by full information maximum likelihood (FIML) and

evaluated the biases that arise in conventional GCTA when indirect genetic effects are ignored.

Estimates derived from FIML in OpenMx showed very close agreement to those obtained by

restricted maximum likelihood using the published algorithm for GCTA. The method was also

applied to illustrative perinatal phenotypes from ∼4,000 mother-offspring pairs from the Avon

Longitudinal Study of Parents and Children. The relative merits of extended GCTA in contrast to

quantitative genetic approaches based on analyzing the phenotypic covariance structure of

kinships are considered.
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Background

The recent history of human quantitative genetics has witnessed a remarkable convergence

between views of complex trait genetics emerging from approaches that rely on comparing

phenotypic resemblance between relatives sharing different degrees of genetic relatedness

(see e.g. Fisher 1918; Mather and Jinks 1982; Falconer and McKay 1996) and those made

possible by direct characterization of genetic variation at the genomic level, notably genome

wide association analysis (GWAS) and genome wide complex trait analysis (GCTA, Yang

et al. 2010, 2011a, 2011b). Although there are qualifications and nuances that reflect the

relative strength and weaknesses of these two paradigms, their common heuristic recognizes

that the heritable contribution to individual differences in quantitative traits reflects the

cumulative action of variation at large numbers of genetic variants of small individual effect,

widely dispersed across the genome. Such astonishing convergence of quite different

approaches may provide historians and philosophers of science with a model system to

illustrate theories of scientific progress and controversy in biology.

Genome wide complex trait analysis has played a central role in facilitating the convergence

of classical biometrical genetics and recent genomic approaches to polygenic inheritance.

GCTA uses genome-wide genetic identity by state between SNPs in apparently unrelated

pairs of individuals to estimate the degree of genetic relatedness between pairs. In large

samples of such pairs, small variations in the degree of relatedness around the expected

value provide the information to estimate the contribution of genetic factors (currently

“additive genetic effects”) to the outcome phenotype.

In the past, the application of genetics to human behavior has stimulated the development of

quantitative methods to address the consequences of the prolonged developmental interplay

between the human genome and ecosystem resulting from family structure and social

behavior, language and learning. Such extensions of the human phenotype (c.f. Dawkins

1989) create a variety of effects of genes on behavior that have not been captured by the

classical focus of human quantitative genetics on estimating the direct additive contribution

of polygenic effects on the behavioral phenotype (e.g. Cavalli-Sforza and Feldman 1973;

Eaves 1976; Cloninger et al. 1979; Truett et al. 1994).

The recent application of GCTA to human behavioral traits (e.g. Trzaskowski et al. 2013)

challenges behavior-geneticists once more to examine how the basic approach of GCTA

may be extended to test for, and estimate, the contributions of such indirect effects of the

human genotype.

This paper represents one attempt to extend the dialogue between the classical quantitative

genetic approach to the subtleties of genetic effects based on analysis of the correlations

between relatives and the relatively novel approach of GCTA. In particular, we consider
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how GCTA might be extended to include the environmental effects of the maternal genotype

as well as those of offspring on offspring development (M-GCTA). “Maternal effects arise

when the mother makes a contribution to the phenotype of her progeny over and above that

which results from the genes she contributes to the zygote” (Mather and Jinks 1982, p. 301)

and are likely to be especially important for traits measured early in development. Maternal

effects may be mediated through a number of mechanisms including the effect of the

maternal genotype on the cytoplasm she contributes to her children, the quality of nutrition

she provides before and after birth or the quality of the learning environment she provides

for her children. Our model focuses on the effects of the maternal nuclear genotype and does

not consider mitochondrial inheritance.

Maternal effects have long been recognized as a component of quantitative genetic systems

in experimental and commercial plant and animal species (e.g. Mather and Jinks 1982;

Meyer 1989; Falconer and McKay 1996) and most of the models applied in humans are

merely extensions of these to specific human family structures such as those derived from

kinships involving twins and their relatives. In classical twin studies such effects contribute

to estimates of the “shared environment” and, inter alia, inflate the correlations of maternal

half-siblings relative to those of paternal half siblings. There is an extensive theoretical and

empirical literature on modeling maternal effects in human kinships and resolving them

from the direct effects of the offspring genotype. Such models have been especially

important in resolving the contributions of maternal and fetal genotype to pre- and peri-natal

outcomes (Corey and Nance 1978; York et al. 2009, 2010, 2013). Our extension of GCTA to

include the effects of the maternal genotypes builds on much of this classical work.

We outline and illustrate the approach to dyadic outcomes measured in studies where

genome-wide SNP data have been collected from large samples of unrelated mother-

offspring pairs. In theory, the same approach may be developed further to the multivariate

case, and to incorporate the indirect effects of other relatives such as fathers and siblings.

We show how such maternal effects might be resolved from the direct effects of the

offspring's own genotype. Typically, correct estimation of genetic and environmental

components of family resemblance depends on correct specification of the underlying

model. Misspecification, for example by omission of salient model parameters, often results

in biased estimates of remaining effects. We examine the extent to which estimates of

genetic variance obtained in conventional GCTA are biased if indirect genetic effects, such

as those of the maternal genotype, are ignored. We also indicate some potential limitations

of the approach and indicate some areas for further inquiry.

There is an extensive theoretical and empirical literature on modeling maternal effects in

human kinships and resolving them from the direct effects of the offspring genotype. Such

models have been especially important in resolving the contributions of maternal and fetal

genotype to pre- and peri-natal outcomes (Corey and Nance 1978; York et al. 2009, 2010,

2013). Our extension of GCTA to include the effects of the maternal genotypes builds on

much of this classical work.
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Basic components of variance model for maternal effects

The simple linear model, ignoring non-additive genetic contributions, sex differences in

gene expression, non-random mating, GxE interaction, other indirect genetic effects such as

those of fathers and sibings, and correlated errors, partitions the phenotypic variance among

individuals, V, as follows:

(1)

where G is the additive genetic variance due to the direct effects of genetic differences on

the phenotype, M is the “environmental” variance due to the indirect effects of the maternal

genotype on offspring phenotype (“maternal effects”) and E is the variance due to (random,

residual, individual-unique environmental effects). Parameter Q will be zero if there is no

net genetic correlation between the direct and indirect effects, for example if different loci

contribute to maternal and fetal genetic influences. Q may differ significantly from zero

(positive or negative) if the direct effects of genes on the individual phenotype are correlated

with indirect effects of the maternal genotype (“genotype-environment covariance”, see path

model below). Haley et al. (1981) distinguish “one character” from “two character” models

for maternal effects. The “two character” model implies that different SNPs contribute to G

and M so that there is no correlation between the direct and indirect maternal effects (Q = 0).

The “one character” model implies that the same genes contribute to direct and indirect

effects so that Q ≠ 0. More generally, some genes may have both direct and indirect effects

and some genes may contribute only to direct or maternal effects and thus combine elements

of the one- and two-character models of Haley et al.

Within the classical quantitative-genetic paradigm, estimation of G, M and Q depends on

measuring constellations of collateral and inter-generational relationships whose covariances

reflect different contributions of direct and indirect effects. For outcomes that depend

markedly on age, such as pre- and peri-natal outcomes or assessments of early development,

studies have focused on the phenotypes of collateral relatives such as offspring related

through mothers of different degrees of genetic relationship, e.g., maternal and paternal half

siblings and offspring of male and female twins and siblings (Corey and Nance 1978; York

et al. 2009, 2010, 2013). Although such approaches can estimate direct (G) and maternal

effects (M + Q), instances where intergenerational phenotypic data are not available

preclude the resolution of maternal effects (M) from those of genotype-environmental

covariance (Q). Extension of the kinship study to include intergenerational data (such as

parent-offspring and avuncular data) can, in theory, resolve a variety of direct and indirect

effects (see e.g. Truett et al. 1994) but such designs are prone to bias from the interaction of

genetic effects with intergenerational age and environmental differences.

Basic components of variance model in GCTA

The basic GCTA formulation assumes M = Q = 0 and reduces (1) to:

(2)
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where G is the additive genetic variance, and E the residual (unique environmental)

variance. The covariance, Wij between individuals i and j is expected to be βijG where βij is

the genetic correlation between individuals i and j. In the usual quantitative genetic approach

the genetic correlation is obtained theoretically from the expected degree of genetic

relatedness between pairs of relatives that share a known degree of common ancestry based

on pedigree structure. In GCTA the genetic relatedness is estimated empirically from

identity by state inferred from the pattern of similarity in genome-wide SNP patterns

between biologically unrelated individuals. The regression of intra-pair phenotypic

variances, Δij, on values of βij over large numbers of unrelated pairs from population-based

samples is expected to be a function of the (narrow) heritability of individual differences in

the phenotype that is captured from SNPs using currently available genotyping platforms

Full details of the basic GCTA model, estimation of the βij, from genome-wide SNP data are

given in, e.g., Yang et al. (2011a) who provide an efficient algorithm for REML estimation

of the variance components and a number of ancillary analyses, including partitioning the

genetic variance, G, into the additive contributions of separate chromosomes, including the

X chromosome thus:

(3)

where Σ is the expected phenotypic covariance matrix among the N unrelated individuals in

the sample, Bi is the N × N matrix of the empirical estimates of the genetic relatedness based

on SNPs on the ith chromosome and Gi is the additive component of genetic variance

contributed by loci on the ith chromosome (Yang et al. 2011b). Yang et al.'s algorithm

provides a platform for the rapid estimation of the Bi from the SNP data on each

chromosome and REML estimation of the genetic and environmental components of

variance, Gi and E.

Extending GCTA to include indirect effects of the maternal genotype (“M-

GCTA”)

The basic elements of the model follow those of the classical “biometrical genetic” model

for the effects of maternal and offspring genotypes on quantitative phenotypes (see

introduction above). Such models have been implemented in extended animal pedigrees and,

most recently, have been applied by York et al. (2010, 2013) to gestational age in large

samples of Swedish and American births from female twin, sibling and half-sibling mothers

and the spouse of male twins, sibling and half-siblings.

The basic M-GCTA model (Fig. 1) assumes additive gene action (i.e. no dominance,

epistasis, or mother-fetal genetic incompatibility), random mating, and autosomal

inheritance with no sex-differences in gene effect.

Following the convention of path analysis, the measured phenotype (P) is shown as a square

and the hypothetical latent causal variables denoted by circles. Latent variables are the

random residual effects of the environment (E) operating through causal path (one-headed

arrow) “e” and two sources of genetic variation —“fetal” genetic effects that contribute
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directly to the phenotype of the offspring (GCC) through the causal path “h” and “maternal”

genetic effects that, when expressed in the mother have an indirect “environmental” effect

on the offspring phenotype through path “m”. The figure shows that the two sets of genes

are present in both mothers and offspring (GMM and GMC) for genes having “indirect”

maternal effects and (GCM and GCC) for genes having “direct” fetal effects. We note that

although the genes contributing maternal and fetal effects are independent within individuals

they are correlated (on average 0.5) between mothers and their children (denoted by the

double-headed arrow in Fig. 1). An additional feature of the M-GCTA model that has

implications for its implementation in GCTA is the fact that the genes contributing to the

indirect maternal effect when present in the mother (GMM) may also exercise a direct effect

when present in the fetus (GMC) through the causal path “c” in the Figure. The possibility

that the “maternal” genes may also have a direct effect in the offspring vitiates any attempt

to implement the estimation of maternal and fetal genetic effects by two stages in GCTA and

requires the classical biometrical genetic model using information on the genetic

relationship between pairs of mothers and pairs of children simultaneously to estimate the

paths h,m,c and e (or their corresponding variance components h2, c2, m2 and e2). Haley and

Jinks “one character” model for maternal effects implies that h = 0, i.e. that there are no

genes affecting offspring directly that do not also have an indirect maternal effect. Their

“two-character” model implies that c = 0, i.e. that quite different sets of genes contribute to

direct and indirect effects on the offspring phenotype.

Figure 2 shows how this basic model (Fig. 1) extends to the general case of two mother–

child pairs (i and j) from a study of “unrelated” families characterized by genome-wide SNP

data on mothers and singleton children. It is critical to recognize that the correlations (α, β

etc.) between the latent genetic variables are assumed to be estimated without bias or error

from identity by state of relatives for the genome-wide SNP data. This may not be the case,

and estimates of maternal and offspring genetic variance components will be biased if the

genetic correlations for the effects of variants affecting the phenotype are not those

estimated from the SNPs because, for example, they are not in perfect linkage

disequilibrium (see e.g, discussion by Yang et al. (2011b) in the context of classical GCTA).

We define: αij = αji = ε(A) = the coefficient of relat-edness (estimated from the SNPs)

between the mothers of the ith and jth mother–child pairs; βij = βji =ε (B) = the coefficient of

relatedness between the children of the ith and jth mother–child pairs; δij = ε(D) = the

coefficient of relatedness between the ith mother and the jth child (δii = γi in Fig. 2).

From these matrices we can construct G, the matrix of genetic relationships between the

maternal and genetic components of mothers and offspring. The structure of this partitioned

matrix is summarized in Table 1. Note that, for clarity, the table partitions the SNPs of

mothers and children explicitly into those that contribute to direct and indirect effects (since

children also carry but might not express the genes that contribute to indirect effects and

vice versa). However, the component genetic relatedness matrices, A, B and D may be

estimated empirically from the genome-wide SNP data in actual mother–child pairs using

the approach of Yang et al. (2011a) on the assumption that the genes having direct and

indirect effects are not clustered differently across the genome.
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Expected variances within, and covariances between, dyadic phenotypes

of “unrelated” mother-offspring pairs

The phenotypic value of the offspring in the ith family is:

(3)

(MMi) is the ith mother's deviation for her indirect maternal genetic effect on her child.

(CCi) is the ith child's deviation for his/her direct offspring genetic effect on the phenotype.

(MCi) is the deviation of the ith child for the influence of genes that contribute to both

indirect genetic influences when present in the mother and direct genetic effects when

expressed in the child (c.f. Fig. 2).

For simplicity we assume that the variances of the latent genetic components are all unity

(true on average in the absence of inbreeding). This assumption can be relaxed without

affecting the main thrust of the argument.

The covariance between offspring in the ith and jth families is expected to be (c.f. Wright

1921):

(4)

which becomes 1 = m2 + (c2 + h2) + mc when i = j since aii ∼ 1, βii ∼ 1 and δii ∼ ½. Writing

M = m2, G = (c2 + h2) and Q = mc, (4) may be written in matrix form to yield the linear

structural model for the expected phenotypic covariance matrix between N subjects:

(5)

The analogy between (5) and the linear structural model for the additive genetic contribution

of multiple chromosomes in GCTA (Eq. 2, above, Yang et al., 2011b) is clear and suggests

that the current GCTA algorithm may be adapted to the current application to estimate

indirect genetic effects. Matrices A and B are defined above and Δ = D + D′. A, B and D can

be extracted from the joint mother–offspring genetic relatedness matrix computed from the

genome-wide SNPs of mothers and children simultaneously using GCTA software.

Application to simulated data

The model parameterized in Fig. 2 and Eq. (5) was implemented in a series of simulations

designed to prove the principle of extending GCTA to include indirect genetic effects and to

examine the consequences of ignoring indirect genetic effects in classical GCTA. To

minimize complications, we simulated relatively small samples of subjects (N = 1000 pairs

of mothers and offspring) with a total of 200 SNPs that explained all of the direct and

indirect genetic effects (G and M) and their covariance (Q). The 200 genes were apportioned

variously into those having only direct effects, only maternal effects or both direct and
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indirect effects. The model assumed that all genetic effects were additive (i.e. heterozygotes

at the SNPs were intermediate between their corresponding homozygotes) and no interaction

between maternal and offspring genotypes. To maximize the transparency of the conceptual

and methodological conclusions, we assumed that increasing allele frequencies were all

high, uniformly distributed between 0.4 and 0.6, and all increasing allele effects were large,

U[0.45,0.55], for all variants that contributed to direct and/or indirect effects. For example,

in the simulation of model 4 (see Table 2 below) SNPs 1–125 were assumed to have direct

effects on the phenotype when present in the offspring and SNPs 76–200 were assumed to

contribute to maternal effects. Thus, 75 SNPs (1–75) had offspring-specific effects, 75 (126–

200) contributed only to maternal effects, and 50 SNPs (76–125) contributed both to

maternal and offspring effects.

The simulations and analyses of simulated data were conducted in R on a 2.3 GHz Intel

Core i7 processor with 8 GB 1,333 MHz DDR3 memory. Genetic relatedness matrices, A, B
and Δ = (D + D′) were computed from the pair-wise SNP patterns at the 200 independent

simulated SNPs in mothers and offspring using the formulae provided by Yang et al.

(2011a). Full information maximum-likelihood estimation of the population mean (l) and

components of variance, G, M, E and the genotype-environment covariance, Q, was

conducted for the 1,000 simulated subjects in OpenMx (Boker et al. 2011, 2012). Code for

the simulations and OpenMx estimation can be obtained from the corresponding author.

Typically, ML estimation in OpenMx required about 2 min for each model with these data

dimensions. Although the implementation of FIML in OpenMx can handle larger samples

(e.g. 5,000 mother– child pairs) on more powerful systems, the CPU time required is

currently prohibitive (Neale, 2013, personal communication). For the illustrative examples

with real data we implemented the model in Yang et al's (2011a) software for classical

GCTA by adapting their linear model for our application to resolve G, M, Q and E

Application to real data

We were also interested in how M-GCTA might perform on “real” data derived from a

genome-wide association study of mothers and children. The Avon Longitudinal Study of

Parents and Children (ALSPAC) is a population-based birth cohort study consisting of

14,541 women and their children recruited in the county of Avon, UK, in the early 1990s

(Boyd et al. 2013; Fraser et al. 2013). Both mothers and children have been extensively

followed from the eighth gestational week onwards using a combination of self-reported

questionnaires, medical records and physical examinations. Biological samples including

DNA have been collected from the participants. Ethical approval was obtained from the

ALSPAC Law and Ethics Committee and relevant local ethics committees, and written

informed consent provided by all parents. The study website contains details of all the data

that is available through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/

researchers/data-access/data-dictionary).

We applied our method to two phenotypes from AL-SPAC, maternal self reported stature,

and birth length (crown-heel length) of the new-born infant. Stature is a paradigm of

polygenic inheritance in both classical (e.g. Fisher, 1918) and GCTA approaches (see e.g.

Yang et al., 2010) to the genetic analysis of continuous human variation. Mothers' height
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should be independent of child's genotype given her own genotype so analysis of maternal

stature provides a “positive control” for the method (i.e. we should find a large maternal

genetic variance component and no offspring genetic variance-similar to Model 3 in the

simulations). Conversely, crown-heel length is a perinatal outcome that might be expected to

be influenced by both child's genotype and mother's genotype via environmental effects in

utero. Maternal self-reported height was determined by postal questionnaire at 12 week

gestation. Birth length was measured by ALSPAC staff using a Harpenden neonatometer

(Holtain Ltd., Crymych, United Kingdom). Birth length was inverse normal transformed

before analysis.

ALSPAC mothers and children were genotyped on the Illumina 660 and 550 K SNP chips

respectively. Geno-typing and data cleaning protocols have been described extensively

elsewhere (Evans et al. 2013; Fatemifar et al. 2013). Mothers' and children's datasets were

cleaned independently yielding 8,365 unrelated individuals in the children's dataset and

8,340 individuals in the mothers' dataset. Combining the two datasets yielded 5,504 mother

offspring pairs (the reduced number of complete pairs is a consequence of the fact that

individuals were excluded independently from either dataset during cleaning, thus yielding a

high number of “singleton” mothers and children). The presence of cryptically related

individuals within a GCTA analysis can disproportionately influence estimates of the

amount of genetic variance explained by common SNPs (Yang et al. 2010). We therefore

removed one individual from each pair of putatively related individuals on the basis of the

maternal genetic relatedness matrix (related defined here as having standardized genome-

wide IBS > 0.025), did the same for the children's genetic relatedness matrix, and similarly

one individual from each pair of putatively related individuals from the matrix of mother-

offspring genetic relatedness matrix (i.e. children that exhibited excessive relatedness with

mothers not their own). This yielded a combined dataset of 4,625 mother–offspring pairs for

analysis. Of these pairs, 4,163 had data on maternal height, and 3,536 had data on birth

length.

The pedigree file containing the genotype data was arranged so that mothers were ordered

according to personal identifier, and their offspring were placed below them in exactly the

same order. We used the GCTA software to estimate the genetic relationship between each

individual in the dataset (Yang et al. 2010). The top left quadrant of the matrix produced by

this analysis is equivalent to the genetic relationship matrix describing the relationship

between mothers (i.e. the A matrix defined in the previous section), the bottom right

quadrant represents the genetic relationship matrix between children (the B matrix), and the

lower left matrix plus its transpose represents the Δ matrix. We extracted these components

of the overall genetic relationship matrix and used them to fit a linear mixed model in the

GCTA software.

Results

Table 2 summarizes the simulation results for four contrasting data sets: (1) all the genes

have only direct genetic effects (G); (2) half the genes have only direct effects (G), half have

only indirect, maternal, effects (M) and none have effects on both (Q = 0); (3) all the genes

have indirect maternal effects only (M); (4) 75 genes have direct effects only, 75 have only
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maternal effects, and 50 have both direct and maternal effects. The fact that effect sizes were

chosen to be deliberately large compared with those of the residual environment means the

simulated findings are obviously consistent with the theory developed above. In each case

the “best” model based on parsimony and likelihood-ratio Chi square is that used to simulate

the data and the estimated variance components correspond well to those used to simulate

the corresponding data set.

Parallel analysis of the simulated “Model 4” example confirmed that estimates of model

parameters and test statistics obtained from OpenMx and Yang et al's software were in very

close agreement (Table 3).

The results from the ALSPAC study (Table 4) agree with the expectation that only the

maternal genotype (M) contributes significantly to variation in maternal stature. Deleting

the contributions of M and Q from the model led to a highly significant change in likelihood

( , P < 10−10) whereas omitting the effects of the offspring genotype (G = Q = 0)

results in a non-significantly worse fit ( , P = 38 %). The estimate of the genetic

variance in maternal stature is 0.72 ±0.11 which is larger than the value (0.45) reported for

stature by Yang et al. (2010) in GCTA of stature for a sample of 3,925 unrelated individuals.

We attempted to reduce possible influence of extreme values in the ALSPAC data by

excluding 124 mothers with reported values <150 or >180 cm, resulting in a modestly lower

estimate of 0.65 ± 0.12 for the proportion of genetic variance. By contrast to the results for

stature, none of the changes in likelihood for the birth length data reach significance at the 5

% level but the results illustrate what is expected for a trait that is influenced both by

maternal and fetal genotype with different genes contributing to the maternal and fetal

effects (Q = 0). This finding is expected under the “two character” model for fetal and

maternal effects noted by Haley et al. (1981). In this model, the contributions of G and M

approach statistical significance at the 5 % level (one-tail test) and explain 13 and 11 %,

respectively, of the variance in birth length.

Implications, limitations and further directions

The above theoretical treatment, illustrated by two traits with different a priori expectations,

demonstrates how the approach of GCTA can be extended to incorporate the effects of the

maternal genotype on individual differences when genome-wide polymorphisms are

obtained on both mothers and their children. The underlying model is identical to that used

for maternal effects in the analysis of extended kinship studies such as those involving the

children of twins. Application of the model to maternal height and offspring birth length

yield estimates of the maternal and fetal components that are consistent with the a priori

expectation that maternal height is affected only by the maternal genotype and offspring

birth length by both maternal and fetal genotypes, with the added implication that different

genes contribute to the maternal and fetal effects (Q = 0).

The results for Model 4 from the simulated data provide the greatest insight about the

implications of including maternal effects in the GCTA model or, more seriously, of

ignoring them when they are present. First, extending GCTA to include indirect genetic

effects is quite feasible. Our analyses show that including the SNPs of relatives (mothers in
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our case) allows us to resolve indirect effects of relatives' genotypes from direct effects

within the framework offered by GCTA. In theory, M-GCTA is able to resolve effects of the

genotype-environment covariance (Q) from the contribution of maternal effects to

phenotypic variation (M) although we suspect the power will be low. In contrast, the

classical approach based on phenotypic covariances between collateral relatives can detect

the joint effects of M and Q and resolve them from the direct genetic effects, G, but cannot

separate M from Q. Intergenerational data can resolve these effects in theory but they may

be confounded with cohort differences in genetic effects.

That being said, however, the results offer a cautionary codicil to any claim that GCTA

applied to unrelated subjects has supplanted other approaches (e.g. studies of twins and the

kinships of twins) that do not exploit direct genomic information and might be “biased” by

the effects of the shared environment and other factors. We note that an incompletely

specified GCTA model for unrelated subjects that ignores the covariance structure created

by the indirect environmental influences of relatives' genotypes may also contribute to

significant bias on GCTA estimates of genetic variance. Thus, for example, in Model 4

(Table 2), ignoring the indirect effects of the maternal genotype inflates estimates of the

genetic component by more than 60 %. Similarly, if all the variation is due to the indirect

effects of the maternal genotype (Model 3) fitting a misspecified model with M = 0 and G >

0 will yield a positive estimate of G even when the true value of zero. This is not the case in

the classical twin study, maternal effects and the contributions of M and Q contribute to the

estimate of shared environmental effects, C, whereas the effects of G contribute to estimates

of the additive genetic variance component, A. We also note that, in the classical twin study,

the genetic consequences of assortative mating and population stratification are confounded

with estimates of C. The effects of assortative mating on parameters estimated from M-

GCTA, including estimates of maternal effects, have still to be explored.

As with the classical model for maternal effects in quantitative genetics, M-GCTA does not

require explicit specification of the features of the maternal phenotype that mediates the

maternal influence. That is, the detection of maternal effects depends only on demonstrating

that the maternal genotype has an impact over and above its effect through the zygotes of

her offspring. In principle, the univariate model we have developed can be extended to

incorporate the effects of hypothesized mediating variables such as features of the maternal

phenotype. Such developments currently await the provision of more flexible structural

modeling features in the GCTA software or the further evolution of structural modeling

software such as OpenMX to incorporate problems of the dimensions posed by large genetic

relatedness matrices. An interim approach would be the incorporation of maternal features

as fixed covariates in the classical GCTA model. However, this approach suffers from the

problem that fixed covariates may only be error-prone, partial, indices of the latent source of

maternal influence.

All the limitations of GCTA enumerated in the literature apply, mutatis mutandis, to any

extension to maternal effects and the environmental effects of other relatives' genotypes. In

so far as the genetic relatedness coefficients derived from the genome wide SNP data do not

reflect the underlying genetic correlations for the variants contributing to phenotypic

differences, estimates of the genetic components may be biased (Yang et al., 2011b). Further
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theoretical study is needed to discover how far this complication may generate spurious

maternal or offspring effects in models incorporating other genetic effects on the extended

phenotype including environmental effects of other relatives and the genetic causes and

consequences of non-random mate selection. It is evident from our application to ALSPAC

data that power may be low and large samples are likely to be required for this, as for most

other, approaches to the modeling of complex genetic effects in humans.

The current model and analyses do not take into account the effects of population

stratification. In principle, some of the effects might be removed by partialling out the

principal components of population structure as is currently done in standard GCTA. The

extent to which this approach is adequate to deal with stratification in M-GCTA is a subject

for further inquiry, especially if future population studies extend to the inclusion of genome-

wide SNP data on both mothers and fathers of target subjects.

The application of GCTA to maternal effects is likely to be important for the study of early

development but does not exhaust the potential for further theoretical work that includes

other genetic features of the extended phenotype, including the indirect genetic effects of

fathers, spouses, siblings and peers. In the last analysis, each approach and circumstance has

to be viewed in the light of its specific merits and none is likely to be definitive given what

has emerged in the last 50 years about the subtlety of genetic and environmental influences

in kinship studies of behavior and from animal models where maternal and fetal genotypes

may be controlled by breeding and cross-fostering. We hope that the current work will

encourage further theoretical extension of GCTA and its more sophisticated application to

the complexities of human behavior to incorporate genome-wide information from relatives

of primary subjects.
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Fig. 1.
Basic path model for fetal and maternal effects in mother– child dyads. P measured

phenotype (dyadic, influenced by both offspring and maternal genotypes, E random

environment (residual), GMM maternal genotype for loci that have an environmental

(“maternal”) effect on P, GCM maternal genotype for loci that have no environmental effect

on P but have a direct effect when present in offspring (“offspring-specific” effects), GMC

offspring genotype for loci that contribute to the maternal effect, GCC offspring genotype

that affect P directly but do not contribute to the maternal effect (“offspring-specific” genes)
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Fig. 2. Model in Fig. 1 extended to include “unrelated” pairs of mothers and children
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