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Abstract

Bendamustine, a hybrid molecule of purine analog and alkylator, induces cell death by activation

of apoptosis, DNA damage response, and mitotic catastrophe. Entinostat, a selective class I

inhibitor of histone deacetylase (HDAC), exerts anti-tumor activity in various cancer types,

including multiple myeloma (MM). We sought to determine the combinatorial effects of

bendamustine and entinostat on MM cells. Cell growth assays showed that bendamustine or

entinostat inhibited proliferation in a dose-dependent manner, and their combinations

synergistically induced growth inhibition in all MM cells tested. An apoptotic-ELISA and western

blot assays on PARP cleavage and caspase-8 and caspase-3 revealed that bendamustine in

combination with entinostat exhibited a much more potent activity than either agent alone to

promote the MM cells undergoing apoptosis in a dose-dependent manner. Flow cytometric

analysis found that entinostat exhibited distinct effects on cell cycle progression in different lines

and bendamustine mainly arrested the cells at S phase, whereas their combinations dramatically

blocked the S cells entering G2/M phase. Furthermore, studies on DNA damage response

indicated that phospho-histone H2A.X (P-H2A.X), a hall marker of DNA double strand break,

along with phosphorylated CHK2 (P-CHK2) was significantly enhanced by the combinations of

bendamustine and entinostat as compared to either agent alone. These molecular changes were

correlated with the increases in mitotic catastrophe. Collectively, our data demonstrate that

bendamustine in combination with entinostat exhibit potent anti-proliferative/anti-survival activity
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in MM cells via induction of apoptosis and DNA damage response. Regimens consisting of

bendamustine and/or entinostat may represent novel therapeutic strategies against MM.
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1. Introduction

Multiple myeloma (MM) is a plasma-cell neoplasm which is characterized by clonal

proliferation of malignant plasma cells and the symptoms of skeletal destruction, renal

impairment, and hematological dysfunctions [1]. Despite recent progress in understanding

the biology of MM and developing novel agents and strategies, the prognosis of most MM

patients is still poor, and resistance to traditional chemotherapy occurs frequently. A number

of investigators have focused on studying the aberrant signaling pathways in the

pathogenesis of MM and identifying abnormal protein expression involved in these

pathways. Such study gives promise to targeted therapy and drug combination to overcome

resistance [2].

Bendamustine was first synthesized in 1960s in German. Similarly but not the same as other

alkylating agents, bendamustine combines the alkylating activity of the mustard group with

the anti-metabolite activity of the purine analog structure, which makes it have a unique

pharmacological profile. It has been reported that bendamustine has long-lasting DNA

damage action, and can induce apoptosis and mitotic catastrophe and inhibit mitotic

checkpoint. In addition, it does not show cross-resistance with other cytotoxic agents [3]. In

preclinical studies, bendamustine is able to overcome resistance to other alkylating agents

[4], and shows synergistic inhibitory effects with cladribine or rituximab on lymphoma cells

or xenograft models [5,6]. Recent clinical trials have shown that bendamustine combined

with first line agents is safe and effective in the treatment of relapsed and/or refractory

chronic lymphocytic leukemia (CLL) [7], lymphoma [8,9], and MM [10,11], which brings

prospect to explore the therapeutic potential of bendamustine combining with other agents.

Histone acetylation is a major epigenetic modification which regulates gene expression and

affects tumorigenesis in various human cancers, including MM. It is controlled by the

balance between histone deacetylase (HDAC) and histone acetyltransferase (HAT) [12].

HDACs modulate many oncogenes and tumor suppressor genes instead of directly affecting

oncogenesis [13]. In addition, the function of many non-histone proteins is also controlled

by HDACs. In cancer cells, HDACs regulate many biological functions including

proliferation, differentiation, apoptosis and survival by modulating multiple factors in

signaling pathways. Furthermore, higher levels of histone acetylation are found in normal

tissues as compared to tumors, and HDACs are typically overexpressed in tumor cells.

Therefore, HDACs are considered as promising targets for cancer therapy, and several

HDAC inhibitors (HDACi) have been designed to target different types of HDACs [14].

Entinostat (also known as SNDX-275 or MS-275) is a synthetic benzamide derivative which

inhibits class I HDACs. In vitro or in vivo studies demonstrated that entinostat exhibits anti-

tumor activity in multiple solid tumors or hematological malignancies [15]. Our previous
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studies showed that entinostat induces apoptosis via down-regulation of erbB3 expression,

enhances efficacy of trastuzumab, and has potential to overcome trastuzumab resistance in

erbB2-overexpressing breast cancer cells [16,17]. We have also found that entinostat in

combination with melphalan synergistically enhances DNA damage response and apoptosis

in MM cells [18]. In this study, we sought to determine the combinatorial effects of

bendamustine and entinostat on growth inhibition, apoptosis, and DNA damage response in

MM cells, with the hope to develop novel therapeutic strategies against MM.

2. Materials and methods

2.1. Reagents and antibodies

Bendamustine (Cephalon Inc., Frazer, PA) and entinostat (Syndax Pharmaceuticals, Inc.,

Waltham, MA) were dissolved in dimethyl sulfoxide (DMSO) to make a stock solution at

526 mmol/L and 20 mmol/L, respectively. The stock solutions were stored at −20 °C.

The sources of antibodies for western blot were as follows: caspase-3 rabbit mAb (8G10),

caspase-8 mouse mAb (1C12), PARP rabbit mAb, P-Histone H2A.X (Ser139) rabbit

antibody, Histone H2A rabbit polyclonal antibody II, P-CHK1 (Ser345) (133D3) rabbit

mAb, CHK1 rabbit antibody, P-CHK2 (Thr68) rabbit poly-clonal antibody, and CHK2

rabbit polyclonal antibody (Cell Signaling Technology, Inc., Beverly, MA); β-actin mouse

mAb (clone AC-75) (Sigma Chemical Co., St. Louis, MO). All other reagents were

purchased from Sigma unless otherwise specified.

2.2. Cells and cell culture

Human MM cell line U266 was purchased from the American Type Culture Collection

(ATCC, Manassas, VA). Human MM cell line MM1.S and MM1.R [19] were kindly

provided by Dr. Steven Rosen (Robert H. Lurie Comprehensive Cancer Center,

Northwestern University, Chicago, IL). All cell lines were maintained in RPMI1640 cell

culture medium supplemented with 10% fetal bovine serum (FBS) at a 37 °C humidified

atmosphere containing 95% air and 5% CO2 and were split twice a week.

2.3. Cell proliferation assays

The CellTiter96™ AQ non-radioactive cell proliferation kit (Promega Corp., Mad-ison, WI)

was used to evaluate cell viability as we previously described [18]. In brief, cells were plated

on 96-well plates with 0.1 ml complete medium containing 0.5% FBS as control, or 0.1 ml

of the same medium with either bendamustine or entinostat alone, or their combinations, and

incubated for 72 h in a cell culture incubator. After reading all wells at 490 nM with a

microplate reader, the percentages of surviving cells from each group relative to controls,

defined as 100% survival, were determined by reduction of MTS.

2.4. Quantification of apoptosis

An apoptosis ELISA kit (Roche Diagnositics Corp., Indianapolis, IN) was used to

quantitatively measure cytoplasmic histone-associated DNA fragments (mononucleosomes

and oligonucleosomes) as previously reported [18].
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2.5. Western blot analysis

Protein expression levels were measured as previously described [18]. In brief, cells were

lysed in a buffer containing 50 mM Tris, pH 7.4, 50 mM NaCl, 0.5% NP-40, 50 mM NaF, 1

mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 25 μg/ml leupeptin, and 25 μg/ml

aprotinin. The protein concentrations of total cell lysates were measured by the Coomassie

Plus protein assay reagent (Pierce Chemical Co., Rockford, IL). Equal amounts of cell

lysates were boiled in Laemmli SDS-sample buffer, resolved by SDS–PAGE, and western

blot analysis with specific antibodies as described in the figure legends.

2.6. Flow cytometric analysis of cell cycle

Flow cytometric analyses were performed as described previously [18] to define the cell

cycle distribution and apoptosis for treated and untreated cells. In brief, cells grown in 100-

mm culture dishes were harvested and fixed with 70% ethanol. Cells were then stained for

total DNA content with a solution containing 50 μg/ml propidium iodide and 100 μg/ml

RNase I in PBS for 30 min at 37 °C. Cell cycle distribution was analyzed at the Flow

Cytometry Core Facility of University of Colorado Cancer Center with a FACScan flow

cytometer (BD Biosciences, San Jose, CA).

2.7. Morphologic evaluation of mitotic catastrophe

Cultured MM cells were harvested, resuspended with RPMI1640 medium, and

cytocentrifuged for 1 min at 1000 rpm. Cells were fixed in methanol for 5 min, and then

stained in Jenner solution for 5 min. Samples were transferred into Giemsa solution for at

least 45 min, and then rinsed in distilled water. Slides were examined under a

photomicroscope (Olympus). Pathologists were blinded on each slide set regarding the

treatment group. Cells that showed abnormal mitotic figures, chromatin condensation and

fragmentation were counted against normal cells, and reported in percentage.

2.8. Statistical analysis

Statistical analyses of the experimental data were performed using a two-sided Student’s t

test. Significance was set at a P < 0.05. Calculation of IC50, combination index (CI) and

evaluation of synergy vs antagonism between bendamustine and entinostat were performed

using the Calcusyn software (Biosoft, Ferguson, MO), which was designed based on Chou–

Talalay method [19,20]. CI values less than, equal to and more than 1 represent synergistic,

additive and antagonistic effects, respectively.

3. Results

3.1. Bendamustine in combination with entinostat enhances growth inhibition of MM cells,
and is synergistic over a wide range of effects

To explore whether bendamustine or entinostat might have therapeutic potential against

MM, we first performed cell growth assays using U266, dexamethasone-sensitive (MM1.S)

and dexamethasone-resistant (MM1.R) cell lines. Upon treatment with a serious dose of

bendamustine or entinostat for 72 h, the proliferation of all three cell lines was significantly

inhibited, although U266 cells were less sensitive to both agents than the other two cell lines
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(Fig. 1A and B). The response of MM cells to entinostat was in accordance with our

previous findings [18]. It appeared that MM1.R cells were more sensitive to the agents,

especially entinostat, than MM1.S cells (Fig. 1A and B). Thus, both bendamustine and

entinostat were able to inhibit proliferation of dexamethasone-sensitive and -resistant MM

cells in a dose-dependent manner.

Next, we sought to determine whether the combination of bendamustine and entinostat may

further enhance their inhibitory effects on MM cells. After treating cells with single agent or

their combinations in a fixed ratio for 72 h, we observed a significant growth inhibition upon

combinatorial treatment as compared with either agent alone (Fig. 2A). The IC50s of

bendamustine when used in combination with entinostat for U266, MM1.S and MM1.R cells

were approximately 132.8, 13.7, and 34.5 μmol/L, respectively. In contrast, The IC50s of

bendamustine when used alone for U266, MM1.S and MM1.R cells were approximately

375, 86.9, and 83.8 μmol/L, respectively. The combinatorial anti-proliferation activity was

much more potent in MM1.S and MM1.R cells than that in U266 cells, which is consistent

with single agent treatment. It should be emphasized that the combination enhanced

inhibition dramatically at the concentration of 50 μmol/L (bendamustine) and 0.2 μmol/L

(entinostat) in MM1.S cells, even though no inhibition was observed with entinostat (0.2

μmol/L) alone (Fig. 2A). This result promoted us to further explore whether the two agents

may have synergistic effect. We performed combination index (CI) analysis according to the

Chou–Talalay equation [19,20]. The curves showed that bendamustine and entinostat exhibit

a synergistic activity over a wide range of effects with CI = 0.531 ± 0.1339 at IC50s

(fraction of cells affected = 0.5) in U266 cells. Similar results were obtained with MM1.S

and MM1.R (Fig. 2B). In conclusion, the combination of bendamustine and entinostat

synergistically induced growth inhibition in MM cells.

3.2. Combination of bendamustine and entinostat significantly promotes MM cells
undergoing apoptosis and induces cell cycle S phase arrest

To elucidate the molecular mechanism of bendamustine and entinostat-mediated anti-

proliferation/anti-survival effects, we first tested whether bendamustine and/or entinostat

may induce apoptosis in MM cells. A specific apoptotic ELISA showed that entinostat alone

(0.1 μmol/L) induced minor apoptotic effect in U266, MM1.S and MM1.R cells (Fig. 3A).

However, bendamustine alone induced apoptosis in a dose-dependent manner, and this

effect was significantly enhanced after entinostat (0.1 μmol/L) was added into bendamustine

(Fig. 3A). Furthermore, western blot analysis revealed that the combination of bendamustine

and entinostat as compared to either agent alone more potently induced PARP cleavage, the

hall mark of apoptosis, and activation of caspase-8 and -3 evidenced by the increases of

cleaved caspase-8 and -3 in all three cell lines (Fig. 3B–D). These data indicate that

entinostat significantly accelerates bendamustine-induced apoptosis in MM cells via

caspase-dependent signaling pathways. Next, we examined the effects of bendamustine

and/or entinostat on cell cycle progression in MM cells. In all three lines tested, treatment

with bendamustine alone clearly increased the percentage of cells at S phase, which was

correlated with the reduction of G1 cells (Fig. 4). However, entinostat exhibited distinct

effects on different MM cells. It appeared entinostat increased G1 percentage and reduced

G2/M phase in U266 cells, whereas it had a minor effect on cell cycle progression in
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MM1.S cells (Fig. 4A and B). In contrast, entinostat dramatically increased the MM.1R cells

at S phase which was associated with a significant reduction of G1 cells (Fig. 4C).

Entinostat’s effects on MM.1R cells were similarly observed in RPMI8226 cells [18]. More

importantly, the combinations of entinostat and bendamustine induced a profound S phase

arrest with no or few G2/M cells left in all three MM lines (Fig. 4). These data suggest that

the combinatorial effects mainly blocked the MM cells at S phase to enter G2/M phase.

3.3. Combination of bendamustine and entinostat significantly enhances DNA damage
response associated with enhanced mitotic catastrophe

Since bendamustine induces DNA damage response and mitotic catastrophe of cancer cells,

which are major mechanisms for treatment, we next focused studies on investigating

whether entinostat amplifies bendamustine-induced DNA damage response and mitotic

catastrophe. We examined the expression of DNA damage checkpoint proteins after treating

MM cells with single agent or their combinations for 24 h. Treatment with entinostat alone

(0.1 μmol/L) did not increase P-H2A.X, P-CHK1, or P-CHK2 in either cell lines except

MM1.S with minor increase of H2A.X phosphorylation (Fig. 4). However, the levels of P-

H2A.X were dramatically increased following adding entinostat (0.1 μmol/L) to

bendamustine treatment in all three cell lines, while the potent induction of P-CHK2 by

combinatorial treatment was only observed in MM1.S cells (Fig. 4). In addition,

bendamustine mainly upregulated P-CHK2 in U266 and MM1.S cells, whereas it enhanced

CHK1 phosphorylation in all three cell lines. Moreover, morphologic observations revealed

a significant increase in aberrant cells with mitotic catastrophe when treated with both

bendamustine and entinostat as compared to either agent alone (Fig. 5), which was

consistent with the results of our studies on apoptosis (Fig. 3) and DNA damage response

(Fig. 4). Taken together, these data indicate that entinostat significantly enhances

bendamustine-induced DNA damage response via induction of P-H2A.X and/or P-CHK2 in

MM cells, and subsequently promotes the cells undergoing morphologic abnormalities and

apoptosis.

4. Discussion

Recent advances in identifying novel therapeutic agents and combination strategies for MM

treatment have provided promising results. As an old drug, bendamustine has being given

new perspective in treating hematologic malignancies such as CLL, lymphoma, and MM

[21–23]. On the other side, HDACis are widely investigated for cancer treatment. Several

clinical trials are ongoing to evaluate the efficacy of vorinostat, panobinostat, ITF2357 and

belinostat in treating relapse/refractory MM patients [24–27]. We and others show that

HDACi presents synergistic effects with conventional alkylator melphalan [18,28]. Here we

provide strong evidence indicating that bendamustine shows anti-MM activity when used as

single agent, and its capability to induce apoptosis of MM cells is synergistically potentiated

by the specific HDACi entinostat via enhanced DNA damage response and mitotic

catastrophe. Furthermore, either bendamustine alone or its combination with entinostat

exhibits therapeutic potential to overcome dexamethasone resistance.

Among the three MM cell lines we tested, U266 cells appeared to be less sensitive to either

bendamustine or entinostat than the other two cell lines in the presence of effective drug
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concentration nearly out of the range of peak plasma concentrations (approximately 129

μmol/L for bendamustine and 0.34 μmol/L for entinostat) [29,30]. In contrast, similar

inhibitory activity of either agent or their combinations was found in dexamethasone-

sensitive and -resistant cells (Fig. 1). The concentrations of bendamustine and entinostat we

evaluated for apoptosis, cell cycle progression, and mitotic catastrophe were all within their

clinically tolerated concentrations (Figs. 3–6). Thus, it is feasible to explore their efficacy in

managing dexamethasone-resistant MM in an in vivo animal model, and subsequently in

clinical trials of MM patients.

Most MM patients are treated with multi-drug chemotherapy regimens. The clinical trials

using HDACi as monotherapy for MM appeared not to get much benefit as compared to

those traditional chemotherapeutics [25,31,32]. Thus, although either bendamustine or

entinostat alone showed potent inhibitory effects on MM cells, it is more practical to find

their therapeutic potential in the context of combinations. It has been reported that HDACis,

such as romidepsin, vorinostat and panobinostat exhibit synergistic effects with bortezomib

on growth inhibition of MM cells [33–35]. HDACis combined with DNA-damaging agents

or other epigenetic therapies were also investigated [36]. While majority of the studies

focused on synergistic effects to induce apoptosis and cell cycle distribution, we sought to

determine the alterations of DNA damage response and mitotic catastrophe as well. Our data

showed that the levels of P-H2A.X and/or P-CHK2 were significantly upregulated upon the

combinatorial treatment of entinostat and bendamustine (Fig. 5). These data provide strong

evidence supporting that entinostat potentiates bendamustine-induced apoptosis through

enhancing DNA damage responses. Since chromatin structure is critical for cells to sense

and repair double strand breaks [37], we hypothesize that treatment with low dose entinostat

may loosen the chromatin conformation making DNA-damaging agents easier to destroy

DNA structure. Further studies are warranted to test this hypothesis.

It is possible that apoptotic/survival-related cell signaling may be altered with the

combinatorial treatment of entinostat and bendamustine. Our data showed that entinostat did

enhance bendamustine-induced apoptosis via activation of caspase-8 and -3 (Fig. 3), but the

significant decrease of phosphorylated Stat3 was only detected in U266 cells in our

explorations for PI-3K/Akt, Ras/MAPK, and JAK/Stat3 signaling pathways (data not

shown). This phenomenon suggests that these three pathways may not be important in

MM1.S and MM1.R cell survival in the context of entinostat and bendamustine treatment.

Advances in unveiling MM pathogenesis identified several key signaling which control cell

biology [38]. We are currently trying to find out if other signaling pathways, such as NF-κB

and IGF-1/IGF-1R may play a critical role in promoting proliferation and survival of MM

cells.

In summary, we demonstrate that entinostat, a specific class I HDACi, synergistically

enhances bendamustine-induced growth inhibition and apoptosis in MM cells mainly

through induction of DNA damage response and mitotic catastrophe. This combinatorial

activity is equally observed in dexamethasone-sensitive and -resistant MM cells. Our studies

suggest that bendamustine in combination with epigenetic therapy, such as entinostat may be

promising for managing MM patients and overcoming dexamethasone resistance.
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Abbreviations

MM Multiple myeloma

CLL chronic lymphocytic leukemia

HDAC histone deacetylase

HDACi Inhibitor of HDAC

HAT Histone acetyltransferase

PARP poly(ADP-ribose) polymerase

ELISA enzyme-linked immunosorbent assay

PAGE polyacrylamide gel electrophoresis

IC50 inhibitory concentration 50

CI combination index

PI-3K phosphoinositide 3-kinase

MAPK Mitogen-activated protein kinase

IGF-1 insulin-like growth factor-1

IGF-1R IGF-1 receptor

JAK c-Jun N-terminal kinase

STAT signal transducers and activators of transcription

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt
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Fig. 1.
Bendamustine or entinostat alone inhibits proliferation of MM cells in a dose-dependent

manner. Human MM cells were plated onto 96-well plates with fresh RPMI1640 medium

(0.5% FBS) or same medium containing indicated concentrations of bendamustine (Benda)

or entinostat (Ent) for 72 h. The percentages of surviving cells as compared to controls,

defined as 100% survival, were determined by reduction of MTS. Data shows the

representative of three independent experiments. Bars, SD. (A) bendamustine; (B)

entinostat.
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Fig. 2.
Combination of bendamustine and entinostat significantly induces growth inhibition of MM

cells, and is synergistic over a wide range of effects. (A) Human MM cells were plated onto

96-well plates with fresh RPMI1640 medium (0.5% FBS) or same medium containing

indicated concentrations of bendamustine (Benda) or entinostat (Ent) or their combinations

with a fixed ratio for 72 h. The percentages of surviving cells as compared to controls,

defined as 100% survival, were determined by reduction of MTS. Data shows the

representative of three independent experiments. Bars, SD. P values vs bendamustine single

agent. (B) The combination index (CI) curves were calculated using Calcusyn software

according to the Chou–Talalay equation.
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Fig. 3.
Combination of bendamustine and entinostat significantly promotes MM cells undergoing

apoptosis. MM cells were cultured with RPMI1640 (0.5% FBS) in the absence or presence

of either entinostat (Ent) or bendamustine (Benda) alone, or the combinations of entinostat

and bendamustine for 24 h. Cells were collected and subjected to apoptotic ELISA (A) or

western blot analyses with specific antibody directed against PARP, caspase-8 (Casp-8),

caspase-3 (Casp-3), or β-actin (B, C, D). Bars, SD. P values vs bendamustine single agent.
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Fig. 4.
Entinostat and bendamustine block cell cycle progression. MM cells were cultured with

RPMI1640 (0.5% FBS) in the absence or presence of entinostat (Ent, 0.1 μmol/L),

bendamustine (Benda, 200 μmol/L for U266 cells, 100 μmol/L for MM1.S and MM1.R

cells) alone or the combinations of entinostat and bendamustine for 24 h. Cells were

harvested and subjected to flow cytometric analysis of cell cycle distribution. The bar graph

reflects the percentage of cells in G1, S, or G2/M phase of the cell cycle. Data shows the

representative of three independent experiments. (A) U266; (B) MM1.S; (C) MM1.R.
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Fig. 5.
Combination of bendamustine and entinostat enhances DNA damage response. MM cells

were cultured with RPMI1640 (0.5% FBS) in the absence or presence of entinostat (Ent),

bendamustine (Benda) alone or the combinations of entinostat and bendamustine for 24 h.

Cells were collected and subjected to western blot analyses with specific antibody directed

against P-H2AX, H2AX, P-CHK1, CHK1, P-CHK2, CHK2 or β-actin. (A) U266; (B)

MM1.S; (C) MM1.R.
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Fig. 6.
Combination of bendamustine and entinostat induces mitotic catastrophe. (A) MM1.S cells

were cultured with RPMI1640 (0.5% FBS) in the absence or presence of entinostat,

bendamustine alone or the combinations of entinostat (Ent) and bendamustine (Benda) for

24 h. Cells were collected and subjected to cytospin onto cell slides followed by Giemsa

staining and examination under a photomicroscope (×100 magnification). Arrows indicate

the cells with mitotic catastrophe. (B) Cells that showed atypical mitotic figures, multi-

nucleation, atypical chromosome clusters, and/or apoptosis were counted against normal

cells, and reported in percentage. Data shows the representative of three independent

experiments. Bars, SD. P values vs bendamustine single agent.
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